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RESUM

Una tècnica molt útil en el diagnòstic de les malalties coronàries és la caracterització de les diferents
plaques mitjançant l'anàlisi de seqüències d'Ecogra�a Intracoronària. La detecció manual de les vores
lumen-íntima, íntima-mitjana i mitjana-adventícia constitueix una gran part de l'activitat dels experts
per al procés de la quanti�cació de la placa. La gran varietat de descriptors de les vores del vas, a més
de les ombres, artefactes i la resposta difusa deguda a les propietats físiques de l'ultrasò, di�culta la
segmentació automàtica de la vora mitjana-adventícia. Aquest treball experimental presenta una solu-
ció a aquest problema tan complex. El procediment es basa en la unió de l'ús d'operadors avançats
de �ltratge anisotròpic amb tècniques de classi�cació estadística, assolint una estratègia e�cient per al
modelatge dels vasos coronaris. Inicialment es fa una introducció a la base teòrica de què consta el
mètode. Tot seguit s'introdueixen els passos de l'algorisme, per acabar validant el mètode amb estadís-
tiques que demostren que la detecció de la vora mitjana-adventícia s'assoleix amb una precisió dins de
la variabilitat inter-observador, malgrat la naturalesa de la placa, la geometria del vas i les vores incom-
pletes d'alguns. Finalment, es presenta una petita aplicació en Matlab per a la segmentació automàtica
de la vora mitjana-adventícia.

Paraules clau: Ecogra�a Intracoronària, adventícia, segmentació automàtica, classi�cació, proces-
sament anisotròpic

ABSTRACT

A usual tool in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences.
Manual detection of lumen-intima, intima-media and media-adventitia vessel borders is the main activ-
ity of physicians in the process of plaque quanti�cation. Large variety in vessel border descriptors, as
well as, shades, artifacts and blurred response due to ultrasound physical properties troubles automated
media-adventitia segmentation. This experimental work presents a solution to such a complex prob-
lem. The process blends advanced anisotropic �ltering operators and statistic classi�cation techniques,
achieving an e�cient vessel border modelling strategy. First of all, we introduce the theoretic base of the
method. After that, we show the steps of the algorithm, validating the method with statistics that show
that the media-adventitia border detection achieves an accuracy in the range of inter-observer variability
regardless of plaque nature, vessel geometry and incomplete vessel borders. Finally, we present a little
Matlab application to the automatic media-adventitia border.

Keywords: IntraVascular UltraSound, adventitia, automatic segmentation, classi�cation, anisotropic
processing
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Chapter 1

Introduction

1.1 The Clinical Problem
Cardiovascular disease (heart, stroke and blood vessel disease) is a leading cause of death in developed

countries. While the heart pumps blood, the muscle gets its nutrition from the pumped blood coming
back into the muscle via the coronary arteries, so coronary artery disfunction is a strong point in
cardiovascular disease treatments. Artery problems develop over time when plaque (a combination of
blood cholesterol, fat and cells) builds up on the inside walls of arteries. Plaque makes arteries less
�exible (atherosclerosis) and narrows the artery's blood �ow (stenosis).

(a) (b)

Figure 1.1: Coronary Angiography diagnosis. Angiographic plane (a) and stenosis diagnosis(b).

Coronary angiography (�g. 1.1(a)) is one of the most used method for making a diagnosis of coronary
artery disease, though it is also the most invasive. It is a form of cardiac catheterization that shows the
heart's chambers, great vessels, and coronary arteries using x-ray technology. A contrast dye is injected
to make the heart and vessels visible on x-ray cinematography. Angiography images show a spatial
vision of coronary tree making possible the evaluation of vessel geometry. However, there is a lack of
information about vessel morphology and assessment of plaque narrowing in the perpendicular direction
to the angiographic plane might be underestimated. This artifact is intrinsic to the projection nature
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of angiographies acquisition, which only produces a projection of the coronary tree. It follows that the
stenosis visualization depends on the projection direction (as we show in �gure 1.1(b)). If the stenosis
is not on the projection direction, it is visible (projection 2 in �g.1.1(b)), whereas if it is in the same
direction, it keeps hidden (projection 1 in �g.1.1(b)).

To overcome angiography's limitations, IntraVascular UltraSound (IVUS) was developed towards the
end of the 1980s and has been re�ned and its clinical importance assessed through the 1990s. Intravas-
cular ultrasound is an invasive procedure, performed along main arteries with cardiac catheterization. A
transducer is threaded through the coronary arteries and, using high-frequency sound waves, produces
detailed images of the interior walls of the arteries. IVUS imaging is a useful clinical tool [1] that pro-
vides cardiologists with a cross sectional view of the vessel (�g.1.2) and allows a complete study of its
morphology, such as arterial wall, lumen or plaque.

1.1.1 IntraVascular UltraSound
In coronary arteries there are frequently three layers [2]. The innermost layer consists of a complex

of three elements: intima, atheroma (in diseased arteries), and internal elastic membrane. The trailing
edge of the intima cannot always be distinguished clearly. Moving outward from the lumen, the second
layer is the media, which is usually less echogenic than the intima. In some cases the media may
appear artifactually thin because of an intense re�ection from the intima or external elastic membrane
(EEM). The third and outer layer consists of the adventitia and periadventitial tissues. There is no
distinct boundary on IVUS images separating the true adventitia from surrounding perivascular tissues.
Depending on the disease of the artery, di�erent kind of plaques can be distinguished: calci�ed, soft and
�brous and mixed plaque. The main advantage of IVUS sequences over angiography imaging is that
most of the plaques visible in IVUS images do not appear in angiography images. In fact, it has been
determined that in a coronary stenosis quanti�cation by Ultrasound, those areas considered normals by
angiography are a�ected with a mean luminal area reduction of 40% [3].

(a) (b)

Figure 1.2: Vessel Borders (a) and Calcium (b) Identi�cation. Intima in yellow, adventitia in
green and calcium in red.

The technique helps diagnosis and treatment of cardiac diseases, as far as a precise characterization
and segmentation of arterial structures is available. In order to achieve a good diagnosis and so, an
appropriate treatment, di�erent measures relative to lumen, stenosis, atheroma, EEM and calcium and
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di�erent plaques are essential. Lumen measurements are performed using the interface between the
lumen and the leading edge of the intima (yellow in �g.1.2(a)). On the other hand, a discrete interface
at the border between the media and the adventitia is almost invariably present within IVUS images
and corresponds closely to the location of the EEM (green in �g.1.2(a)). It follows that it is necessary to
segment these borders to achieve reliable measurements, as well as, an exhaustive characterization of all
kind of plaques. For convenience, we will talk about either lumen or intima segmentation to refer to the
segmentation of the inner border and adventitia to refer to the outer border. In the case of calcium (red
in �g.1.2(b)), there is an acoustic shadowing behind them, because calcium provides a complete re�ection
of the signal. It follows that adventitia is performed by extrapolation from the closest identi�able EEM
border. A manual processing of images for the target structures characterization, apart from being a
tedious time consuming task, might su�er from intra- and inter- observer variability. This fact motivates
the development of image processing techniques addressing detection of arterial structures.

1.2 Classic Segmentation Approaches
Since the early years, many algorithms for a reliable intima detection have been proposed ([4]-

[12]). By its inherent di�culty (its distance from the transducer reduces sharpness in the border visual
appearance), adventitia modelling has been only approached in recent works ([13]-[22]). Nevertheless, an
accurate border detection requires either elaborated strategies in the case of contour based segmentations
([18]-[22]), or a previous plaque and tissue characterization in the case of classi�cation strategies ([15],
[16]).

Usual techniques addressing segmentation of vessel borders (intima and adventitia) rely on a single
local image descriptor (usually edges) to guide a snake towards the target structures ([4]-[7], [15]-[22]).
Regardless of low quality in IVUS images, adventitia detection adds the di�culty of a large variety of
descriptors, a weak visual appearance by a decrease in the ultrasonic pulse energy [25] and incomplete
contours due to echo opaque plaques (e.g. calcium) shadowing. It follows that standard segmentation
approaches do not su�ce by their own and need exclusive strategies to yield proper results. Some
authors [4]-[6], [21], [22] combine transversal and longitudinal contours to endow the model with spatial
continuity along the sequence. In this case, the use of ECG-gated sequences [6], [7], [15] signi�cantly
helps to achieve a reliable segmentation of longitudinal cuts. Other approaches ([8], [11], [15]) manually
restrict a region of interest that serves to initialize a snake, although such initialization might need to
be updated along the sequence.

A common inconvenience of segmentations based on contour detection is that they require some
kind of image �ltering to avoid fake responses. The poor image quality as well as large variety of
IVUS artifacts (calcium, side-branches, shadows, catheter guide and blood back scatter) make standard
anisotropic smoothings [41] fail to achieve optimal results. In order to overcome these drawbacks, several
approaches have been proposed. The most simple strategy is to discard those images containing too much
artifacts [18]. Although this is a practical way of �ltering, it runs the risk of losing too much information
for a reliable recovery of vessel borders. Others ([12],[24]), directly handle raw data (the ultrasound
signal before being digitalized) and �lter impulse responses of the transducer. Unfortunately, raw data
acquisition needs of a special device not always available in standard clinical equipments.

Recent approaches ([12]-[17], [26]) use classi�cation strategies to better characterize coronary struc-
tures (plaque and vessel borders). Although results are robust to noise and artifacts, most of them ([12],
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[15], [16]) require plaque classi�cation to yield, as a side result, lumen and media-adventitia segmenta-
tion. The only statistical proposal that directly handles vessel borders detection is discriminant snakes
[26], which extract the a priori knowledge for the segmentation of the current frame from the previous
segmented image. Although they are well suited for border tracking (thus avoiding any interaction along
the sequence), they require an accurate segmentation of the �rst sequence frame for each di�erent case.

We argue that vessel borders detection should serve to characterize and quantify vessel plaque rather
than follow as a side result of a laborious plaque classi�cation. In the present work, we describe a plaque
classi�cation free method for adventitia detection based on a statistical extraction of adventitia points
followed by the recovery of a closed model determined by the image geometry.

