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Abstract

The adventitia layer appears as a weak edge in IVUS

images with a non-uniform grey level, which difficulties

its detection. In order to enhance edges, we apply an

anisotropic filter that homogenizes the grey level along the

image significant structures (ridges, valleys and edges). A

standard edge detector applied to the filtered image yields

a set of candidate points prone to be unconnected. The

final model is obtained by interpolating the former line

segments along the tangent direction to the level curves

of the filtered image with an anisotropic contour closing

technique based on functional extension principles.

1. Introduction

IVUS clinical interest feeds development of image

processing techniques addressing detection of arterial

structures [1], [2], [3], [4], such as intima segmentation

or plaque characterization. However, although adventitia

detection is crucial for a reliable plaque quantification, the

topic has been hardly approached [5], [6]. In this paper, we

present a novel method for adventitia segmentation based

on local orientation of image structures.

We split the problem of adventitia detection in two

stages: extraction of points laying on the adventitia and

recovery of a closed model of such points. In both steps the

restricted anisotropic operators introduced in [7], [8] play

a central role. Anisotropic diffusion bases [9] on a heat

propagation model on a surface/medium where heat does

not distribute equally in all directions, but according to the

ellipse defining the diffusion tensor. A common trend in

filtering algorithms [9], [10], [11] is to align the diffusion

tensor major axis along a particular image structure (edges,

valleys, ridges, vessels). In this fashion, the resulting

anisotropic diffusion delays blurring of the gray level

changes that define such image feature. However, because

gray values spread on the whole image plane one still

needs to seek for the time/iteration/scale achieving the

best compromise between noise removing and preserving

significant image features. In order to ensure that image

structures will be preserved we restrict diffusion to a vector

field smoothly approaching image level sets tangent space.

The associated image filtering operator homogenizes gray

levels and response of image structures defined by contrast

changes (such as edges, ridges, valleys) and, at the same

time, smoothes noisy areas.

We select adventitia candidate points by means of the

negative edges of minimum radius extracted from IVUS

images in polar coordinates. Edges are computed with a

first derivative of a Gaussian over images filtered with a

Restricted Anisotropic Diffusion (RAD) and longitudinal

cuts serve to remove the intima layer. The former two

steps ensure that the final set of connected components,

though uncompleted, lay on the adventitia. In order to

interpolate curve segments, we use restricted anisotropic

operators to extend a mask function of the unconnected

set of points. By changing the boundary conditions of the

diffusion process to Dirichlet, so that the evolving function

is forced to take the values of the initial mask at the curve

segments to be joined, we model our Anisotropic Contour

Closing (ACC) [8]. The process yields an implicit level

sets model of the adventitia that captures curvatures as it

bases on the image local orientation. For the sake of a

representation as compact as possible we use classic B-

snakes [12] for the final explicit parametrization.

Our strategy has been validated with in-vivo sequences

previously segmented by an expert. The statistics on

the maximum and mean positioning error show that our

segmentation is optimal in those cases that the adventitia

is thoroughly described as an edge. Moreover, our

reconstruction of the adventitia is more accurate than other

interpolating algorithms that produce piece-wise linear

models (e.g. geodesic snakes).

2. Restricted anisotropic operators

Most filtering techniques based on image gray level

modification [9] use the heat diffusion equation:

ut(x, y, t) = div(J∇u)
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Figure 1. Vector field at noisy (a) and regular (b) areas

The time dependant function u is the family of smoothed

images and J is a 2-dimensional metric (i.e. an ellipse)

that locally describes the way gray levels re distribute. The

diffusion tensor J is thoroughly described by means of its

eigenvectors (ξ, η = ξ⊥) and eigenvalues (λ1, λ2). If

the latter are strictly positive, gray values spread on the

whole image plane and the family u converges to a constant

image. On the other side if we degenerate J (i.e. we admit

null eigenvalues), then the final image [7] is a collection

of curves of uniform gray level. A suitable choice of the

eigenvector of positive eigenvalue leads to our:

