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A Regularized Curvature Flow Designed
for a Selective Shape Restoration

Debora Gil and Petia Radeva

Abstract—Among all filtering techniques, those based exclu-
sively on image level sets (geometric flows) have proven to be
the less sensitive to the nature of noise and the most contrast
preserving. A common feature to existent curvature flows is that
they penalize high curvature, regardless of the curve regularity.
This constitutes a major drawback since curvature extreme values
are standard descriptors of the contour geometry. We argue that
an operator designed with shape recovery purposes should include
a term penalizing irregularity in the curvature rather than its
magnitude. To this purpose, we present a novel geometric flow that
includes a function that measures the degree of local irregularity
present in the curve. A main advantage is that it achieves non-
trivial steady states representing a smooth model of level curves
in a noisy image. Performance of our approach is compared to
classical filtering techniques in terms of quality in the restored
image/shape and asymptotic behavior. We empirically prove that
our approach is the technique that achieves the best compromise
between image quality and evolution stabilization.

Index Terms—Geometric flows, nonlinear filtering, shape re-
covery.

I. INTRODUCTION

SELECTIVE image filtering is an issue that has been fre-
quently addressed over the last few years (see [2] for a

review). The Perona–Malik model [23] and anisotropic diffu-
sion [29], for instance, focus on designing equations able to re-
move noise and preserve, as much as possible, image contrast
changes. The usual way of achieving this compromise in the
filtering technique consists of including a term preventing dif-
fusion across edges.

A theoretical analysis of recent filtering techniques [7] points
out that if an image smoothing operator is to be robust against
strong noisy images, it should be independent of image inten-
sity. Essential advantage in this context is represented by geo-
metric flows [10], [19]. As image smoothing relies exclusively
on the geometry of its level curves, geometric flows do not
produce any edge blurring [14], [21], which makes these tech-
niques more robust in very noisy images. However, the fact that
they reduce high curvature values and the number of inflexion
points, whatever the regularity of the curve, limits their appli-
cability to shape recovery. We argue that any filtering technique
to be used within a shape recovery algorithm should take into
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account differentiability of the curve. Smoothing should only
be applied to those arcs of the curves presenting a given degree
of irregularity. This need of a selective shape filtering leads to
the formulation of a function measuring lack of smoothness in
a shape.

Another usual drawback of most of the present image fil-
tering techniques is that their steady-state is trivial, a constant
image for diffusion processes [29] and either a point or a straight
line for curvature-based ones [10], [11], [15]. This property, al-
though desirable for a scale-space analysis of images/shapes
[16], [21] is a major nuisance when using these techniques for
segmenting purposes, as they require a stopping time to recover
shapes of interest. The simplest way to avoid this feature-dam-
aging effect is to rely on a given (image dependent) number of
iterations to stop the evolution ([10]–[23], [29]). Another solu-
tion ([3]–[18]) is to add a new term, the close-to-data constraint
[25], that controls resemblance to the original data. A third op-
tion consists of including some previous knowledge about the
geometry of the shape to be smoothed [12], [28]. In any case,
the parameters ensuring nonconvergence to trivial states must
be determined for each particular image.

In this paper, we propose a novel geometric flow that penal-
izes irregularity in the curvature rather than its magnitude. To
this purpose, we develop a simple criterion to measure the de-
gree of local irregularity present in the curve, which is added as a
stopping factor in the mean curvature flow. The resulting evolu-
tion equation profits the smoothing effects of the mean curvature
flow to smooth those curve arcs that have a significant irregular
shape. We will refer to this geometric flow as regularized cur-
vature flow (RCF).

The first relevant property of RCF is that the evolution
converges to a smooth curve that keeps high resemblance to
the original noisy shape. This fact is one of the RCF main ad-
vantages over other geometric flows yielding nontrivial curves,
first because the RCF final state is smoother than the polygonal
shapes that [19] and [28] produce and, second, because RCF
formulation is simpler and faster than the fourth-order [18]
or level-sets decomposition techniques [4], [20]. Another sig-
nificant improvement is that RCF parameters are independent
of the geometry of the initial curve to which our method is
applied. In this fashion, the image operator, obtained through
the level-sets formulation [22], is suitable for shape recovery in
nonuser intervention applications. Furthermore, RCF smooth
evolution makes the iterative scheme used in its implementation
to stop by means of standard numeric stop criteria [6], [24],
[27]. This also constitutes an advantage over most PDE-based
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techniques that either present an irregular evolution speed
[19], [28] or rapidly converge to constant images [10], [23],
[29]. Consequently, in practice, they must rely on a given
image-dependent number of iterations to stop the evolution;
meanwhile RCF admits equal stop parameters for any image.
We take special care in studying the error made in RCF numeric
implementation and the way this error affects the values of the
parameters that rule RCF stabilization. Indeed, we propose a
new way of setting parametric values in terms of the maximum
accuracy in the implementation.