1.3 Our Contribution
An analysis of the limitations and advantages of each of the previously reported approaches suggests

that a robust adventitia segmentation should combine classi�cation strategies with advanced �ltering and
segmentation techniques [32]. The deterministic-statistical strategy for adventitia detection we propose
is a three-fold algorithm: preprocessing of IVUS images, selection of points on the vessel border and
segmentation of the extracted points. In the preprocessing step, a restricted anisotropic di�usion [33]
sharpens vessel borders appearance in the polar transform of each IVUS frame. Supervised classi�cation
techniques serve to compute 2 binary images: one for calcium sectors and another one for vessel borders.
The �rst image is a mask that discards sectors of ambiguous information. The second one is a collection
of fragmented vessel segments that are modelled by computing an implicit closed representation and,
then, an explicit B-spline parameterization. An anisotropic contour closing [34] yields the implicit
closed model of vessel segments conforming to the Gestalt principles of good continuation and avoiding
interpolation at calcium and side-branches sectors. Parametric B-spline snake with the initial snake at
the outer radius are used to compute the �nal explicit compact model.

The present work is structured as follows. In chapters 2 and 3 we introduce the basis of the tools
we use, either statistical (chapter 2) or deterministic (chapter 3). The thoroughly explanation of the
algorithm is detailed in chapter 4. The extended chapter 5 is dedicated to present the validation of
the method, showing real cases (5.3) and their statistical results (5.3.1). In chapter 6 we present a
prototype application for the use of the clinical experts in the Hospital Universitari Germans Trias i
Pujol in Badalona (Spain). Finally, in chapter 7, we discuss from the failed cases the drawbacks of the
strategy and conclude with the ideas for the future work.
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Chapter 2

Statistical Tools

Statistical procedures are those that, rather than yielding a unique output value, weight a wide
range of outcomes with their probability of being realized. In computer vision, a main use of statistics is
object classi�cation and pattern recognition based on the mechanisms of human vision. Human vision
produces, from external images, a description of target objects that discards irrelevant information, and
allows the observer processing visual data and distinguishing the di�erent objects in the scene. In a
classi�cation framework, the former physiological steps turn into three main operations:

1. Feature extraction. As human vision does, it consists in extracting those descriptors that best
characterize the di�erent target objects in an image. The collection of all descriptors produces,
for each pixel j, an n-dimensional feature vector, Yj = (y1, y2, . . . , yn). The real n-dimensional
space representing these vectors is called the feature space.

2. Dimensionality reduction can be applied depending on the dimensions of the feature space to
reduce high dimensionality and discard irrelevant and/or redundant information.

3. Classi�cation is concerned about visual information processing. There are two di�erent strategies
for object discrimination: unsupervised and supervised techniques. In unsupervised approaches
the system clusters the input objects by similarity in their descriptors without any explicit super-
vision. Supervised strategies divide the process in two stages: a learning stage to recognize the
di�erent objects and label them as classes, dividing the resulting feature space and a test stage to
identify a new attribute by means of the trained classes.

2.1 Image Feature Descriptors
A delicate main step in a classi�cation procedure is to choose the features that represent our data.

The goal is to produce an appropriate set of characteristics that allows discriminating the di�erent
objects to classify. For instance, if we want to describe a human face, it is enough to use characteristics
such as two eyes, one nose and one mouth, but these features are not enough to distinguish its gender.

Image gray value descriptors can be split into two main classes: gray level discontinuity measures
and gray values statistics. The �rst class are local descriptors which are concerned with gray values
local changes. The second group might be regarded as global descriptors since they provide information
about the distribution of image gray values.
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1. Local variability Descriptors. Local descriptors are those that, for each pixel, take into account
only a small neighborhood of the image pixel. Usually they are discontinuity operators in the
sense that they quantify abrupt changes in image gray values. In the context of computer vision,
this corresponds to oriented edge and crease (ridges and valleys) detection. Because it emulates
the mechanisms of our visual system, the standard way of determining such discontinuities is by
convolving the image with the directional derivatives of an anisotropic Gaussian kernel.

ξ
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X

Y ξ

ξ⊥

ξ

ξ⊥

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Oriented Gaussian derivatives. Oriented Gaussian (a) �rst derivative (b) and second
(c). Projections on ξ direction of the oriented Gaussian (d), �rst (e) and second derivative (f).

Let X̃ = ξ, Ỹ = ξ⊥ be the oriented axis given by
(

X̃

Ỹ

)
=
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)
=
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If G is an anisotropic Gaussian kernel oriented in axes X̃, Ỹ , of mean 0 and standard deviations
(σ1, σ2):
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its �rst and second derivatives are the following 2-dimensional kernels:
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+ ỹ2

σ2
2

�

which yield oriented derivatives of an image I by convolving:

Gỹ ∗ I = 〈∇Ĩ , ỹ〉 = Dỹ Ĩ

where Ĩ is the convolution of I with G, Ĩ = G ∗ I. Figure 2.1 shows the convolving kernels of a
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oriented Gaussian (a), and its �rst (b), and second (c) derivatives along the ξ⊥ direction as well
as their respective projections (d), (f), (g) on the ξ direction.

(a) (b)

(c) (d)

Figure 2.2: Local Descriptors 1. First derivatives as discontinuity measures, for the computation
of directional edges.

Figures 2.2 and 2.3 show �lters for edges (�g.2.2) and ridges (�g.2.3) detections. Original images
are shown in �g.2.2(a), �g.2.3(a). As we can observe, in �g.2.2(b), horizontal edges are enhanced
while vertical ones are enhanced in �g.2.2(c). Fig.2.2(d) is a weighted sum of the �rst ones and
enhances diagonal edges. Concerning to the ridges, we can note that in non-structured areas the
�lter acts as a gaussian, while roots are enhanced.

2. Statistical Descriptors. Global descriptors are those that take into account the whole image
interpreted as a random variable. The so called statistical moments are the quantities that measure
the variability of a random variable. If dFI is the probability density function of the random
variable I and Ī denotes its mean value (zero order moment), then, the k order moment is given
by:

mk =
∫

(I − Ī)k dFI

In our case, if we consider the image as a random variable I = I(i, j), i = 1, . . . , n, j = 1, . . . , m,
the k order moment is de�ned by:

mk =
1

n ·m
m∑

j=1

n∑

i=1

(I(i, j)− Ī)k, for Ī =
1

n ·m
m∑

j=1

n∑

i=1

I(i, j)

its mean value or mass center of the random variable I.
In particular we will focus on the second moment, that is the standard deviation of images com-
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(a) (b)

Figure 2.3: Local Descriptors 2. Second derivatives as discontinuity measures for the computa-
tion of ridges.

paring the variability of gray level with the mean of the image. But we can be interested in the
variability of a pixel with respect to the mean of the pixels of the same column or row. In a way,
these measures can be oriented if the image presents a particular oriented pattern as �gure 2.4
shows.

(a) (b) (c)

Figure 2.4: Global Descriptors. Oriented statistical measures from original image (a): Variance
on vertical (b) and horizontal (c) direction.

In this image we compute the variance of original image (�g.2.4(a)) for each pixel. Notice the
di�erence between computing the variance by columns (�g.2.4(b)) or by rows (�g.2.4(c)). If we
compute the variance by columns (b), there is no variability along the �rst columns, so this results
in a uniform gray value on the left side of the image in contrast with the right side, where there
is the presence of the steps. On the other hand, in �g.2.4(c) we can note that, for each row,
there is more variability on the wall side, comparing with the steps, that are more homogeneous.
Concluding, we can speak of global edge detector, since it detects outstanding gray values.

By means of the descriptors, an image I(i, j) is represented, only by its N characteristics (Xl(I(i, j)))

for l = 1, . . . , N . These characteristics for a set of images make up point clouds in an N-dimensional
space, the Feature Space.
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2.2 Dimensionality Reduction
Depending on the dimensions of the feature space it is convenient reduce dimensionality to work

better. Under the assumption of gaussianity of points clouds, the covariance matrix of the data contains
information on the directions that best describe and/or discriminate objects. The former distinct goals
give rise to two di�erent criteria for dimensionality reduction:

• Object codi�cation. The classic approach for object codi�cation is Principal Component Analysis
(PCA), which �nds out a projection for the best description of the object. That is, PCA �nds
components that are useful for representing data based on the principal directions of the input
data.

• Object discrimination. Multiple Discriminant Analysis (MDA) is the classic approach for object
discrimination, in particular, Linear Discriminant Analysis (LDA), which searches a projection for
the best discrimination of the di�erent objects.

We note that the projection spaces yielded by PCA and Fisher Linear Discriminant (FLD) as a
particular technique of LDA might be opposed, as we can see in �gure 2.5. In this �gure, we can
observe the di�erent behaviors of these techniques. If we seek for the principal direction of the data,
we use PCA, whereas if what we want is to discriminate between the two classes, we use FLD. That is,
FLD emphasizes the direction in which both classes can be better discriminated. It follows that PCA
is more adequate for data representation and dimensionality reduction while FLD is better for feature
classi�cation. Since our aim is to discriminate the di�erent structures we use Fisher Linear Discriminant.

PCA

FLD

Figure 2.5: Fisher Linear Discriminant versus Principal Component Analysis. FLD seeks for
the line achieving a maximum separability between classes while PCA �nds out the principal
direction of the whole data.

2.2.1 Fisher Linear Discriminant Analysis
Linear Discriminant Analysis searches for the linear subspace, W , that achieves a maximum sep-

arability among the projected classes. In the case of Fisher [35], separability is measured in terms
of maximum separation between class means and minimum within-class scatter. Mathematically, this
criterion is formulated in terms of the ratio between the between-class, SB , and the within-class, SW ,
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scatter matrices:
SB =

c∑

i=1

(µi − µ)(µi − µ)t

SW =
c∑

i=1

Ni∑

j=1

(Yj − µi)(Yj − µi)t

for c the number of classes, µi the mean vector of each of them and µ the mean of all samples (Yj).
Fisher discriminant criterion reduces to �nding the linear subspace, W , that maximizes:

J(W ) =
|W tSBW |
|W tSW W |

Because SB encodes the projection onto the linear subspace given by µ1, . . . , µc, it has, at most, rank
c − 1, which bounds W dimension by dim W ≤ c − 1. In the particular case of a 2-class problem in 2
dimensions, Fisher space is a straight line. Discrimination between the two classes corresponds to giving
a threshold on the projection line, which induces a splitting of the feature space in two half planes, as
we can observe in �gure 2.5.

