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Abstract

A system to recognize hand drawn architectural drawings in a CAD environment has been deve-
loped. In this paper we focus on its high level interpretation module. To interpret a floor plan,
the system must identify several building elements, whose description is stored in a library of pat-
terns, as well as their spatial relationships. We propose a structural approach based on subgraph
isomorphism techniques to obtain a high-level interpretation of the document. The vectorized
input document and the patterns to be recognized are represented by attributed graphs. Discrete
relaxation techniques (AC4 algorithm) have been applied to develop the matching algorithm. The
process has been divided in three steps: node labeling, local consistency and global consistency
verification. The hand drawn creation causes disturbed line drawings with several accuracy errors,
which must be taken into account. Here we have identified them and the AC4 algorithm has been
adapted to manage them.

1 Introduction

CAD systems are a tool of great help that solves effi-
ciently technical document’s creation and modifica-
tion tasks. But, what about the reverse problem,
converting paper-based drawings for their integra-
tion into a CAD environment? The field of docu-
ment analysis deals with this topic through the use
of image processing and pattern recognition techni-
ques applied to scanned images of document pages.
In this paper we propose a CAD system input techni-
que from hand drawn floor plans. This alternative
input technique shows several advantages: it allows
storage and modification of paper-based plans and,
thus, the user is offered the possibility of creating
new documents in a rapid and easy manner.

The system described below is structured accor-
ding to the three classical levels of any document a-
nalysis and understanding system (figure 1): lexical
level, syntactic level and semantic level. The lexi-
cal level extracts the basic primitives that construct
the line drawing (straight lines, circular arcs, junction
points, end points, corner points and inflexion points)
and their geometrical and topological properties. The
syntactic level establishes structural relations betwe-
en primitives and provides a symbolic representation
of the document. In our case, an attributed graph
[Cha90] representation has been chosen. The aim of
the semantic phase is to understand the document

and to obtain a high level representation compatible
with a CAD system format. This high level represen-
tation, in this work, is a semantic net [?] whose nodes
denote high level graphical objects of the document
(doors, tables, windows, etc.), and links denote spa-
tial relationships between them (inside, next to, etc.).
This level is aided by domain-dependent knowledge,
i.e. some models to be recognized, some constraints
to be satisfied, etc.

There are several works on line drawing pattern
recognition. Works on logic circuit diagram recogni-
tion [FWL89], [ST82], [LKG90], [KU86], [Ble84] deal
with a limited set of symbols that the system should
recognize and that can be easily separated from other
graphical elements. Studies on engineering drawing
processing [NL90], [SH89], [PLJ91], [BWS88], [KS93]
do not carry out a high level interpretation and are
mainly concentrated on an efficient vectorization of
the document. In works on parcel interpretation of
cadastral city maps [MT90], [BCDB*92], [Mad91]
the graphical symbol identification consists in sear-
ching polygons with given features (texture, number
and configuration of edges, etc.). No works on hand
drawn floor plans recognition have been found.

In a floor plan drawing the instances of patterns
cannot be easily identified, since they can be joined or
embedded in other graphic elements. Besides, consi-
dering hand-drawn line drawings supposes accepting
a certain degree of inaccuracy in their traces. This



Figure 1: A document analysis and understanding system.

implies using uncertainty parameters (thresholds for
angles and distances) to achieve accuracy error co-
rrection.

This paper is actually devoted to describe the se-
mantic level. This module performs model-based
matching. Models are the graphical instances in the
paper-based document to be recognized. Structural
methods are widely used in line drawings’ matching.
These techniques offer a compact representation mo-
del of the lineal image, which allows its translation,
rotation and scale-invariant recognition. The struc-
tural recognition has two tendencies, sometimes equi-
valent, syntactic recognition and graph-based recogni-
tion.

Syntactic recognition [FWL89] is adequate when
there is a limited set of models to be recognized and
all of them can be described using a grammar with a
reduced set of primitives. Introducing a new pattern
to be recognized would imply making a grammati-
cal inference [Fu80], and we should also suppose that
this new model can be described by the same set of
primitives. Works based on graph theory [LKG90],
[KU86], [Hab91] allow inexact matching and rapid in-
troduction of new patterns to be recognized without
the system being altered. Besides, there is a great
similarity between a graph and a line drawing. In
our case, being able to perform inexact matching is
essential because the input is hand drawn. For all
these reasons, we are left with a method based on
graph theory to attain our purposes.