An extensive comparison to other PDE-based techniques is
carried out in the experimental sections based on four main
principles: image quality, convergence to nontrivial images, au-
tomatic stabilization of the iterative process, and robustness.
The former novel protocol of performance assessment points
that RCF and the geometric flows [19], [28] achieve a better
compromise between quality of the restored image and stabi-
lization of the iterative process than diffusion-like techniques.
However, experiments on real images select RCF as the better
posed for nonuser-gated procedures. An application to segmen-
tation of ultrasonic medical images [9] proves RCF usefulness
in real problems.

This paper covers the following items. An accurate descrip-
tion of the filtering technique is given in Section II, formulation
of the roughness measure in Section II-A, as well as evolution
equations and properties of RCF in Section II-B. Numerical
issues concerning RCF level-sets approximation, evolution
stabilization, and choice of RCF parameters are handled in
Section III-A. Next, experimental results are presented, tests
are done on synthetic images with added noise in Section IV,
and real-image filtering with an application to medical image
segmentation is discussed in Section V. Finally, conclusions are
exposed in Section VI.

II. SELECTIVE CURVATURE FLOW

Let us begin with introducing a roughness function that mea-
sures the degree of noise of a plane curve.

A. Definition of a Local Measure of Shape Irregularity

A plane curve is determined (up to rotations and translations)
by the angular orientation of its unit tangent. Therefore, a
reasonable approach for a stopping motion term is to consider
a measure of smoothness. It should be clear that lack of
differentiability in the angle corresponds to the variability of
the normal unit vector around each point. We argue that this
rate of variability can be computed by means of the projection
of onto a robust mean of in a neighborhood of each point.
That is, it suffices to compare to a smooth approximation
of the vector. At regular/differential arcs, the former vectors
should agree; meanwhile, in the presence of noise/irregularity,
they will significantly differ (as the irregular shape of Fig. 1
illustrates).

We will make use of the structure tensor, [13], computed
over the unit normal in order to obtain the vector . We re-
call the reader that, given a regularization scale , the structure
tensor is defined as the convolution of the projection matrices

Fig. 1. Measure of shape irregularity.

onto with a Gaussian of variance
and zero mean

We assert that the eigenvector of of maximum eigenvalue
suits our purposes. We define in terms of
the coefficients of as

(1)

The square norm of the vector product is the measure of
curve irregularity we propose

(2)

We will refer to the function as roughness measure. Let us
intuitively explain why the function conforms to the idea of a
curve irregularity measure. The statement follows easily if one
realizes that the function is, in fact, equal to

That is, the factors of the quotient are the solutions to the
heat equation at time with initial conditions
and . The function compares, in a particular way,
these quantities to the original functions and .
Therefore, it is rather sensible to expect that those functions
that cancel will be smooth. For a rigorous mathematical
justification, we remit the reader to [7].

1) Properties of the Roughness Measure: These are the
properties that make suitable to our purposes.

1) Locally, it measures the degree of symmetry around each
point; in particular, it cancels on arcs of circles. This prop-
erty makes our RCF stabilize finite unions of arcs of cir-
cles and straight lines.
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2) Those curves that cancel are curves, i.e., they are in-
finitely smooth. This is convenient for a latter image pro-
cessing procedure, since it ensures that higher order oper-
ators applied to the image level curves will be accurate.

The above considerations turn our roughness measure into
the perfect candidate for a stopping evolution term in a mean
curvature flow motion.

B. Formulation of the Selective Curvature Flow

The regularized geometric heat equation we suggest is the
geometric flow defined as

(3)

where the function is given by formula (2) and denotes
the curvature. The numeric implementation through level-sets
formulation [26] is detailed in Section III-A.

1) Properties of RCF: Let us enumerate those properties of
RCF that ensure shape simplification and convergence to non-
trivial steady curves.

1) No new inflexion points (i.e., zeros of the curvature) are
created.

2) The total Gaussian curvature
decreases over the orbits of (3).