In fact, if we have two classes and the Fisher Linear Space, to classify is to �nd this threshold on the
Fisher Linear Discriminant space. A standard way of �nding the most suitable value is to use labelled
samples to train a Bayes-like classi�er.

2.3 Supervised Classi�cation Techniques

Let (C1, C2) be the two classes of the problem projected onto the Fisher space, and f1 and f2 the
respective density functions. In the pattern recognition framework, one of the classes is labelled as
positives, P, and its counterpart as negatives, N. Then, true positives, TP, and true negatives, TN, refer
to the data well classi�ed and false negatives, FN, and false positives, FP, concern to the wrong classi�ed
data.

The aim of supervised classi�cation techniques is to get a compromise between the proportion (prob-
ability) of false positives and false negatives. This compromise is achieved by means of cost functions
which rely on the class concerning the proportion of FP and FN. Depending on the cost function, we
can split these techniques in two approaches, Bayesian and precision-recall approaches.

2.3.1 Classic Bayesian Approach

The classic Bayesian strategy [35] searches for the value that achieves the minimum total error, that
is, the percentage of false positives (|FP |/|N |) and false negatives (|FN |/|P |).

Given an observation vector X, our purpose is to determine whether X belongs to class C1 or class
C2. The probability of error whenever we observe a particular X is:

P (error|X) =

{
P (C1|X) if we decide C2

P (C2|X) if we decide C1

(2.1)

where P (Ci|X) = qi(X) is the a posteriori probability, calculated from the a priori probability P (Ci)
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and the class-conditional density function p(X|Ci) using Bayes theorem:

qi(X) = P (Ci|X) =
P (Ci)p(X|Ci)

p(X)
(2.2)

where p(X) is a mixture of Gaussians as a density function. Note that p(X) is unimportant and we can
eliminate this factor because it is positive.

Clearly, for a given X, and taking in mind the Bayes formula 2.2 we can minimize the probability
of error by deciding C1 if P (C1)p(X|C1) > P (C2)p(X|C2) and C2 otherwise, since Bayes decision rule
minimizes the cost function:

P (C1|X) + P (C2|X) = P (C1)p(X|C1) + P (C2)p(X|C2) = P (C1)P1(FP ) + P (C2)P2(FN)

if we refer P1 for deciding C1 and P2 for deciding C2

In this way, it is logical the following decision rule:
{

X ∈ C1 if q1(X) > q2(X)

X ∈ C2 if q1(X) < q2(X)
(2.3)
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Figure 2.6: Bayes decision rule for minimum total error.

However, some kinds of classi�cation mistakes can be more costly than others. For instance, what
is more costly, to imprison an innocent or to free a guilty? Depending on the government they would
prefer one choice or the other. In this case, the cost function is modi�ed as:

α1P1(FP ) + α2P2(FN) (2.4)

where α1 is the action corresponding the good decision of choosing C1 and α2 is the corresponding
of choosing C2.

Although the criterion is widely used in classi�cation problems, in the context of object segmentation
[37] it is more e�cient to select thresholds in terms of the amount of noise, when the target object is a
class extremely imbalanced compared to the rest of image pixels.
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2.3.2 Precision-Recall Approaches
Bayes approach selects a threshold in terms of how many true positives are detected without consid-

ering the amount of noise introduced in the positive detections, that is, the fraction |FP |/(|TP +FP |). In
the information retrieval community, the standard evaluation criterion for noise tolerance are precision-
recall curves, which measures the error in terms of how much true positives are required to succeed
(recall), and how much noise can be tolerated (precision) [38].

As before, we can refer to �gure 2.6 for a better understanding. Let P all the data labelled as C1

class or "relevant" and N all the data labelled as C2 class or "not-relevant". Let R be all the data
classi�ed as C1, namely, "retrieved" and R̄ its counterpart, "not-retrieved". From now, we can de�ne
TP the data retrieved and relevant, FP the data retrieved but not-relevant, FN the data not-retrieved
but relevant and TN the data not-retrieved and not-relevant. It follows that precision is de�ned as the
data retrieved and relevant over all the data retrieved, while recall is the data retrieved and relevant
over all the data relevant as the following formulas show:

PRECISION =
|TP |

|TP + FP | RECALL =
|TP |

|TP + FN |
In probabilistic terms, precision is the probability that an object is relevant, given that it is retrieved,

that is, an estimate of the conditional probability P (C1|R). Recall corresponds to the probability that
a relevant object is retrieved, that is, an estimate of the conditional probability P (R|C1). Following the
usual set-up in information retrieval, we de�ne a decision rule in terms of our given observation vector
X, to determine which data is classi�ed as C1 (the acceptance criterion). In this case the cost function
is

α1P1(FN) + α2P2(FP )
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Chapter 3

Deterministic Tools

Deterministic techniques involve those procedures determined by means of the minimum of an energy
functional thoroughly described by image local characteristics and computed by means of an ODE or a
PDE, which predict the behavior of the evolution of an initial quantity over time. In this chapter we
explain the theoretical basis of these procedures.

3.1 Restricted Anisotropic Di�usion
Most �ltering techniques based on image gray level modi�cation [40], [41] use the heat di�usion

equation:
It(x, y, t) = div(J∇I) with I(x, y, 0) = I0(x, y) (3.1)

to de-noise an image I0. The time dependant function I is the family of smoothed images and J is
a 2-dimensional metric that locally describes the way gray levels redistribute. The di�usion tensor J is
thoroughly described by means of its eigenvectors (ξ, η = ξ⊥) and eigenvalues (λ1, λ2). If the latter are
strictly positive, like in existing anisotropic �ltering techniques ([39], [41]), gray values spread on the
whole image plane and the family I converges to a constant image. But if we degenerate J and admit
null eigenvalues (λ2 = 0), then di�usion only takes place in the integral curves of the eigenvector (ξ) of
positive eigenvalue [34]. Smoothing e�ects depend on the suitable choice of the eigenvector of positive
eigenvalue. In the case that ξ is a smooth vector representing the tangent space to a closed model of the
image level sets, then the �nal image is a collection of curves of uniform gray level [33].

The Structure Tensor [44] is a quick way of computing the guiding vector ξ that has already proven
its e�ciency [34]. The Structure Tensor, namely STρ, is a gaussian mean of the projection matrices onto
a regularized image gradient. That is, given a gaussian, Gρ, of variance ρ and zero mean, the structure
tensor is the following convolution:

STρ = Gρ ∗
[(

Ix

Iy

)
(Ix, Iy)

]
=

(
Gρ ∗ I2

x Gρ ∗ IxIy

Gρ ∗ IxIy Gρ ∗ I2
y

)

for (Ix, Iy) = Gσ ∗∇I the components of a regularized image gradient. Since, STρ is the solution to
the heat equation with initial condition the projection matrix onto the image gradient, its eigenvectors
are in�nitely di�erentiable �elds that regularize and approximate the image level sets tangent and normal
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spaces. We use STρ eigenvectors to design our di�usion tensor as follows.
Let us consider a metric J̃ with eigenvalues λ1 = 1 and λ2 = 0, and ξ the eigenvector of minimum

eigenvalue of STρ. The Restricted Heat Di�usion we suggest is given by:

It = div(QΛ̃Qt∇I), I(x, y, 0) = I0(x, y)

with Q the eigenvectors of STρ = Gρ ∗
(∇Iσ∇IT

σ

)
,

Λ̃ =

(
0 0

0 1

)
and ∇Iσ = Gσ ∗ ∇I

(3.2)

By setting the smoothing parameters to (σ, ρ) = (0.5, 2), ξ yields a closed approximation of the
image level sets tangent space around continuous structures, meanwhile at noisy areas is an irregular
vector with random orientation. It follows that the above procedure smoothes image gray values along
its regular structures and acts like a gaussian �lter otherwise.

(a) (b) (c)

Figure 3.1: Vector �eld of RAD (a) and a zoom of a regular vector �eld area (b) and a random
vector �eld area (c).

Figure 3.1 illustrates the grounds of equation (3.2). The vector ξ depicted in both images de�ne
the direction to smooth. Near regular structures (�g.3.1(a)) ξ is well de�ned and continuous, whereas
at noisy areas (�g.3.1(b)) it is randomly distributed. The result is that solutions to (3.2) converge to
a smooth image that enhances the main features of the original image, in the sense that their response
to standard detectors based on the image local characteristics is uniform. This �ltering scheme modi�es
classic anisotropic di�usions [41] by suppressing any di�usion across image level curves since the associ-
ated image operator homogenizes image structures gray values according to their geometric continuity.
This results in a more uniform continuous response of RAD �ltered images to detectors based on local
descriptors (edges, valleys, ridges) of image gray values as we can note in �gure 3.2.

Figure 3.2 illustrates the e�ects of the equation (3.2) in a natural image and compares it with the
e�ects of the anisotropic �ltering of Weickert. We applied a ridge detector based on the curvature [42] in
original image (�g.3.2(a)), Weickert �ltered image (�g.3.2(b)) and RAD image (�g.3.2(c)) by computing
the positive values of a robust unit gradient of each image, im: κ = − div(∇im). This ridge detector
is noise sensitive, since it bases on the normalized gradient vector of each image. As we can see, the
original response (�g.3.2(d)) yields fragmented curves for the target structures and fake detections due
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Original Anisotropic Weickert RAD

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Ridges on di�erent smoothed images. Original smoothed images (a), (b), (c), their
corresponding ridges (d), (e), (f) and a zoom of these ridges (g), (h), (i).

to noise. Weickert �ltered response (�g.3.2(e)) still presents these drawbacks, while in RAD response
(�g.3.2(f)), background spurious ridges have been removed whereas roots are continuous closed curves.

3.2 Implicit Anisotropic Contour Closing

Heat di�usion has the property of smoothly extending a function de�ned on a curve in the plane,
provided that boundary conditions are changed to Dirichlet [43]. By using restricted heat operators this
property can be used to complete unconnected contours [34] as follows.

Let γ0 be the set of points to connect, χγ0 its characteristic function (a mask) and de�ne J̃ as in
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RAD (3.2). Then, the extension process:

It = div(J̃∇I) with I|γ0 = χγ0 =

{
1, if the pixel belongs to γ0;
0, otherwise.