Next section overviews the system. Errors due to
the fact that the input document is hand drawn are
characterized in section 3. Section 4 describes the
node labeling process (node consistency verification).
Local consistency verification (path consistency veri-

fication) of hypotheses is described in section 5. The
last step of the algorithm (path consistency verifi-
cation) is described in section 6. Finally, section 7
present some representative results.

2 Outline of the Approach

The output of the syntactic level is an attributed
graph-based representation of the line drawing. A
complete description of both lexical and syntactic le-
vels can be found in [?]. The input line drawing and
the patterns to be recognized are represented using
a two-level attributed graph (2LG) (figure 2). A li-
neal drawing is represented, in the first level, by a
set of attributed connected graphs. The characteris-
tic points in the line drawing correspond to vertices of
the graph and the line segments joining these points
correspond to the edges. The second level graph is
an hypergraph whose nodes are first level graphs and
whose edges denote topological relationships between
them.

Starting from this representation, matching is ca-
rried out using subgraph isomorphism techniques,
that is, by finding the 2LG (model graph) represen-
ting the pattern to be recognized in terms of a sub-
graph of the 2LG (candidate graph) that approxima-
tes the input line drawing at best. This subgraph
isomorphism process must be applied at each level
of the 2LG. The subgraph isomorphism problem is
equivalent to the consistent labeling problem [Hen90]
which is a NP-Complete problem. This makes any di-
rect solution generating mechanism very sensitive to
the size of model and candidate graph and requiring
abusive calculation time. Hence, it becomes neces-
sary to apply prune criteria (e.g., discrete relaxation



Figure 2: Line drawing representation by two level graphs (2LG).

techniques) to achieve a significant decrease in the
number of possible solutions.

The consistent labeling problem may be explained
as follows: O is a set of objects to be identified, L is
a set of labels that represent hypotheses on the iden-
tification of the objects and R is a set of constraints
between the pairs object-label. The goal is to obtain
a set H of hypotheses that assigns a label to each ob-
ject satisfying the existing constraints. In our case,
the objects to be labeled are the model nodes. La-
bels are build from the candidate nodes. Therefore,
the model graph can be interpreted as a constraint
graph. These constraints, based on graph’s edges,
represent geometric and topologic conditions to be
accomplished by nodes in their junctions.

From this point of view, in [Hen90] the labeling
problem is decomposed in three steps:

• Node consistency: each node of the model graph
is labeled with all possible candidate nodes mat-
ching with it. The labeling is based on topolo-
gical criteria (f.i. the number of edges for which
the node is an end point) and geometrical crite-
ria (f.i. the configuration of each node, that is,
the arrangement of edges for which the node is
an end point).

• Arc consistency: the consistency of labels for ea-
ch pair of neighboring nodes (linked by an edge)
is checked and inconsistent labels are removed.
The AC4 (Arc Consistency 4) algorithm [MH86]
[Hen90] is here applied. This algorithm is ba-
sed on discrete relaxation techniques. These te-
chniques have been used in previous works on
line-drawing recognition [MT90] [Hab91].

• Path Consistency: a set of labels globally valid
for all the model nodes is searched. This set of
labels is considered as solution to the problem.

3 Error typification

In a vectorized document obtained from a hand
drawn design there are several accuracy errors due
to inaccurate stroke and to the fact that digitaliza-
tion implies discretization. In this work, we propose
the following error classification:

• point duplication with touch occurrence

(Fig. 3(a)): due to an inexact stroke when there
is more than one line ending at an union point.
The result is the appearance in the graph of addi-
tional vertices linked by erroneous edges (see fig.
3(f)).

• point duplication without touch occurren-

ce (Fig.3(b)): occurs when lines do not reach a
union point, it is also due to a lack of precision
in line trace. Similarly to the previous case, the
effect of such error on the graph is the appari-
tion of more vertices although now no additional
edges appear (see fig.3(g)).

• Added points (Fig. 3(c)): when a line has
been drawn using more than one stroke and little
precision at linking strokes. The result of this
error on the graph is the apparition of several
fictitious vertices linking several edges which in
fact should be a single one (see fig.3(h)).

• Added lines (Fig. 3(d)): are very short lines
that go beyond drawing’s lines and junctions.
They arise when traces are not uniform, that is,
when there are stains on lines or when lines have
been drawn beyond the junction. In the graph
short edges that should be discarded arise (see
fig. 3(i)).

