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Email: {lgomez,dimos}@cvc.uab.es

Abstract—Object Proposals is a recent computer vision tech-
nique receiving increasing interest from the research community.
Its main objective is to generate a relatively small set of
bounding box proposals that are most likely to contain objects
of interest. The use of Object Proposals techniques in the scene
text understanding field is innovative. Motivated by the success
of powerful while expensive techniques to recognize words in a
holistic way, Object Proposals techniques emerge as an alternative
to the traditional text detectors.

In this paper we study to what extent the existing generic
Object Proposals methods may be useful for scene text under-
standing. Also, we propose a new Object Proposals algorithm
that is specifically designed for text and compare it with other
generic methods in the state of the art. Experiments show that
our proposal is superior in its ability of producing good quality
word proposals in an efficient way. The source code of our method
is made publicly available1.

I. INTRODUCTION

Scene Text understanding consists in determining whether a
given image contains textual information and if so, localizing it
and recognizing its written content. Traditionally this challeng-
ing task has been tackled with a multistage pipeline where text
detection, extraction, and recognition steps have been treated
separately as isolated problems. More recently, an alternative
framework has been proposed motivated by the high accuracy
of methods for whole word recognition and the emergent use of
Object Proposal techniques. This new framework has produced
the best performing state-of-the-art methods for scene text end-
to-end word spotting [1], [2].

Object Proposals is a recent computer vision technique
for generation of high quality object locations. The main
interest of such methods is their ability to speed up recognition
pipelines that make use of complex and expensive classifiers
by considering only a few thousands of bounding boxes. It
therefore constitutes an alternative to exhaustive search, which
has many well known drawbacks, and enables the efficient use
of more powerful classifiers by greatly reducing the search
space as shown in Figure 1.

In the context of scene text understanding, whole-word
recognition methods [3], [4] have demonstrated great success
in difficult tasks like word spotting or text based retrieval,
however they are usually based in expensive techniques. In
this scenario the underlying process is similar to the one in
multiclass object recognition. It is therefore suggestive for the
use of Object Proposals techniques mimicking the state of the
art object recognition pipelines.

Traditionally, high precision specialized detectors have
been used for segmentation of text in natural scenes, and after-
wards text recognition techniques applied to their output [5].

1http://github.com/lluisgomez/TextProposals

Fig. 1: Sliding a window for all possible locations, sizes, and
aspect ratios represents a considerable waste of resources. The
best ranked 250 proposals generated with our text specific
selective search method provide 100% recall and high-quality
coverage of words in this particular image.

But it is a well known fact that the perfect text detector, able
to work in any conditions, does not exist up to date. In fact,
to mitigate the lack of a perfect detector Bissacco et al. [6]
propose an end-to-end scene text recognition pipeline using a
combination of several detection methods running in parallel.
Demonstrating that if you have a robust recognition method
at the end of the pipeline the most important thing in earlier
stages is to achieve high recall while precision is not so critical.

The dilemma is thus to choose between having a small set
of detections with very high precision but most likely losing
some of the words in the scene, or a larger set of proposals,
usually in the range of few thousands, with better coverage
and then let the recognizer to make the final decision. The
later seems to be a well-grounded procedure in the case of
word-spotting and retrieval for various reasons. First, as said
before, we have powerful whole-word recognizers but they
are complex and expensive, second, the recall of current text
detection methods may limit their accuracy, and third, sliding
window can not be considered an efficient option mainly
because words do not have a constrained aspect ratio.

In this paper we explore the applicability of Object Propos-
als techniques in scene text understanding, aiming to produce
a set of word proposals with high recall in an efficient way. We
propose a simple text specific selective search strategy, where
initial regions in the image are grouped by agglomerative
clustering in a hierarchy where each node defines a possible
word hypothesis. Moreover, we evaluate different state of the
art Object Proposals methods in their ability of detecting text
words in natural scenes. We compare the proposals obtained
with well known class-independent methods with our own
method, demonstrating that our proposal is superior in its
ability of producing good quality word proposals in an efficient
way.

http://github.com/lluisgomez/TextProposals


II. RELATED WORK

The use of Object Proposals methods to generate candidate
class-independent object locations has become a popular trend
in computer vision in recent times. A comprehensive survey
can be found in Hosang et al. [7]. In general terms, we
can distinguish between two major types of Object proposals
methods: the ones that make use of exhaustive search to
evaluate a fast to compute objectness measure [8], [9], [10],
and the ones where the search is segmentation-driven [11],
[12], [13].