(3.3)

converges to a closed model of γ. Intuitively, we are integrating the vector �eld ξ, that is, we are
interpolating the unconnected curve segments along it. This fact contribute two main advantages: �rst,
the use of a restricted heat equation (3.3) ensure convergence to a closed model of the unconnected
curve, whatever its concavity is. Second, because ξ takes into account image level sets geometry ACC
closures are more accurate than other interpolating techniques (such as geodesic snakes [36]) which, at
most, yield piece-wise linear models.

In order to avoid wrong continuations at noisy areas, the vector ξ is weighted by the coherence of
the Structure Tensor. This quantity measures the vector regularity and is given by:

coh =
(λ1 − λ2)2

(λ1 + λ2)2

for λ1 ≥ λ2, STρ eigenvalues. At regions where ξ is a continuous vector, λ2 is closed to zero, so coh is
maximum, meanwhile, at noisy areas, since ξ is randomly oriented, λ1 compares to λ2 and coh ∼ 0.

The vector guiding ACC is de�ned by:

ξ = coh ξ̃ for ξ̃ = minEig(STρ(I)) (3.4)

(a) (b) (c)

Figure 3.3: Anisotropic Contour Closing. Original image (a), mask to be closed (b) and the
�nal result (c).

Figure 3.3 shows the result of the algorithm. The mask from the original image (�g.3.3(a)) to be
closed is drawn in white in �g.3.3(b) and the result is shown in �g.3.3(c).

3.2.1 Quick Anisotropic Contour Closing

For the sake of a computational cost as small as possible, we use the following quick algorithm for
solving equation (3.3). First recall that the �nal image yielded by ACC is a mask (i.e. 1's and 0's) of
the closed curve and that the whole process might be regarded as integrating the �eld ξ. Remember we
seek for solutions to the following extension problem:

div(J̃∇I) = 0 with I|γ0 = χγ0
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For a better understanding, we refer to heat equation 3.1. Let us consider our image I as a mass
distribution. The vector �eld ~j = J̃∇I locally describes the direction towards the initial mass move.
On one hand, concerning the �nal heat distribution, steady states of (3.1) can be described by means of
their level sets. On the other hand, in the basis {ξ, ξ⊥}, J̃∇I develops as:

J̃∇I = λ1〈∇I, ξ〉ξ + λ2〈∇u, ξ⊥〉ξ⊥ = 〈∇I, ξ〉ξ

so, if we denote by Ω the region enclosed by a level curve γ then, ~j = 〈ξ,∇u〉ξ is tangent to γ. It follows
that the Divergence formula yields that the evolution of It ful�ls:

∫

Ω

It =
∫

Ω

div(j) =
∫

γ

〈~j, ξ〉

Since our initial mask γ0 belongs to a level curve and the e�ect of the di�usion redistributes the mass
along it, we have that, for each border point of a segment, the next pixel to be set to 1 is the neighbor
in the direction ξ (cross in �g.3.4(b)). Such pixel achieves the maximum correlation between ξ and
the gradient of the distance map to the uncomplete curve (dot in �g.3.4(c)). In this manner the whole
closing process is of the order of the gap (pixel) size.

(a) (b)

Figure 3.4: Quick Anisotropic Contour Closing.

Figure 3.4 illustrates the grounds of the quick algorithm: For an unconnected segment, �g.3.4(a)
shows the vector to be integrated and �g.3.4(b) the distance map gradient used to compute ACC.

3.3 B-snakes

A parametric snake is a curve γ(u) = (x(u), y(u)) which, under the in�uence of an external force,
Eext, and internal constrains, Eint, minimizes the energy functional:

E(γ) =
∫

γ

(Eint(γ) + Eext(γ, γτ ))du

=
∫

γ

(
1
2
α‖γ̇‖2 +

1
2
β‖γ̈‖2 + Eext(γ, γτ ))du (3.5)

=
∫

F (γ, γ̇, γ̈)du

where γτ is the target curve to model and α, β ∈ [0, 1] weight the trade o� between the elasticity and
sti�ness of the snake. The external energy is an external potential achieving a minimum on γτ .
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The Euler-Lagrange equation of E, given by

Fγ − du(Fγ̇) + duu(Fγ̈) = 0

leads to solving a system of 2 equations in the continuous domain:

−αxuu + βxuuuu +
∂Eext

∂x
= 0

−αyuu + βyuuuu +
∂Eext

∂y
= 0

In the discrete case γ is de�ned as γ = (x1, . . . , xn, y1, . . . , yn) and the energy functional is de�ned by:

E =
n∑

i=1

Eint(i) +
n∑

i=1

Eext(i)

The corresponding Euler-Lagrange equations are a system of 2N equations which can be written in a
matrix form:

Ax = −∂Eext

∂x
Ay = −∂Eext

∂y
(3.6)

where A is a pentadiagonal matrix called the sti�ness matrix and expressed by:



2α + 6β −α− 4β β 0 0 0 . . . β −α− 4β

−α− 4β 2α + 6β −α− 4β β 0 0 . . . 0 β

β −α− 4β 2α + 6β −α− 4β β 0 0 . . . 0

0 β −α− 4β 2α + 6β −α− 4β β 0 . . . 0
...

...
...

...
...

...
...

...
...

−α− 4β β 0 0 . . . 0 β −α− 4β 2α + 6β




The iterative solution for the minimization is similar to the general one for linear systems:

Ax = −∂Eext

∂x
Ay = −∂Eext

∂y

and may be written as:

(A + γI)x = γx− ∂Eext

∂x
(A + γI)y = γy − ∂Eext

∂y

for any scalar γ. Thus we have:

x = (A + γI)−1(γx− ∂Eext

∂x
) y = (A + γI)−1(γy − ∂Eext

∂y
)

and the recurrent equation is given by:

xt+1 = (A + γI)−1(γxt − ∂Eext

∂x
) yt+1 = (A + γI)−1(γyt − ∂Eext

∂y
)
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Chapter 4

Adventitia Modelling Steps

4.1 General Strategy
The strategy for adventitia segmentation we suggest is a three fold algorithm summarized as follows:

1. IMAGE PREPROCESSING

(a) Polar Transformation of IVUS images
Advanced techniques for medical imaging segmentation [30] use a priori knowledge of the
target structure shape. Active shape contours [31] are the usual way to incorporate such
knowledge to the model. In the case of the adventitia border, its circular appearance can be
imposed by simply transforming images to polar coordinates with the origin at the geometric
center of the vessel border. In this coordinate system, the adventitia transforms into a
horizontal curve, which signi�cantly simpli�es border feature extraction.

(b) Restricted Anisotropic Di�usion (RAD)
IVUS images are particularly noisy, as well as, in most of cases, adventitia appears as a
very weak contour, so, in order to enhance signi�cant structures while removing noise and
textured tissue, we use a Restricted Anisotropic Di�usion [33] detailed in Section 3.1. As
we saw, it results in a more e�ective operator than classic anisotropic di�usions ([39],[41]),
which, since they rely on such local descriptors, restrict their smoothing e�ect to a particular
structure.

2. STATISTICAL SELECTION OF BORDER POINTS

The goal of our classi�cation stage is to compute two binary images (masks), one for vessel borders
segments and another for calcium sectors. Extracting vessel borders and calcium points requires
de�ning the functions that best characterize each set, as well as, their most discriminating values.
We learn, both, feature space and parametric threshold values by applying supervised classi�cation
techniques to a training set of manually segmented images.

(a) Feature Space Design
Our feature space is designed to discriminate among the set adventitia/intima, calcium and
�brous tissue. Calcium discrimination is needed to discard angular sectors of ambiguous
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information and �brous tissue to avoid miss detections of vessel borders. By the polar coor-
dinate system chosen, horizontal edges are the main descriptors of the set adventitia/intima.
Image simple statistics (standard deviation and cumulative means) serve to formulate the
functions characterizing calcium and �brous plaque.

(b) Extraction Parameters
Recall that in a segmentation procedure there are two kind of parameters. For thresholding
parameters, if the segmentation problem is especially concerned with the noise introduced,
precision-recall approaches are more accurately than classical Bayes approach. For �ltering
parameters, we detailed in Subsection 5.2 why we use a length �ltering on the extracted seg-
ments to remove spurious detections due to artifacts. Thresholding and �ltering parameters
are tuned to yield an optimal segmentation for a training set of manually traced borders.

3. SEGMENTATION STAGE

The selection stage produces two binary images: adventitia/intima points and calcium sectors.
Vessel border segments are modelled by computing an implicit closed representation and, then,
an explicit snake representation using B-splines.

(a) Implicit Anisotropic Contour Closing (ACC)
For the implicit closing we suggest using an Anisotropic Contour Closing [34] based on
functional extension principles to complete curve segments in the image mask domain. The
use of restricted di�usion operators enables to take into account image geometry and discard
calcium and side branches sectors. Since ACC interpolates line segments along image level
curves, the implicit reconstruction provides with a faithful closed model of vessel borders.

(b) Explicit B-Snakes Representation
Gaps at calcium sectors and side branches are completed by using B-spline snakes to inter-
polate ACC radial values in the polar domain. In the cartesian domain the �nal smooth
model yields an elliptical shape at sectors where no information is available. In this way the
compact B-spline representation yields a model that matches the Gestalt principles of good
continuation.

4.2 Image Preprocessing

4.2.1 Polar Coordinates
The fact that, in an IVUS plane, adventitia is a circular shaped structure (�g.4.1(a)) suggests

transforming images to polar coordinates. If I(x, y) denotes the image in the cartesian domain then, its
polar transform, IPol(r, θ), is given by the formula:

X(r, θ) = x0 + r cos
(

θπ

180

)

Y (r, θ) = y0 + r sin
(

θπ

180

)

IPol(r, θ) = IPol(X(r, θ), Y (r, θ))
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where the radius and angle are in the ranges r ∈ [0, Rmax] and θ ∈ [0, 360) and (x0, y0) is the origin of
coordinates.

Adventitia

(a) (b)

Figure 4.1: Adventitia images in cartesian (a) and polar coordinates (b).