• Broken lines (Fig. 3(e)): when lines that
should be solid are formed by more than one line
because of a difference in stroke’s pressure. The
result on the graph is the apparition of two edges
and two false terminal points (see fig. 3(j)).



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: Accuracy errors in a hand drawn docu-
ment: point duplication with (a)(f), and without tou-
ch occurrence (b)(g), added points (c)(h), added lines
(d)(i), broken lines (e)(j).

Any of these errors, which may appear combined,
increases exponentially the number of local hypothe-
ses and, consequently, the necessary calculation time
for isomorphism.

4 Node labeling

Notation: A graph is represented, using a standar-
dized notation, by G(V,A) where V is a set of nodes
and A is a set of edges.

Given a model graph GM (VM , AM ) and a candi-
date graph GC(VC , AC), the first step of the isomor-
phism assigns a set Lm of consistent labels to each
node m ∈ VM . Bearing this in mind, we have utilized
the label model proposed by [Hab91]. Following this
notation a label contains information on which can-
didate node is assigned and in which orientation. A
consistent label l ∈ Lm associated to a node m ∈ VM

is defined as follows:

l = (n, w, el)

where n ∈ VC is a candidate node; w is the weight
of the label where weight = d(n)− d(m); d(m) is the
degree of the node m, that is, the number of edges
for which m is an end point; and el = [a1, . . . , ad(m)]
(ai ∈ AC ∪ {λ}) is a circular list of the edges of
the candidate node n that match with the edges of
the model node m. It can be an empty edge (λ)
when w < 0, that is, when any edge of the model
edges does not appear in the candidate graph. By
including empty edges inexact matching is permitted.
According to this notation, a labeling hypothesis is a
pair (m, l) where l is a consistent label for a node
m ∈ VM .

Node consistency is satisfied when there is a co-
rrespondence between angles of joining edges. If two
edges of the candidate node, a and b, are compared
with their corresponding edges x and y of the model
node, where x, y form an angle θ, and they coincide;

then the angle between a and b must be θ±∆ so that
the label becomes admissible in the model node. ∆
is a pre-established variability margin which depen-
ds on image resolution. As you can see in figure 4,
given a model node m and a candidate node n, se-
veral different consistent labeling hypotheses can be
defined taking into account the different rotations of
the model with respect to the candidate and the lika-
ble existence of empty edges (λ) in the label. In this
figure we can see that a candidate node may match
with different positions of a model node depending
on edges’ correspondence. According to the notation
of [Hab91], in this figure, the first edge in the circu-
lar list of edges for which model node is an end point
is marked with an ∗. The edges’ order is taken in
counterclockwise sense.

5 Local Consistency Verification

After label generation, the next step consists in ve-
rifying the consistency between labels assigned to
neighboring nodes. With this aim, the AC4 algorit-
hm is applied. This is a discrete relaxation algorithm
that runs in polynomial time and yields locally con-
sistent solutions, i.e. arc consistency is verified. The
problem of this algorithm is the great storage capaci-
ty required, however it is one of the best algorithms
based on constraint propagation techniques.

All the locally consistent labels in each node of the
model graph should be validated using the labels of
the neighboring nodes. A binary constraint R betwe-
en hypotheses of neighboring nodes is imposed. Let
us consider a model node mi and a label la assigned
to it in the previous step. We will say that la is an
admissible label in the node mi, if it is consistent (ac-
cording to the relationship R) with, at least, one of
the labels of any node mj linked to mi. When the
algorithm finds a node mj that has no compatible
labels with la, this label is removed from the set of
admissible labels for node mi. All the hypotheses
(mj, lb) which are in relation with (mi, la) are then
informed that this hypothesis is not admissible. The
process is recursively repeated until stability.

The constraint R used can be explained as follows:
given two labeling hypotheses h1 = (m1, (n1, w1, el1))
and h2 = (m2, (n2, w2, el2)), where m1 and m2 are
joined by an edge e ∈ AM ,R(h1, h2) is true if the
following constraints are satisfied:

1. There is a sequence of K edges [b1, . . . , bK ] (bi ∈
AC ∪ {λ},∀i = 1 . . .K) which links n1 and n2

and which approximates the e’s path.

2. Each label contains information on the rotation



Figure 4: Labeling hypotheses generated from a pair (model node, candidate node).