In the first category, Alexe et al. [8] propose a generic
objectness measure for a given image window that combines
several image cues, such as a saliency score , the color contrast
to its immediate surrounding area, the edge density, and the
number of straddling contours. Computation of these features
is made efficient by using integral images. Cheng et al. [9]
propose a very fast objectness score using the norm of image
gradients in a sliding window, with a suitable resizing of
windows into a small fixed size. A different sliding window
driven approach is given by Zitnick et al. [10], where a box
objectness score is measured as the number of edges [14] that
are wholly contained in the box minus those that are members
of contours that overlap the box’s boundary. Using efficient
data structures they manage to evaluate millions of candidate
boxes in a fraction of second.

On the other hand, selective search methods make use
of image’s inherent structure through segmentation to guide
the search. In this spirit, Gu et al. [15] make use of a
hierarchical segmentation engine [16] and consider each node
in the hierarchy as an object part hypothesis. Uijlings et al.
[11] argue that a single segmentation and grouping strategy
is not enough to generate high quality object locations in any
conditions, and thus propose a selective search algorithm that
uses multiple complementary strategies. In particular, they start
from superpixels using different parameter settings [17] for a
variety of color spaces, and then produce a set of hierarchies
by merging adjacent regions using different complementary
similarity measures. Another method based on superpixels
merging is due to Manen et al.[12], using the connectivity
graph induced by the segmentation [17] of an image, with edge
weights representing the likelihood that two neighboring pixels
belong to the same object, their Randomized Prim’s algorithm
generate proposals by sampling random partial spanning trees
with large expected sum of weights. Finally, Krähenbühl et
al. [13] compute an oversegmentation of the image using a fast
edge detector [14] and the Geodesic K-means algorithm [18].
Then they identify a small set of seed superpixels, aiming to hit
all objects in the image, and object proposals are identified as
critical level sets of the Geodesic Distance Transforms (SGDT)
computed for several foreground and background masks for
these seeds.

The use of Object Proposals techniques in scene text
understanding has been exploited very recently in two state-
of-the-art word-spotting methods [1], [2] while in a distinct
manner. In our previous work [1] we propose a text specific
selective search method adopting a similar strategy to the
selective search of Uijlings et al. [11] and a holistic word
recognition method based on Fisher Vector representations. On
the other hand, Jaderberg et al. [2] opt for the use of a generic

Object Proposals algorithm [10] and deep convolutional neural
networks for recognition.

The method proposed in this paper builds on top of our
previous work [19], [20], [1], where initial regions in the image
are grouped by agglomerative clustering, using complementary
similarity measures, in hierarchies where each node defines
a possible word hypothesis. But differs from it in two main
aspects: First, we do not rely in a classifier to make strong
decisions to discriminate text groups from not-text groups,
second, we do not combine the different cues in any way.

III. TEXT SPECIFIC SELECTIVE SEARCH

Our method is based on the fact that text, independently
of the script in which it is written, emerges always as a
group of similar atomic objects. We make use of the per-
ceptual organisation framework presented in [19], where a
set of complementary grouping cues are used in parallel to
generate hierarchies in which each node correspond to a text-
group hypotheses. Our algorithm is divided in three main
steps: segmentation, creation of hypotheses through bottom-
up clustering, and ranking.

In the first step we use the Maximally Stable Extremal
Regions (MSER) algorithm [21] to obtain the initial segmen-
tation of the image, as it is proven to be an efficient method
for detecting text parts [22].

A. Creation of hypotheses

The grouping process starts with a set of regions Rc

extracted with the MSER algorithm. Initially each region
r ∈ Rc starts in its own cluster and then the closest pair of
clusters (A,B) is merged iteratively, using the single linkage
criterion (SLC) (min { d(ra, rb) : ra ∈ A, rb ∈ B }), until all
regions are clustered together (C ≡ Rc). Where d(ra, rb) is a
distance metric that will be explained next.