Restricted Anisotropic Diffusion (RAD)

Let us consider a metric J̃ with eigenvalues λ1 = 1 and

λ2 = 0, and ξ the eigenvector of minimum eigenvalue of

the Structure Tensor. The Restricted Heat Diffusion we

suggest is given by:

ut = div(J̃∇u) with u(x, y, 0) = u0(x, y) (1)

for u0 the image to be de-noised. Notice that in a band

around the image significant structures (fig.1(a)), ξ yields

a smooth closed model of their tangent space. Meanwhile

at noisy areas (fig.1(b)), it is a random vector that locally

generates the whole 2 dimensional space. The result is that

gray levels homogenize along image regular level sets and

solutions to (1) converge to a smooth image that enhances

the main features of the original image, in the sense that

their response to standard detectors is uniform. Figure 2

shows the improvement of the ridges in an angiography.

Background spurious ridges due to noise in fig.2(a) have

been removed, in a similar fashion a gaussian smoothing

would do, while ridges corresponding to the vessel are

closed curves in the RAD image of fig.2(b).

Still heat diffusion has another mathematical and

physical use hardly exploited in image analysis. Heat

diffusion has the property of smoothly extending a function

defined on a curve in the plane, provided that boundary

conditions are changed to Dirichlet [13]. By using

restricted heat operators this property can be used to

complete unconnected contours [8] as follows.

Anisotropic Contour Closing (ACC)

Let γ be the set of points to connect, χγ its characteristic

function (a mask) and define J̃ as in RAD, then the

(a) (b)

Figure 2. Ridge enhancement: original (a) and RAD (b)

extension process given by:

ut = div(J̃∇u) with u|γ = u0 (2)

converges to a close model of γ. Intuitively, we are

integrating the vector field ξ, that is, we are interpolating

the unconnected curve segments along it. First, notice

that by using a restricted heat equation (2) we ensure

convergence to a closed model of the unconnected curve

γ, whatever its concavity is. Second, because ξ takes

into account image level sets geometry, ACC closure is

more accurate than other interpolating techniques (such

as geodesic snakes) which, at most, yield piece-wise

linear models, provided they succeed in converging to the

uncompleted curve segments.

Let us now describe how the former techniques can

combine into an adventitia modeling algorithm.

2.1. The detection strategy

Following [7] we will approach adventitia segmentation

by selecting first a set of candidate points and, afterwards,

giving a close model as compact as possible.

1. Finding points on the adventitia layer

In an IVUS plane, the adventitia is a circular line/structure,

which motivates working in polar coordinates. In order

to reduce the impact of heart movement and eccentricity,

we place the origin at the geometric mass center of a

set of points roughly lying on that vessel structure. In

such coordinate system and provided we consider positive

orientation, the adventitia corresponds to negative vertical

edges. Further, edges will be extracted from RAD filtered

images, so that noise impact is reduced and edge response

strengthen. Still, sparse fake responses and points on the

intima layer, which is also characterized as a negative edge,

are detected. For a selection of true adventitia points we

will consider that an edge connected component is on the

right vessel layer if it corresponds to an edge of minimum

radius in a longitudinal cut. Snakes are used to ensure that
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Figure 3. Selection of adventitia candidate points

(a)

(b)

Figure 4. ACC quick integration

we deal with completed edges enclosing all frames. The

whole selecting stage is summarized in fig.3.

2. Computing a closed model

To fill-in gaps within candidate segments we will first

compute a closed model in implicit level sets form and

then use a Bspline snake to produce a compact model

of the adventitia. In order to obtain models as accurate

as possible we will use ACC with the structure Tensor

compute over the edge map used in the previous step. For

the sake of a computational cost as small as possible, we

use the following quick algorithm for solving equation (2).