In this coordinate system, the adventitia layer appears as a horizontal dark line (�g.4.1(b)) provided
that (x0, y0) is its geometric mass center. Any deviation introduces an undulation in the polar transform
of the vessel structure (�g.4.2(a)), which forces the use of oriented �lters for feature extraction based on
image local descriptors (e.g edges). Besides the artifact caused by geometric eccentricity, in non ECG-
gated sequences, one has to compensate the transformations induced by cardiac movement. Cardiac
dynamics introduce two main rigid transformations: a translation of the vessel followed by a rotation
centered at the vessel center. In a polar domain with a �xed origin (e.g. the image center), the former
transformations result in a dynamic radial wave (due to translation) followed by a horizontal (angular)
translation. The �rst one is a main artifact for a temporal analysis of the block of images that constitute
an IVUS sequence since it strongly modi�es the vessel border geometry. We straighten the adventitia
border as follows.

(a) (b)

(c) (d)

Figure 4.2: Adventitia Straighten Procedure: polar image with origin at the image mass center
(a), edges in a sequence block (b), central percentile of edges positions (c) and �nal polar image
(d).

Heart dynamics eccentricity is removed by taking as origin the image mass center. Still, in such polar
system (�g. 4.2(a)) the adventitia might present a static curved pattern if the vessel is not centered at the
physic image center. This geometric eccentricity is reduced by computing the geometric mass center of a
set of points roughly lying on the adventitia. Such points are extracted by means of negative horizontal
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edges, namely ey. The impact of noise and artifacts is minimized by considering the average of ey for
a block of N sequence frames. We select for each angle (column) those points with the former average
below the 5% radial percentile. Spurious edges due to noise and other sparse artifacts are removed by
applying a length �ltering to the extracted edges. In order to endow further continuity to the selected
segments, we use the statistical distribution of their radial position along a block of images. Percentiles
computed in the sequence block serve to discard outliers by only considering points within the central
percentile range. In order to capture the adventitia curvature, percentiles are computed on angular
sectors of 5 angles. The �nal radial values serve to compute the new origin of our polar transform.

Figure 4.2 illustrates the main steps of the geometric eccentricity suppression. Fig. 4.2(a) shows the
polar transform with the origin at the image mass center. In �g.4.2(b) we show the selected edges in a
sequence block before percentile �ltering and �g.4.2(c) shows the plot for their central percentile. The
straighten adventitia image is shown in �g.4.2(d).

From now on, we will work with images in polar coordinates. We will note AdvPol(i, j) the discrete
polar transform of an IVUS frame, for the radius, i, and the angle, j, given by:

i = 1, . . . , min(Nc, Nr) and j = 1, . . . , 360

where Nc, Nr are the dimensions (columns and rows) of the original IVUS image.

4.2.2 Restricted Anisotropic Di�usion

As we explained in section 3.1 Restricted Anisotropic Di�usion (RAD) is a useful tool for preprocess-
ing IVUS images and aid the selection of target structure points with statistical tools by de-noising
images. An important point is that the process is totally automatic and it stops when the image is
de-noised but structures are enhanced, that is, when the di�usion stabilizes. Nevertheless, one drawback
of this procedure is the computational cost since it is an iteratively process and it is applied on the whole
image. In order to reduce this cost, we apply RAD in a band of interest containing the adventitia layer
and achieving a reduction of 50% of computational time. This band, obtained by an automatic ROI
selection, contains all the pixels between the minimum of the 25 percentile and the maximum of the 75

percentile plus a reasonable interval of pixels. Figure 4.3 shows an original IVUS image transformed in
polar coordinates (�g.4.3(a)) and the corresponding �ltered image (�g.4.3(b)).

(a) (b)

Figure 4.3: Image Preprocessing: polar transformation (a) and RAD �ltering in a band (b).
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4.3 Statistical Selection of Border Points
The inner and outer vessel borders appearance is so similar that they are assumed to constitute a

single class in the training process. Their distinct radial position su�ces to discriminate them [22] in
the absence of echo opaque structures, such as calcium. In such cases, the adventitia does not appear
and the detection is misled towards the intima. Since the best solution is to discard echo opaque sectors,
the training stage also addresses their characterization. We also include �brous tissue discrimination
because it is a main artifact confusing with the adventitia that forces the use of longitudinal cuts [22].

For linguistic simplicity, echo opaque structures will often be referred to as calcium.

4.3.1 Feature Space
Based on visual perception, we mainly distinguish adventitia/intima by horizontal edges and echo

opaque structures by their shadow underneath. Let AdvPol and (i, j) be the image in polar coordinates
and their pixel position respectively. The feature space we propose is a three dimensional space tuned
to describe the adventitia/intima set and echo opaque structures.

1. Horizontal Edges

Since in the coordinate system chosen, the adventitia layer is a horizontal dark line, horizontal
edges constitute our main descriptor. Edges are computed by convolving the image with the
y-partial derivative of a 2 dimensional gaussian kernel of variance ρ:

ey(i, j) = gy ∗AdvPol

for gy(i, j) = − j
2πρ4 e−(i2+j2)/(2∗ρ2)

The only image structures yielding large values for ey are intima, adventitia, calcium and �brous
tissue. Intima and adventitia correspond to negative values, while calcium and �brous structures
yield a negative and a positive response, one for each of their bordering sides.

The descriptors we have chosen to detect echo opaque plaques and �brous tissue are their out-
standing brightness and, for calcium, the dark shadow underneath. We propose the following
particular functions to quantify such features.

2. Radial Standard Deviation

Striking brightness corresponds to an outlier of the pixel gray value in the radial distribution. We
measure it by means of the di�erence between the pixel gray value and the radial mean. For each
pixel (i, j), we de�ne it as

σ(i, j) = (AdvPol(i, j)− ν(θ))2

where ν(θ)) is the radial (i.e. column-wise) mean of the polar image:

ν(θ) =
1

Rmax

Rmax∑

i=1

AdvPol(i, θ)

The magnitude of σ is maximum at bright structures (calcium and �brous plaque) and minimum
near the adventitia. In order to distinguish between calcium and �brous plaque, we add the
following shadows detector:
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3. Cumulative Radial Mean

For each angle j consider the following cumulative mean:

CSj(i) =

∑n=i
n=Rmax

AdvPol(n, j)
Rmax − i

For angles with calcium, the function CSj(i) presents a step-wise pro�le in contrast to a more
uniform response in the presence of �brous plaque. It follows that the total energy:

ecs(j) =
i=Rmax∑

i=1

CSj(i)

achieves its minimum values only at angles with calcium.

The feature space achieving a maximum separability for our training set is given by:

(X, Y, Z) = (ey, sign(ey)
√
|eyσ|, ecs) (4.1)

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4.4: Image descriptors. Original images (a),(e) and Vessel Structures Descriptors: Hori-
zontal Edges (b),(f), Radial Standard Deviation (c),(g) and Cumulative Radial Mean (d),(h).

Figure 4.4 shows the feature space for a calci�ed (1st column) and normal (2nd column) cross-
sections. The original images are in the �rst row, energy from the �rst derivative in vertical direction
in the second row, Radial Standard Deviation in the third and Cumulative Radial mean in the fourth
row. From ey energy images (�g.4.4(b),(f)) we extract negative horizontal edges. Radial Standard
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Deviation (�g.4.4(c),(g)) shows a maximum in calcium sectors (�g.4.4(c)),and �brous plaques (�g.4.4(g))
and �nally, Cumulative Radial Mean (�g.4.4(d),(h)) shows a minimum in calcium sectors (last columns
in �g.4.4(d)) and angles with lack of information (middle columns in �g.4.4(h)).

4.3.2 Statistical Parameter Setting
For the computation of the vessel borders and calcium binary images, the classi�cation problem

we must face is discriminating among 4 di�erent sets: adventitia/intima (Adv), calcium (Cal), �brous
structures (Fbr) and the rest of pixels (RP). Instead of addressing the 4-class problem as a whole, we
will solve several 2-class problems in 2 dimensions.

For its simplicity and proven e�cient performance, Fisher linear discriminant analysis [35] explained
in subsection 2.2.1 serves to reduce dimensionality of the feature spaces. Either for vessel borders mask
or calcium mask the Fisher space is a straight line (see �g.4.5(a)). Discrimination between the two
classes corresponds to giving a threshold on the projection line (line labelled τPF1 in �g.4.5(b)), which
induces a splitting of the feature space in two half planes. For the vessel borders mask, we will use
a Bayesian approach [35] to select thresholding values, since miss classi�cations will be discarded with
�ltering parameters. For the calcium mask, we will use precision-recall curves to select such threshold.

τ
PF1

(a) (b)

Figure 4.5: Adventitia/Intima vs Calcium/Fibrous Tissue sets Discrimination. Feature Space
(a) and discrimination on the Fisher Projection Line (b)
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This is the strategy we propose for the computation of the Adv and Cal mask images.
A. Vessel Borders Mask.
Borders extraction is achieved by addressing 2 classi�cation issues: discriminate C1=(Adv,RP) and

C2=(Cal, Fbr) in the (X, Y ) plane and, then, separate Adv from RP using X values.
We remind that Adv, Cal and Fbr are the only tissues yielding large response for X values. It

follows that the clustering proposed (C1, C2) ensures that after discriminating between Adv and RP,
the set classi�ed as Adv will not include any other structures but vessel borders. This avoids the use of
longitudinal cuts [22] to distinguish between intima and adventitia, since they are directly identi�ed by
their radius.

We discriminate C1 (positives) and C2 (negatives) by projecting onto the Fisher space, PF1, (see
�g.4.5(a)). Since our discriminating problem is detecting as much points on the adventitia as possible,
we tune the standard Bayesian threshold in order to achieve a maximum number of true C1 detections
regardless of false positives (see �g.4.5(b)). Such miss classi�cations are discarded in the subsequent
discriminating and �ltering steps. Among all thresholds ensuring at least 90% of true C1 detections, we
choose the value, τPF1, that, in combination with the rest of parameters, yields optimal segmentation
results. Figure 4.5 summarizes the main steps of the discrimination between C1 and C2. Figure 4.5(a)
shows the feature space chosen and the Fisher projection line. Figure 4.5(b) the projected classes onto
PF1 and a threshold discriminating line τPF1.