Figure 5: Example of inconsistent hypotheses.

that must be suffer the model node to match
with the candidate node. This information is
supplied by the circular lists of edges el1 and el2
and its correspondence with the edges of the res-
pective model nodes m1 and m2. This rotation
must be the same for h1 and for h2.

The example of figure 5 illustrates the constraint
R. In this example, two hypotheses are checked.
The first condition is satisfied because the model no-
des m1 and m2 are linked by the sequence [b4, b5, b6]
that approximates the model edge a1 (straight line).
However, the second condition is not satisfied becau-
se in the label h1, the model edge a1 corresponds to
the candidate edge b4 and, in the label h2, a1 corres-
ponds to candidate edge b3, i.e. h1 and h2 denote
different rotation for the model nodes m1 and m2.

6 Global Consistency Verification

Although discrete relaxation techniques find a global
solution sometimes, they do not always, but they re-
duce the search space of the labeling problem that is
an exponential problem. The last step of the mat-
ching process consists in finding a set of hypotheses,
one for each model node, constituting a globally valid
solution. In this step the path consistency is verified,
that is, if there is a path between two model nodes

and all of the hypotheses corresponding to nodes of
the path must be compatible.

The global consistency verification is based on a
depth first search algorithm. In the tree search, each
level represents a model node and each node repre-
sents a label associated to that model node. We ha-
ve a solution when we reach a leaf in the tree se-
arch. A global solution is a set of labeling hypotheses
H = {h = (m, l),∀m ∈ VM} where, if there exists an
edge e ∈ AM that links two hypotheses hi, hj ∈ H,
then R(hi, hj) or R(hk, hj) or R(hi, hl) is true. hk
is a hi’s matching hypothesis and hl is a hj ’s mat-
ching hypothesis. The matching hypotheses criterion
is introduced to solve some problems as the one in
figure 6. In this example, due to one of the errors
characterized in section 3, a model node m has been
properly labeled for two candidate nodes as a result
of the duplication of the characteristic point. The hy-
potheses h1 and h2 are two valid interpretations for
the global consistency verification but, if we consider
them independently, none of them turns out to be
globally valid. Both hypotheses have complementary
information that must be taken into account. The
hypotheses h1 and h2 match because they have the
same model node n, the candidate nodes n1 and n2

are neighbors and if we match the h1’s edges circu-
lar list with the h2’s edges circular list, the angles
between edges of m are satisfied.



Figure 6: Example of matching hypotheses.

7 Experimental results

(a) (b) (c) (d)

Figure 7: Some model graphs to be matched.

This section illustrates the algorithm described above
with some meaningful examples. In figure 7 some mo-
dels to be found in the image are shown. Figure 8(a)
is the original image corresponding to the scanned do-
cument. Figure 8(b) shows the 2LG approximation
obtained as a output of the syntactic level. In this
figure we can realize that the segments of the original
image have been approximated by straight lines and
circular arcs. Similarly, because input documents are
hand drawn, some of the errors described in section
3 occur in this figure once more. Figures 8(c), 8(d),
8(e) and 8(f) are respectively the results of subgraph
matching with the patterns of figures 7(a), 7(b), 7(c)
and 7(d). In these figures, the edges corresponding to
a solution have been bolded. All of the results show
that inexact matching has been here performed. In
figures 8(c) and 8(d) some problems are solved: the
splitting of the characteristic points and the appro-
ximation of a model edge by means of a sequence of
candidate edges. Figures 8(e) and 8(f) show the re-
sult of matching using patterns that contain circular
arcs.

8 Conclusion

This paper has presented a method to recognize ar-
chitectural documents using discrete relaxation te-
chniques. The algorithm described should be seen
as a step in the interpretation of the drawing. This
interpretation allows converting a paper-based docu-
ment into an electronic document and integrating it
in a CAD system. A graph-based model has been
chosen to represent the input documents. The AC4
algorithm has been implemented to make the mat-

ching step. The main contribution of this work is to
start from hand drawn plans, in which it is neces-
sary to identify accuracy errors. These errors have
been taken into account in the development of the
matching algorithm. A coherence constraint for the
local consistency verification and a matching hypo-
thesis criterion have been proposed to allow an ine-
xact matching. Using graph-based techniques allows
a translation, rotation and scale-invariant recognition
and an easy integration of new symbols to recognize.
When all patterns have been recognized, a high level
representation of the document based on a semantic
net representation is built. The method developed
in this paper has been used for architectural draw-
ings, however, it’s a general method that can be ea-
sily adapted to other domains.
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