Similarly to [11] we assume that there is no single grouping
strategy that is guaranteed to work well in all cases. Thus,
our basic agglomerative process is extended with several
diversification strategies in order to ensure the detection of the
highest number of text regions in any case. First, we extract
regions separately from different color channels (i.e. Red,
Green, Blue, and Gray) and spatial pyramid levels. Second,
on each of the obtained segmentations we apply SLC using
different complementary distance metrics:

d(i)(ra, rb) = (f i(ra)−f i(rb))2+(xa−xb)2+(ya−yb)2 (1)

where the term {(xa − xb)2 + (ya − yb)2} is the squared
Euclidean distance between the centers of regions ra and rb,
and f(r) is a feature aimed to measure the similarity of two
regions. Our f i features are designed to exploit the strong
similarity of text regions belonging to the same word. We make
use of the following simple features with low computation
cost: mean gray value of the region, mean gray value in the
immediate outer boundary of the region, region’s major axis,
mean stroke width, and mean of the gradient magnitude at the
region’s border.



B. Ranking

Once we have created our similarity hierarchies each one
providing a set of text group hypotheses, we need an efficient
way to sort them in order to provide a ranked list of proposals
prioritizing the best hypotheses. In the experimental section
we explore the use of the following rankings:

1) Pseudo-random ranking: We make use of the same
ranking strategy proposed by Uijlings et al.in [11]. Particu-
larly, each hypothesis is assigned with an increasing integer
value, starting from 1 for the root node of a hierarchy and
subsequently incrementing for the rest of the nodes up to
the leaves of the tree. Then each of this values is multi-
plied with a random number between zero and one, thus
providing a ranking that is randomly produced but prioritizes
larger regions. As in [11] the ranking process is performed
before removing duplicate hypotheses. This way if a particular
grouping has been found several times within the different
hierarchies, indicating a more consistent hypothesis under
different similarity cues, this group is going to have more
probabilities to be ranked in the top of the list.

2) Cluster meaningfulness ranking: Instead of assigning an
increasing value prioritizing larger groups, we propose here to
use a cluster quality measure, based on the principle of non-
accidentalness, that has been proposed in [23] for hierarchical
clustering validity assessment. In our case, given one of the
grouping cues described in section III-A, equation 1 defines
a feature space in which individual regions are projected, and
the meaningfulness of a group of regions G can be calculated
as the inverse of the probability of such a group being a
realization of the uniform random distribution:

NFA(G) = BG(k, n, p) =
n∑

i=k

(
n

i

)
pi(1− p)n−i (2)

where k is the number of regions in G, n is the total number
of regions extracted from the image, and p is the ratio of the
volume defined by the distribution of the feature vectors of the
regions in G with respect to the total volume of the feature
space. Intuitively this value is going to very small for groups
comprising a set of very similar regions, that are densely
concentrated in small volumes of the feature space. This
measure is thus well indicated in the case of measuring text-
likeliness of groups because such a strong similarity property
is expected to be found in text groups. However, the ranking
provided by calculating 2 in each node of our hierarchies is
going to prioritize large text groups, e.g. paragraphs, rather that
individual words, and thus we combine the ranking provided
by equation 2 with a random number between zero and one as
done before, providing a pseudo-random ranking where more
meaningful hypothesis are prioritized.

3) Text classifier confidence: Finally, we propose the use of
a weak classifier to generate our ranking. The basic idea here
is to train a classifier to discriminate between text and non-
text hypotheses and to produce a confidence value that can be
used to rank group hypotheses. Since the classifier is going to
be evaluated on every node of our hierarchies, we aim to use
a fast classifier and features with low computational cost. We
train a Real AdaBoost classifier with decision stumps using as

features the coefficients of variation of the individual region
features f i described in section III-A: F i(G) = σi/µi, where
µi and σi are respectively the mean and standard deviation of
the region features f i in a particular group G, {f i(r) : r ∈
G}. Intuitively the value of F i is smaller for text hypotheses
than for non-text groups, and thus the classifier would be able
to generate a ranking prioritizing the best hypotheses. Notice
that all F i group features can be computed efficiently in an
incremental way along the SLC hierarchies, and that all f i
region features have been previously computed.