Discrimination between Adv and RP is achieved in the X coordinate domain, as Adv corresponds
to large negative values. Large range of Adv values among di�erent patients, suggests the use of an
image sensitive threshold rather than a common value for all cases. We adopt a strategy in the fashion
of discriminant snakes [26], [28] and select a di�erent value for each column. Radial (column-wise)
percentiles (ρX) are used to compute such threshold. Finally, small structures in the vessel borders
image can be removed by applying either a length or an area �ltering. Although a length �ltering is
more �exible some 3D continuity might be lost. In contrast, an area �ltering is �xed for all frames but
takes into account 3D continuity. In our case, we use a length �ltering, so that only segments of length
above a given percentile (ρF ) are kept.

If we note by PF1 the projection of the (X, Y ) space onto the Fisher line, then, for every frame,
points are labelled as Adv if they ful�ll:

PF1 < τPF1, X < ρX

and their segment length is above ρF .
Figure 4.6 illustrates the extraction of adventitia/intima points. In �g.4.6(a) we have the output of

the discrimination step and in �g.4.6(b) the result after applying a length �ltering.

(a) (b)

Figure 4.6: Vessel Borders Point Extraction (1). Adventitia mask resulting from the classi�ca-
tion (a) and the �nal one after length �ltering (b)

36



B. Calcium Mask.
The feature space chosen to discriminate calcium from �brous tissue is given by the projection PF1

and the Z coordinate. A threshold on the Fisher space, PF2, for the 2D space (PF1, Z) separates Cal

and Fbr. Instead of following a Bayesian approach we will consider precision-recall curves (�gure 4.7) to
select thresholding values, as we can not run the risk of identifying too much Fbr and artifacts (noise)
as calcium.

X = Recall = |TP| / |TP + FN| = |TP| / |P|

Y = Precision =
|TP| / |TP + FP|

Figure 4.7: Precision-Recall curve to select thresholding values for the computation of calcium
mask

As in the computation of the vessel borders mask, we tune thresholding values and among all
thresholds admitting, at most, a 10% of noise , we choose the value, namely τPF2, that ensures a better
segmentation of our training set.

It follows that, calcium points are those pixels that satisfy:

PF1 ≥ τPF1 and PF2 > τPF2

Figure 4.8 shows the points classi�ed as calcium in white.

Figure 4.8: Vessel Borders Point Extraction (2). Calcium mask

The thresholding parameters (τPF1, ρX , ρF and τPF2) hinge on the ultrasonic acquisition device
characteristics. The speci�c values for the device used in our experiments are given in the experimental
Section 5.2.

4.4 Closing Stage
The selection stage produces two mask (binary) images: one for calcium and another one for vessel

borders. The latter is a collection of fragmented curve segments (�g.4.9(b)), which are closed in 2
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steps. First we complete them in the mask image domain by an interpolation process based on extension
principles. Then, an explicit snake is used to compute a B-spline model of the adventitia.

4.4.1 Anisotropic Contour Closing
For adventitia completion we use the numeric approximation given in 3.2.1. The vector ξ is the

eigenvector of minimum eigenvalue of the Structure Tensor computed over the edge map ey. The main
artifacts to obtain a reliable closed model are side branches, sensor shadows and calcium sectors. Side
branches and sensor shadows can be considered noisy areas, so it had been taken into account in (3.4).
However, calcium sectors are not noisy areas but in general are continuous to the adventitia. In order
to avoid this wrong continuation, we modify the weight in (3.4) by a function wξ. Now, the weight is
set to zero at calcium sectors and to the value of the coherence of the Structure Tensor otherwise. The
vector guiding ACC is modi�ed as follows:

ξ = wξ ξ̃ for ξ̃ = minEig(STρ(ey))

and wξ(i, j) =

{
0, if (i, j) ∈ Calcium
coh, otherwise

After ACC closing we apply an area �ltering in the same fashion as in the above selection stage in
order to endow the model with 3D continuity.

4.4.2 B-snakes
Since the above interpolation still presents gaps at side branches and calcium sectors, we guide a

parametric B-snake towards ACC closure in order to close them and obtain a compact explicit repre-
sentation by B-splines. The general iterative procedure given in subsection 3.3 signi�cantly simpli�es in
our particular case.

In polar coordinates, any curve γ is given by γ(s) = (θ(s), R(s)) and can be, indeed, parameterized
by θ, as γ = γθ = (θ, R(θ)). It follows that the functional (3.5) simpli�es to:

E(R(θ)) =
∫ 360

0

Eint(Rθ, Rθθ) + Eext(R, Rτ )dθ (4.2)

=
∫ 360

0

(α‖Rθ‖2 + β‖Rθθ‖2 + (R−Rτ )2)dθ

for Rτ the radius of the target curve. We parameterize R by a B-Spline given by N control points
(Ri, θi) where θi = 360i

N , i = 1, . . . , N . Given that θi are uniformly spaced, θ(s) =
∑

i ci(s)θi is a linear
coordinate change in the angular domain with the parameter relation dθ = θsds = λds, for λ a constant.
It follows that the energy functional (4.2) converts to a function of the N control points:

E(R1, . . . , RN ) =
∫ N−1

0

(
λ−1Rs

)2
+

(
λ−2Rss

)2
+ (R(s)−Rτ (s))2λds

for the B-spline radius given by:

R(θ(s)) = R(s) =
∑

i

ci(s)Ri, for s ∈ [0, N − 1] (4.3)
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Since we seek for the control points Ri, i = 1, . . . , N that minimize the former energy, they must
satisfy the system:

∂E

∂Rj
= 0, ∀i ∈ {1, . . . , N}

The jth equation is:
(

2
λ2

) ∑

i

(∫
ċj ċi

)
Ri +

(
2
λ4

) ∑

i

(∫
c̈j c̈i

)
Ri +

∑

i

(∫
cjci

)
Ri =

∫
cjRτ

It follows that the system of equations (4.3) can be written in matrix form as:

(B1 + B2 + B0)R = BR = Fτ

here the entries of Bj are sums of the jth derivatives of the spline coe�cients ci. The term (B1 + B2)

corresponds to the sti�ness matrix for B-splines snakes and B0 is the extra term coming from our
particular external energy. The forces Fτ induced by the target curve are computed via the parameter
change Rτ (θ(s)), for θ(s) =

∑
i ci(s)θi.

Since, in our problem, Fτ does not depend on R, the solution is explicitly given by:

R = B−1Fτ

The cartesian transform of the polar spline given by the above radial control points is our �nal adventitia
model.

Figure 4.9 shows the whole adventitia closing process. The adventitia mask (�g.4.9(a)) obtained
from the classi�cation stage is �rst closed with ACC (�g.4.9(b)) and �nally approached with a B-snake
(�g.4.9(c)). the green curve in (�g.4.9(c)) is the �nal snake one would obtain from the initial snake in
red.

(a)

(b)

(c)

Figure 4.9: Adventitia Closing: Adventitia mask (a), ACC closing (b) and �nal snake (c).
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Chapter 5

Validation

5.1 Validation Protocol

5.1.1 Study Group
The study group has been designed to assess the ability of the reported algorithm to detect the

adventitia border in the presence of di�erent plaques, artifacts and vessel geometries. A total number
of 5400 images extracted from 11 di�erent cases have been tested. The sequences analyzed are clinical
cases of the Hospital Universitari Germans Trias i Pujol in Badalona (Spain). We have segmented 22
vessel segments of a length ranging from 4 to 6 mm (200-300 frames) and including:

1. 6 segments with uncomplete vessel borders due to side-branches and sensor guide shadows.

2. 5 calci�ed segments.

3. 9 segments with non calci�ed plaque.

4. 2 normal segments.

For each segment, the adventitia has been manually traced every 10 frames by 4 experts in IVUS
image interpretation, which yields a total number of 540 validated frames with 4 di�erent manual models
each.

5.1.2 Accuracy Measures
To assess segmentation accuracy, the automatically detected borders have been compared to the

manual models. Accuracy is quanti�ed with the following standard measures:

1. Absolute and Signed Distances.
Distance maps to manual contours serve to compute the di�erence in position between automatic
and manually traced curves. Such maps encode for each pixel, p = (xp, yp), its distance to the
closest point on the manual contour:

D(p) = minq∈γ(d(p, q)) = (5.1)

= minq∈γ

(√
(xp − xq)2 + (yp − yq)2

)
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where q are points on the manually identi�ed contour. Signed distances (SgnD) [36] weight the
value D(p) depending on wether the pixel p lyes inside or outside the target curve γ. Its mean
value detects any bias in curve position, that is, wether detections are systematically bigger or
smaller than manual segmentations.

We will consider absolute (in mm) and relative (in %) distance errors. Absolute errors are given
by formula (5.1), while relative ones are the ratio:

RelD(p) = 100 · D(p)
d(q, O)

where the origin, O, is the mass center of the manual contour and q is the point achieving the
minimum in (5.1). Since relative errors take into account the true dimensions of the vessel, they
re�ect positioning errors better.

For each distance error, its maximum and mean values on the automated contour are the error
measures used to assess position accuracy. If PixSze denotes the image spatial resolution and p is
any point on the automatically traced adventitia, then the set of functions measuring accuracy in
positions are:

• Maximum distance errors (in mm and %):

MaxD = maxp (D(p) · PixSze)

RMaxD = maxp (RelD(p))

• Mean distance errors (in mm and %):

MD = meanp (D(p) · PixSze)

RMD = meanp (RelD(p))

• Mean signed distance error (in mm):

MSD = meanp (SgnD(p) · PixSze)

2. Area Di�erences.

Binary images of manual, IM (i, j), and automatic, IA(i, j), borders serve to compute the following
measure for area accuracy:

• Percentage of Area Di�erences

AD = 100 ·
∑

i,j |IM (i, j)− IA(i, j)|∑
i,j IM (i, j)

The interval given by the mean ± standard deviation computed over the 4 experts contours indicate
the statistical range of values for each of the automated errors (MaxD, RMaxD, MD, RMD and AD).
However, accuracy in models strongly depends on the pixel resolution as well as on the (manual) visual
identi�cation of the adventitia layer. These dependencies have two main consequences. The �rst one
hinders any comparison to other segmentation algorithms as the minimum error (in mm) depends on pixel
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precision. The second one, implies that an analysis of automated errors might not re�ect, by its own, the
true accuracy of segmentations, since a large variation range might be caused by a signi�cant di�erence
among experts models. A standard way [45] of overcoming the above phenomena is by comparing
automated errors to the variability among di�erent manual segmentations (inter-observer variability).
Inter-observer variability is obtained by computing the error measures for the models made by two
independent observers and it, thus, quanti�es discrepancy among experts. A Student T-test is used to
determine if there is any statistical signi�cant di�erence between inter-observer and automated distance
errors.