These two properties guarantee that the evolution under
RCF will simplify shapes. Their geometric interpretation
is that the curve oscillation, i.e., its total variation, reduces
in time. This fact ensures that, given an initial curve ,
its evolution will neither become more irregular (property
1), nor stretch (property 2); its only possible evolution is
a progressive reduction of oscillations. This does not con-
stitute a great novelty, since RCF shares this behavior with
the other geometric flows [10], [15], [19], [28]. The differ-
ential feature that makes RCF more suitable for shape re-
construction purposes is its different asymptotic behavior,
which is described by means of the following properties.

3) Whatever initial shape, its evolution under RCF con-
verges, in time, to the steady states of (3) given by

.
First, notice that the above statement is not a triviality

since the limit set of an orbit could, perfectly, be a peri-
odic orbit. The existence of Lyapunov functionals for RCF
(i.e., functions that decrease along the orbits) excludes this
possibility. Second, observe that the former property guar-
antees that the numeric iterative implementation admits
a stop criterion in terms of the magnitude of the speed

.
This final state will never be a single round point, like

in the evolution by mean curvature flow [10], [11]. This
follows from the fact that the roughness measure cancels
on circles, which prevents the evolution from collapsing
to a point.

4) Steady states of (3) are simple closed curves.
Finally, we have that the amount of shape irregularity,

according to our roughness measure, of the final state of
(3) is smaller than the one of the initial curve. In fact, the
following can be shown ([8]).

5) The roughness measure tends to zero over the solutions
to (3).

Therefore, by virtue of the second property of , solu-
tions to RCF tend asymptotically to a curve, which is
the fixed point of (3) given by . Indeed, we have em-
pirically checked that evolution under RCF converges to a
smooth curve that conserves features significant enough to
identify the original noisy shape. This already constitutes
an advantage over other PDE-based techniques. First, it
ensures a higher order smoothness of final curves than the
polygonal shapes yielded by [19], [28]. Second, the value
of RCF-unique parameter is set according to the de-
sired degree of differentiability. Differentiability is a prop-
erty which is not linked to either resemblance to the orig-
inal image/shape [3], [18], [25], geometry of its level sets
[28], or level of detail [4], [20]. It follows that with a fixed
set of parametric values, RCF converges, by its own de-
sign, to smooth curves resembling the original ones. Fi-
nally, 5) provides the technique with a natural stop crite-
rion in terms of the magnitude of the roughness measure.

III. NUMERICAL ISSUES

A. Level-Sets Approximation

The level-sets implicit formulation of RCF is given by

The exact implementation would imply, for each image
pixel, tracking its level curve in order to perform the con-
volution with a one-dimensional Gaussian kernel along the
level line. Since this is computationally unfeasible, we pro-
pose an approximate algorithm, which consists of computing
the roughness measure using a gaussian in two variables

. That is, the struc-
ture tensor is computed by means of the formula

Notice that in the discrete implementation, the above integral is
computed over a window centered at each image pixel of size

.
Let denote the target curve and the distance from an

image pixel to . Then, the relation between and
the true structure tensor, , computed along is given by

(4)

where stands for the curvature of and for the flow
lines curvature. It follows that the error made is bounded by

Error

(5)
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Fig. 2. Normal vectors in a tubular neighborhood.

We remit the reader to the Appendix for the mathematical ar-
gumentation that leads to the above formula. Let us analyze the
meaning of each of the terms involved in (5) and the way the
error affects in the numeric implementation of RCF.

Two are the main sources of error in (5). The term ,
proportional to the rate of variation of the unit normal to
along the flow lines, comes from the initial embedding func-
tion. First notice that, in the particular ideal case of the signed
distance map, this term cancels. This follows because distance
maps are, locally, the embedding of a tubular neighborhood of

. Hence, normal vectors to the level curves in a band around
are constant in the gradient direction, as the drawing of Fig. 2

shows. Also notice that for images with uniform areas bounded
by edges, is nearly negligible because border curves cor-
respond to inflexion points in the image gradient direction and,
hence, . Only images with regular-level curves on a
textured or noisy background may evolve in a way such that
the motion of level curves differs from RCF due to an arbi-
trary huge . In the first stages of the evolution, the rough-
ness measure could cancel on the regular curve, but not in the
noisy neighborhood. However, as the image evolves, since back-
ground variation decreases, asymptotically decreases to
a small positive value and the evolution tends to agree to that
of the ideal signed distance map. We observe that some cur-
vature-based techniques successfully used in image processing
(such as the image average-based min/max flow [19]) present a
similar pathology. Moreover, our numerical experiments show
that the dependency upon the initial embedding function does
not significantly affect the final shapes achieved with RCF.