IV. EXPERIMENTS AND RESULTS

In our experiments we make use of two standard scene
text datasets: the ICDAR Robust Reading Competition dataset
(ICDAR2013) [24] and the Street View Dataset (SVT) [25].
In both cases we provide results for their test sets, consisting
in 233 and 249 images respectively, using the original word
level ground-truth annotations.

The evaluation framework used is the standard for Object
Proposals methods [7] and is based on the analysis of the
detection recall achieved by a given method under certain
conditions. Recall is calculated as the ratio of GT bounding
boxes that have been predicted among the object proposals
with an intersection over union (IoU) larger than a given
threshold. This way, we evaluate the recall as a function of
the number of proposals, and the quality of the first ranked N
proposals by calculating their recall at different IoU thresholds.

A. Evaluation of diversification strategies

First, we analyse the performance of different variants of
our method by evaluating the combination of diversification
strategies presented in Section III. Table I shows the average
number of proposals per image, recall rates, and time perfor-
mance obtained with some of the possible combinations. We
select two of them, that we will call “FAST” and “FULL” as
they represent a trade-off between recall and time complexity,
for further evaluation.

Method # prop. 0.5 IoU 0.7 IoU 0.9 IoU time(s)

I+D 536 0.84 0.65 0.41 0.26
I+DF 993 0.91 0.78 0.53 0.29
I+DFBGS 1323 0.95 0.86 0.60 0.45
RGB+DF 3359 0.96 0.91 0.69 0.73
RGBI+DFBGS 5659 0.98 0.94 0.75 1.72
P2+RGBI+DFBGS 8164 0.98 0.96 0.79 2.18

TABLE I: Max recall at different IoU thresholds and running
time comparison of different diversification strategies in the
ICDAR2013 dataset. We indicate the use of individual color
channels: (R), (G), (B), and (I); spatial pyramid levels: (P2);
and similarity cues: (D) Diameter, (F) Foreground intensity,
(B) Background intensity, (G) Gradient, and (S) Stroke width.

B. Evaluation of proposals’ rankings

Figure 2 shows the performance of our “FAST” pipeline
at 0.5 IoU using the various ranking strategies discussed in
Section III. The area under the curve (AUC) is 0.39 for NFA,
0.43 both for PR and PR-NFA rankings, while a slightly better
0.46 for the ranking provided by the weak classifier. Since



the overhead of using the classifier is negligible we use this
ranking strategy for the rest of the experiments.
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Fig. 2: Performance of our “FAST” pipeline at 0.5 IoU us-
ing different ranking strategies: (PR) Pseudo-random ranking,
(NFA) Meaningfulness ranking, (PR-NFA) Randomized NFA
ranking, (Prob) the ranking provided by the weak classifier.

C. Comparison with state of the art

In the following we further evaluate the performance of our
method in the ICDAR2013 and SVT datasets, and compare it
with the following state of the art Object Proposals methods:
BING [9], EdgeBoxes [10], Randomized Prim’s [12] (RP), and
Geodesic Object Proposals [13] (GOP).

In our experiments we use publicly available code of these
methods with the following setup. For BING we use the
default parameters: base of 2 for the window size quantization,
feature window size of 8 × 8, and non maximal suppression
(NMS) size of 2. For EdgeBoxes we also use the default
parameters: step size of the sliding window of 0.65, and
NMS threshold of 0.75; but we change the max number of
boxes to 106. GOP is configured with Multi-Scale Structured
Forests for the segmentation, 150 seeds heuristically placed,
and 8 segmentations per seed; in this case we tried other
configurations in order to increase the number and quality
of the proposals without success. For RP we use the default
configuration with 4 color spaces (HSV,Lab,Opponent,RG)
because it provided much better results than sampling from
a single graph, while being 4 times slower.

Tables II and III show the performance comparison of
all the evaluated methods in ICDAR2013 and SVT datasets
respectively. A more detailed comparison is provided in Fig-
ure 3. All time measurements in Tables II and III have
been calculated by executing code in a single thread on the
same i7 CPU for fair comparison, while most of them allow
parallelization. For instance the multi-threaded version of our
method is able to achieve execution times of 0.31 and 0.71
seconds respectively for the “FAST” and “FULL” variants in
the ICDAR2013 dataset.