5.2 Parameters Tunning

Filtering parameters remove spurious fake detections from the discrimination stage. There are two
main candidates to act as �ltering parameters of the vessel borders masks, length �ltering and area
�ltering. An exhaustive study determine which is the best set of parameters achieving an optimal
segmentation of manually traced borders. By collecting all the parameters controlling the segmentation
algorithm, we obtain an error function of 4 variables, E(τPF1, ρX , ρF , τPF2). Although the proper way
of setting the parameters achieving an optimal segmentation of manually traced borders would be to
�nd out the global minimum of the former function, for the sake of a reduction in the computational
time required in the training stage, we adopt the following strategy. First, we note that the only
way to obtain a global minimum of the function E is by an exhaustive search in its parameter space
(τPF1, ρX , ρF , τPF2), as we lack of an analytic expression for the cost error function. On one hand,
we have to choose the thresholds for vessel borders mask, τPF1, ρX , ρF . For τPF1, we have to choose
it among all thresholds ensuring at least 90% of true C1 detections, so τPF1 is a sample of thresholds
that ensures this percentage of detections. ρX is a radial percentile used to compute an image sensitive
threshold for discriminating between adventitia points and the rest of the pixels classi�ed by τPF1, so
ρX is a sample of percentiles. Finally, we have to decide between an area �ltering or a length �ltering
and choose the number of pixels as area or the percentile as length, so ρF divides in ρA and ρL and they
convert in variables. On the other hand, we have to choose the threshold for calcium mask, τPF2 among
all thresholds that ensure at most a 10% of noise, so τPF2 is another sample of thresholds. In this way,
for every set of values τ j

PF1, ρ
j
X , ρj

F , τ j
PF2, we obtain a value of our error function. It follows that we need

the computation of the whole process for every set of frames, increasing the computational cost of our
study. For the moment, in this work and after a little study of a few patients, we have heuristically �xed
ρX at 6% and the samples of τPF1 and τPF2 at 3 di�erent values. We perform the �ltering parameter
learning by analyzing the mean and maximum absolute segmentation errors for a training set of 12 vessel
segments which are representative of all kinds of plaques and vessel morphologies. The di�erent samples
are:

ρA = {90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210}
ρL = {77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88}

for each combination (τPF1, τPF2) of the thresholding parameters, obtaining a di�erent function of
ρA as an area �ltering and ρL as a length �ltering. These combinations of thresholding parameters are:
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Adv0Cal1 = (0.0567,−0.1241) Adv0Cal2 = (0.0567,−0.1468) Adv0Cal3 = (0.0567,−0.1295)

Adv1Cal1 = (0.0578,−0.1241) Adv1Cal2 = (0.0578,−0.1468) Adv1Cal3 = (0.0578,−0.1295)

Adv2Cal1 = (0.0619,−0.1241) Adv2Cal2 = (0.0619,−0.1468) Adv2Cal3 = (0.0619,−0.1295)
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Figure 5.1: Maximum Absolute Error function for Length and Area Filtering Parameters

Figures 5.1 and 5.2 show the di�erent error functions, maximum absolute error functions (�g.5.1)
and mean absolute error function (�g.5.2), both for area and length �ltering parameters. Each curve
corresponds to a combination (τPF1, τPF2) with area or lenght �ltering parameters as a variable. As
we can see, both minimum of error functions correspond to the combination Adv0Cal1 and the length
�ltering parameter ρL = 85%, obtaining the following results.
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Figure 5.2: Mean Absolute Error function for Length and Area Filtering Parameters

We have validated our strategy in sequences captured with a Boston Scienti�c Clear View Ultra
scanner at 40 MHz with constant pull-back at 0.5 mm/sec and acquisition rate of 25 frames/sec. The
digitalized sequences are 384× 288 images with a spatial resolution of 0.0435 mm per pixel. The set of
optimal parameters for a Boston Clear View is given by:

PF1 = 0.1906X + 0.9817Y

with thresholding parameters set to:

τPF1 = 0.0567; ρX = 6%; ρF = 85%
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for computation of vessel borders mask and

PF2 = −0.1498PF1 + 0.9887Z, τPF2 = −0.1241

for the calcium mask. The adventitia detection parameters ensure a 99.95% of true C1 detections. We
note that, by the feature space de�nition, we only have a 17% of false positives, which just represent 6%

of the total number of points classi�ed in C1. This fact favors the use of a length �ltering on adventitia
detections as fake response remover. In the case of calcium extraction, the threshold achieves less than
a 1% of noise and ensures 90.2156% of calcium detections.

5.3 Real Cases
Some of the adventitia segmentations achieved with the presented strategy are shown in this section

and we split them in four di�erent cases: the �rst (�gure 5.3) corresponds to normal vessel segments, the
second (�gure 5.4) to vessel segments with soft plaque. The third (�gure 5.5) have been extracted from
calci�ed vessel segments and �nally, the last one (�gure 5.6) shows images with missing information,
mainly due to side branches and sensor guide shadows.

1. NORMAL SEGMENTS In the �rst column we present a normal segment, whereas in the second
one, the vessel presents non-�brous plaque.

2. SOFT PLAQUE SEGMENTS In the �rst column, we present a vessel segment with lipidic plaque,
whereas, in the second column, the vessel segment contains soft plaque. Notice that in the
anisotropic contour closing step (�g.5.4(l) to �g.5.4(m)) we use image borders continuity, since
these images come from cartesian coordinates. Thus, although adventitia points before the ACC
do not appear on the right of the image, ACC closes in the two directions from the left side of the
image.

3. CALCIFIED PLAQUE SEGMENTS In this case, both vessels contain calci�ed plaque. Notice
that, although intima is detected, both polar coordinates and a rigid snake, yield that the �nal
closed model corresponds to the adventitia.

4. SIDE BRANCHES AND SENSOR SHADOW SEGMENTS Both vessel segments lack of informa-
tion, the �rst due to a calci�ed area plus a side branch and the second column, because of sensor
shadow and a little side branch. The key point of this kind of images is the sparse information,
which we discuss in chapter 7.
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Figure 5.3: Automated Adventitia Detections for Normal Vessel Segments
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Figure 5.4: Automated Adventitia Detections for Vessel Segments with Soft Plaque
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Figure 5.5: Automated Adventitia Detections for Calci�ed Vessel Segments
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Figure 5.6: Automated Adventitia Detections for Uncomplete Vessel Segments
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5.3.1 Statistics
In this section we give our statistical analysis of the segmentation errors. We have analyzed errors

individually for each patient gathered by vessel plaque nature and globally. Whisker boxes are usual
to analyze within patient variability and con�dent intervals serve to detect any signi�cant di�erence
between di�erent plaques.

(a) (b)

Figure 5.7: Whisker Boxes for Automated Error,(a), and Inter-Observer Variability, (b).

Figure 5.7 shows whisker boxes for mean distance absolute errors (�g.5.7(a)) and mean inter-observer
variations (�g.5.7(b)) for soft plaque and calcium segments. Each box contains the mean distance errors
obtained from the 4 experts segmentations (80 to 120 samples per box) for a single vessel segment. Boxes
labelled with NC correspond to non-calci�ed segments and those labelled with C to calci�ed ones. An
analysis of the whisker boxes re�ects robustness of segmentations: the smaller the boxes are, the more re-
liable the method is. Whisker boxes serve to visually detect any anomaly in the models. In general terms,
the means of automated errors are slightly higher than inter-observer variability means. However, since
automatic segmentations present a signi�cantly smaller variation range than inter-observer variability,
our segmentations are within the experts discrepancy rate (see T-tests comparing means summarized in
table5.3. Lack of reliable information at large angular sectors, signi�cantly increases errors variability
in calci�ed segments,both for manual segmentations and automatic detections. The large range of the
whisker box of the case C2 detects it as a vessel segment of di�cult manual identi�cation that should
be excluded from any statistical analysis. Larger boxes for automated detections (�g.5.7(a)) in cases
NC5 and C3 comparing to their counterparts in �g.5.7(b) indicate that there are specially di�cult cases
for our segmenting strategy. We devote the discussion section 7.1 to a detailed analysis of such miss
detections.

Statistical ranges (mean ± standard deviation) for automatic errors (AUT) and inter-observer vari-
ability (INT-OBS) are summarized in tables 5.1 and 5.2. Patients presenting an unusual large inter-
observer variability have been excluded, since we consider they are anomalous cases with di�cult and
non robust manual identi�cation. We present statistics for non-calci�ed segments in the �rst column of
5.1, calci�ed ones in the second column of the same table and a total population of 20 vessel segments
in table 5.2.
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Table 5.1: Performance Evaluation of the Adventitia Segmentation Strategy. Automatic Errors
versus Inter-Observer Variability for non-calci�ed and calci�ed segments

NON-CALCIFIED CALCIFIED
INT-OBS AUT INT-OBS AUT

MaxD (mm) 0.4208 ± 0.1794 0.4238 ± 0.1026 0.6627 ± 0.3610 0.7161 ± 0.2532
RelMaxD (%) 0.3963 ± 0.1788 0.3868 ± 0.1075 0.5469 ± 0.3171 0.6116 ± 0.2665
MeanD (mm) 0.1783 ± 0.0698 0.1864 ± 0.0364 0.2650 ± 0.1306 0.2885 ± 0.0947
RelMeanD (%) 0.1647 ± 0.0668 0.1684 ± 0.0387 0.2142 ± 0.1113 0.2388 ± 0.0931
Area Dif. (%) 6.6799 ± 3.1579 7.2571 ± 1.9842 9.3511 ± 5.7529 10.0428 ± 4.0390
SgnMeanD (mm) 0.0004 ± 0.0769 0.0283 ± 0.0540 0.0163 ± 0.1213 -0.0381 ± 0.0912

Table 5.2: Performance Evaluation of the Adventitia Segmentation Strategy. Automatic Errors
versus Inter-Observer Variability for all segments

TOTAL
INT-OBS AUT

MaxD (mm) 0.5386 ± 0.3075 0.5715 ± 0.2296
RelMaxD (%) 0.4697 ± 0.2664 0.5122 ± 0.2344
MeanD (mm) 0.2206 ± 0.1126 0.2265 ± 0.0688
RelMeanD (%) 0.1888 ± 0.0945 0.1972 ± 0.0662
Area Dif. (%) 7.9813 ± 4.7962 8.6032 ± 3.3436
SgnMeanD (mm) 0.0081 ± 0.1013 0.0041 ± 0.0801

A summary of the results of the T-tests comparing the inter-observer variability and automatic errors
averages is given in table 5.3. We report the p-value and the con�dence interval for the di�erence in
means. Statistics exclude outliers and T-tests are computed over the total errors in table 5.2.