First recall that the final image yielded by ACC is a mask

(i.e. 1’s and 0’s) of the closed curve and that the whole

process might be regarded as integrating the field ξ. Then,

since the divergence term develops as:

div(J̃∇u) = div(〈ξ,∇u〉ξ)

we have that, for each border point of a segment, the

next pixel to be set to 1 is the neighbor in the direction

ξ (cross in fig.4(a)). Such pixel achieves the maximum

correlation between ξ and the gradient of the distance map

to the uncomplete curve (dot in fig.4(b)). In this manner

the whole closing process is of the order of the gap (pixel)

size. Figure 4 illustrates the grounds of the algorithm: the

vector to be integrated is shown in fig.4(a) and the distance

map gradient used to compute ACC in fig.4(b).

3. Results

Final snakes modelling the adventitia of the images

in the first row are depicted in the second row of fig.5.

Validation of the method has been based on the following:

3.1. Assessment protocol

A total number of 1000 frames extracted from 5 different

patients (200 per sequence) have been analyzed. The

measures used to quantify accuracy of the automated

detections are the mean and maximum positioning error

and area differences between our model and a manual

segmentation. The sequences have been manually

segmented by 3 different physicians every 10 frames in

order to analyze inter-observer variation.

3.2. Statistical measurements

The variation for distances (in mm) and percentage

of area difference for each of the patients, as well as,

total numbers are summarized in table 1. The global

mean distance error is under 0.3 mm., which brings

our adventitia detection close to intima segmentation

algorithms [2]. Because final snake models do not take

into account any continuity along the sequence, there are

some isolated miss segmentations that increase maximum

errors as well as area differences. Patients 1,2 and 4 present

average errors (a mean distance error of 0.23 ± 0.09)

close to inter-observer variability. Subject 3 bad statistics

result from basing adventitia characterization exclusively

in edges, since the sequence presents a structure (bright

area in upper left part of the image in fig.5(c)) with similar

changes in image gray values. Meanwhile, high deviations

in the last patient are result of a low quality in images,

as the large inter-observer error (it is the worst with a

discrepancy in layer location up to 0.81mm).
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Figure 5. Adventitia Models (b), (d) of the original (a), (c)

Table 1. Statistical Error

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Global

INT-OBS. Max. Dist. (mm) 0.3 ± 0.11 0.46 ± 0.17 0.32 ± 0.13 0.41 ± 0.14 0.55 ± 0.26 0.42 ± 0.2
INT-OBS. Mean Dist. (mm) 0.12 ± 0.02 0.19 ± 0.06 0.15 ± 0.05 0.17 ± 0.05 0.24 ± 0.12 0.18 ± 0.08
INT-OBS. Area Dif. (%) 4.47 ± 1.04 6.34 ± 2.45 6.29 ± 2.87 6.62 ± 2.66 9.8 ± 5.3 7 ± 3.7
AUT. Max. Dist. (mm) 0.69 ± 0.28 0.67 ± 0.27 0.75 ± 0.4 0.79 ± 0.65 1.0 ± 0.62 0.80 ± 0.52
AUT. Mean Dist. (mm) 0.25 ± 0.08 0.23 ± 0.04 0.26 ± 0.09 0.27 ± 0.12 0.33 ± 0.16 0.27 ± 0.12
AUT. Area Dif. (%) 9.91 ± 4.02 7.74 ± 1.72 12.35 ± 3.95 10.79 ± 4.34 13.76 ± 6.84 11.16 ± 5.08

4. Discussion and conclusions

The detection of the adventitia layer presented in

this paper is a new trend in medical imaging with

a straightforward clinical application to plaque area

and vessel diameter measurements. The fact that the

segmenting strategy combines simple standard techniques

increases its efficiency and applicability. A key point is the

use of restricted anisotropic operators, which represents an

improvement in quality of filtered images and accuracy of

final models. Since the modelling algorithm exclusively

relies on the features used to characterize the adventitia,

our future research will focus on looking for a better set of

descriptors of the structure.
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