As can be seen in Table II and Figure 3 our method
outperforms all the evaluated algorithms in terms of detection
recall on the ICDAR2013 dataset. Moreover, it is important to
notice that detection rates of all the generic Object Proposals
heavily deteriorate for large IoU thresholds while our text

Method # prop. 0.5 IoU 0.7 IoU 0.9 IoU time(s)

BING [9] 2716 0.63 0.08 0.00 1.21
EdgeBoxes [10] 9554 0.85 0.53 0.08 2.24
RP [12] 3393 0.77 0.45 0.08 12.80
GOP [13] 855 0.45 0.18 0.08 4.76
Ours-FAST 3359 0.96 0.91 0.69 0.79
Ours-FULL 8164 0.98 0.96 0.79 2.25

TABLE II: Average number of proposals, recall at different
IoU thresholds, and running time comparison with Object
Proposals state of the art algorithms in the ICDAR2013 dataset.

specific method provides much more stable rates indicating
a better coverage of text objects, see the high AUC difference
in Figure 3 bottom plots.

Method # prop. 0.5 IoU 0.7 IoU 0.9 IoU time(s)

BING [9] 2987 0.64 0.09 0.00 0.81
EdgeBoxes [10] 15319 0.94 0.63 0.04 2.71
RP [12] 5620 0.02 0.00 0.00 10.51
GOP [13] 778 0.53 0.19 0.03 4.31
Ours-FAST 3791 0.90 0.46 0.03 0.66
Ours-FULL 10365 0.95 0.61 0.06 2.22

TABLE III: Average number of proposals, recall at different
IoU thresholds, and running time comparison with Object
Proposals state of the art algorithms in the SVT dataset.

The results on the SVT dataset in TableIII and Figure 3 ex-
hibit a radically distinct scenario. While our “FULL” pipeline
is slightly better than EdgeBoxes at 0.5 IoU, the later is able
to outperform both of our pipelines at 0.7 and our “FAST”
variant at 0.5. Moreover, in this dataset our method does
not provide the same stability properties shown before. This
can be explained because both datasets are very different
in nature, SVT contains more challenging text, with lower
quality and many times under bad illumination conditions,
while in ICDAR2013 text is mostly well focussed and flatly
illuminated. Still, the AUC in most of the plots in Figure 3
show a fairly competitive performance for our method.

V. CONCLUSIONS

In this paper we have evaluated the performance of generic
Object Proposals in the task of detecting text words in natural
scenes. We have presented a text specific method that is
able to outperform generic methods in many cases, or to
show competitive numbers in others. Moreover, the proposed
algorithm is parameter free and fits well the multi-script and
arbitrary oriented text scenario.

An interesting observation of our experiments is that while
in class-independent object detection generic methods suffice
with near a thousand proposals to achieve high recalls, in
the case of text we still need around 10000 in order achieve
similar rates, indicating there is a large room for improvement
in specific text Object Proposals methods.

VI. ACKNOWLEDGEMENTS

This work was supported by the Spanish project TIN2014-
52072-P, the fellowship RYC-2009-05031, and the Catalan
govt scholarship 2014FI B1-0017.



10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

# of proposals

D
e
te

c
ti
o
n
 R

a
te

IoU = 0.5

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

# of proposals

D
e
te

c
ti
o
n
 R

a
te

IoU = 0.7

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

D
e
te

c
ti
o
n
 R

a
te

5000 Proposals

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

# of proposals

D
e
te

c
ti
o
n
 R

a
te

IoU = 0.5

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

# of proposals

D
e
te

c
ti
o
n
 R

a
te

IoU = 0.7

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

D
e
te

c
ti
o
n
 R

a
te

5000 Proposals

Fig. 3: A comparison of various state-of-the-art object proposals methods in the ICDAR2013 (top) and SVT (bottom) datasets.
(left and center) Detection rate versus number of proposals for various intersection over union thresholds. (right) Detection rate
versus intersection over union threshold for various fixed numbers of proposals.
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