Table 5.3: Statistics Summary on T-tests comparing the means of Inter-Observer Variability
and Automatic Errors.

Con�dence Interval (CI) p-value
MeanD (-0.002684,0.014491) 0.177721
Area Dif. (-0.017985,0.114350) 0.153404
SgnMeanD (-0.002401,0.010787) 0.212219

According to a two tailed T-test, there is no signi�cant di�erence between inter-observer and auto-
mated mean absolute distance errors and di�erence in areas. For mean distance errors the p-value equals
p = 0.177721 and the con�dence interval for the true di�erence in means at a signi�cance level of 95% is
CI = (−0.002684, 0.014491). In the case of percentage in area di�erence, p = 0.153404 and the interval
(also at a signi�cance level of 95%) is CI = (−0.017985, 0.114350). Maximum errors for automated
detections are slightly above the range of maximum inter-observer variability. In order to robustly de-
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termine the fraction of increase, we use a single tailed T-test to check if the null hypothesis statement
"the mean of automated maximum errors is above λ times the mean of maximum inter-observer vari-
abilities" is true. The true proportion between maximum automated error and inter-observer variability
is between the minimum λ rejecting the null hypothesis and the maximum accepting it. For λ = 1.102,
the null hypothesis was accepted with a p-value, p = 0.053901 and for λ = 1.103, it was rejected with
p = 0.049846. We conclude that the increase in maximum automated errors is under a 10.3%. Finally a
T-test on the mean of the automated signed distance error shows that in average it is zero as the p-value
equals p = 0.212219 and the con�dence interval for the true mean is a tiny interval containing the zero
value CI = (−0.002401, 0.010787).
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Chapter 6

Application

In order to make this strategy feasible for the experts as well as to validate more patients and achieve
a systematic analysis of the main source of errors in clinical cases, we have developed a prototype of
application in Matlab. The application allows the analysis of a vessel segment by means of a simple
interface to facilitate its use by physicians. The steps to get a sequence segmented are summarized in
the following �gures.

The expert has to choose, from "New Segmentation" the desired patient of a list.

Figure 6.1: First step of the application
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Then, the whole sequence is loaded and the expert can view all the sequence, or can pass the sequence
frame by frame or every a number of frames determined in the "step" box.

Figure 6.2: The starting of the process

The expert decides the �rst and the last frame to segment and the automatic process starts.
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The screen shows the results of the di�erent steps and �nally, the �nal result.

Figure 6.3: Final Result
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Chapter 7

Discussion and conclusions

7.1 Discussion

The combination of a priori knowledge (classi�cation techniques) with �ltering techniques based on
continuity of image geometry is the key point for a robust characterization of vessel (the adventitia layer,
in our case) borders. By designing an accurate point selection strategy, we avoid human interaction and
the use of longitudinal cuts and ECG-gated acquisitions. The latter results in a save in the computational
time required for the automatic segmentation. On a pentium IV at 3.2 Ghz and 1G of RAM, the
implementation in MatLab 7.0 takes approximately 35 minutes to model 200 frames.

The reliability of the proposed strategy is re�ected in the global statistics extracted from in vivo
sequences segmentation. The fact that, both, mean distances and vessel areas compare to inter-observer
variation validates our method for extraction of clinical measurements. Since there is no bias in au-
tomated segmentations (the mean signed distance is statistically zero) we can ensure that our method
achieves an optimal compromise among experts criteria. That is, with the exception of the isolated
frames that deviated maximum errors from inter-observer range, automatically traced curves lie be-
tween curves traced by di�erent observers. The number of outlier bad segmentations requiring manual
correction represent less than a 15% of the studied valid cases and, with the computing tools available,
the time spend in their manual correction is in the range accepted by clinical experts.

Still, the striking increase in the error range for the anomalous cases NC5 and C3 needs to be ana-
lyzed. Such miss detections correspond to vessel segments that either the adventitia is hardly identi�ed
or there is severe lack of valid information.

Weak visual appearance of the adventitia border is a technical limitation of the UltraSound acquisi-
tion technique and it is cause of disagreement among experts (case NC2 in �g.5.7(b)) in 9% of the cases.
Our strategy su�ers this kind of error in 18% of the segments under study (boxes NC5, C2 and C3 in
�g.5.7(a)). We argue that the only way to minimize the impact of border blurring is taking into account
tissue motion periodicity along the sequence. Even for physicians it is di�cult to identify vessel borders
by an analysis of still images. Often, they use cardiac periodicity in the movement of vessel structures to
distinguish between tissue and other structures. We are currently assessing if adding Fourier analysis of
image grey level statistics to the set of adventitia descriptors reduces the number of this type of wrong
detections.

The second source of large error in automatic detections is lack of information. Calcium sectors
or side branches can take up large angular sectors, thus, distorting information at these sectors. In
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(a) (b) (c)

(d) (e) (f)

Figure 7.1: Adventitia models in images with sparse information. Points detected (a), (d), �nal
snake (b), (e) and manual model (c), (f).

the case that the sparse valid information is not uniformly distributed along angular sectors, the �nal
elliptic model is prone to underestimate the border true radial position. Fig.7.1 illustrates the scarce bad
distributed information artifact. On the �rst column we show an image with uniformly enough point
distribution and on the second column a pathological case with all available information gathered in the
�rst quadrant of the image. Images in �g.7.1(a), (d) depict the ACC closure modelled by the B-snake
in �g.7.1(b), (e). The true manually traced contours are shown in �g.7.1(c), (f).

Lack of strong 3D continuity in the B-snake closing of candidate points on the vessel borders is the
main source of the above error. The use of 2D NURBS (spline surfaces) instead of 1D splines could
reduce the impact of missing information. However, in our case, they might not succeed in correcting
this kind of miss interpolations. On one hand, NURBS can only take into account local deformations
and continuity of the surface. On the other hand, the previously described pathology is prone to happen
at large vessel segments. It follows that NURBS interpolation might imply handling the segmentation
of the whole image sequence block (over 1200 frames). Such large amount of data is computationally
unfeasible (we recall that, at most, we handle 300 frames). One possible way of overcoming lack of
information for large vessel segments would be mimicking the experts strategy used for manually tracing
the adventitia borders. Our application [27] to manually segment vessel borders shows the previous
border on the current image to be segmented and allows the physician to modify it. An informal
survey on the key points and frames used by the expert for border tracing at images with severe lack
of information prompts that they usually keep the model traced on the last valid frame. This suggests
using the information available at the last frame with adventitia points detected in more than 70% of
the vessel angular sectors to complete vessel borders at images with sparse detections.
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7.2 Conclusions
Vessel border detection is of especial interest for plaque assessment and quanti�cation of lumen

narrowing in IVUS sequences. By its weak appearance, there are few algorithms addressing segmentation
of the external adventitial border. In this work we propose a general strategy for vessel border detection
in IVUS images with an explicit application to the segmentation of the medial-adventitial border.

The reported methodology combines classi�cation techniques with advance smoothing operators
based on image level sets continuity. The strategy for media-adventitia detection is a three-step algo-
rithm. We show that using geometric knowledge of image structures su�ces to detect the adventitia
without precise and exhaustive classi�cation of vessel tissue. Besides our segmenting strategy is robust
against a large variety of vessel cases, such as presence of di�erent plaques, side-branches, IVUS artifacts
(echo shadowing, sensor guide) and lost of information.

The strategy has been tested on 5400 images including calci�ed and non calci�ed vessel segments,
side-branches and the most representative shadowing artifacts of intravascular ultrasound sequences.
The comparison to borders manually traced by 4 experts shows that in 84% of the cases we are within
the range of inter-observer variability, which demonstrates the optimality of the automated model. An
exhaustive analysis of those cases increasing the error rate determines that the main source of error are
bad image acquisition and more than 75% of missing information due to calcium shadowing.

7.3 Future work
There are two main vias to improve this procedure: improving the accuracy of segmentations and

working in a systematic setting of the optimal segmenting parameters in order to turn our strategy into
a generic modelling algorithm for any acquisition device.

For the �rst via, two lines of research (currently in progress) are suggested to minimize the scope
of erroneous detections. Taking into account periodicity in tissue movement in the point selection stage
and mimicking the experts strategy for border interpolation at segments of signi�cant lack of reliable
information.

For the second via, as we explained in section 5.2, we obtained a 4 variables function of error and
we �xed three parameters. In spite of the good results, only studying the �ltering parameters, in a
segmentation problem, all the parameters play a role, and they are all involved in the solution of the
problem. Thus, we will make an exhaustive study of the dependency of the error function respect to all
the critical parameters. To ensure that the minimum found out is not an outlier, we will �nd a minimum
neighborhood .

Another point is to prove more accurately the robustness of the method by computing the intra-
observer variability (the amount of variation one observer experiences when observing the same material
more than once) and "intra-sequence" variability (the amount of variation one sample of the sequence
is made comparing with another sample of the same sequence taking into account the cardia motion).

A more further research will be the embedding of this strategy with the strategy described in [46]
to the intima segmentation and tissue characterization to develop an application for the automatic seg-
mentation of the vessel borders and tissue characterization. Once the experts have proven its e�ciency,
we will work on the 3D reconstruction of the vessel border, by means of IVUS images.
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