The first summand in (5) measures the error made
in using the image cartesian coordinates , instead of the
tubular coordinates given by the curve parameter , and the pa-
rameter , of the normal line (Fig. 3). Because it cor-
responds to the term of formula (4), it
vanishes when the curve is symmetric around the point. It fol-
lows that for finite unions of circles and straight lines, the only
source of error is the one introduced by the embedding func-
tion. For other curves, first notice that is bounded by the
total gaussian curvature of the target curve , then notice that,
in the case of a positive , RCF level-sets formulation agrees
with the mean curvature flow. Curves evolving under the mean
curvature flow [10], [11] converge to a circle of radius, namely

, and then collapse to a point. Furthermore, their total gaussian
curvature, before reaching the limit circle, is a decreasing func-
tion of time. The latter implies that only blows when a

Fig. 3. Tube parameter domain.

level curve collapses (which happens a finite number of times)
and keeps bounded for the remains of the evolution

The former analysis of the level-sets formulation of RCF points
out the following. Evolution of distance maps perfectly matches
the curve formulation of RCF in the sense that all properties
given in Section II are preserved and, hence, stabilization can
be detected by means of the magnitude of . In the general case,
the roughness measure does not tend to zero, but to the positive
value that depends on the initial embedding image. The length
of the time intervals where the former behavior holds hinges
upon the level-sets topology. This numerical error introduced
in the computation of RCF difficulties using an evolution stop
criterion in terms of the magnitude of and motivates searching
for an alternate.

B. Establishing a Stopping Criterion

In practical applications, stopping the iterative smoothing can
be as important as the quality of the restored image. Even if
there are not any image-dependent parameters in the continuous
formulation, the numeric algorithm may fail to stop without
manual intervention. Stabilization achieved using standard nu-
meric techniques ([6], [27]) ensures that the parameters involved
in the stopping stage do not depend upon the particular image
restoration. Given a generic iterative scheme

speed

two different stop criteria can be defined to detect its steady
state, as follows.

1) Criterion A (critA): Minimum speed value criterion. Max-
imum difference between two consecutive images
should be under a given threshold , that is

We note to the reader that this criterion only holds when
the error in the numeric implementation is negligible. By
the considerations of the section III-A, RCF supports this
criterion in the case of evolving the signed distance map
and, to some extent, low noisy binary images. When nu-
merical errors are difficult to estimate a priori, a more sen-
sible criterion is criterion B.

2) Criterion B (critB): Constant speed value criterion. The
iterative process should stop when the magnitude of the
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speed stabilizes. We consider a magnitude stable in a time
when its derivative is under a given threshold, , in a time
interval of a given length . That is, we stop the evolution
at the time such that speed speed for

. In the discrete version, the length con-
verts to a given number of iteration steps, it, via the formula

This criterion is frequently used in iterative schemes prone to
oscillate around the equilibrium state, such as snakes [5] or min-
imizing processes. In the particular case of energy minimization
or zero finding, the former stop criteria are also applied to the
functional value on the current iteration.

For diffusion processes ([23], [29]), the value speed is the di-
vergence term of the PDE we are integrating, for the geometric
flows [10], [19], [28] it is the curvature term. For RCF, because
the evolution seeks a zero of , we will apply the stopping cri-
teria to the roughness measure. Maximums will be taken over
the whole image in the case of diffusion filtering and over a
target curve (representative of the image features) in the case
of curvature dependent methods.

C. RCF Best Parametric Values

Parameters involved in any numeric implementation can be
split into the ones that are inherent to the method implemented
and those concerning the numeric algorithm. In the case of RCF,
these two sets reduce to the following.

1) RCF Parameters:
This parameter controls smoothness of the final curves

and, by virtue of (5), it also influences in the error made
in RCF implicit approximation. This fact limits, for the
sake of error minimization, the magnitude of to values
less or equal to 1. Indeed, we always use in our
experiments.

2) Numeric Parameters
a) Stop Parameters:

The value of determines the maximum amplitude of
the roughness measure oscillations. Because decreases
smoothly on the orbits of RCF, can be arbitrarily small

.
In (real) images presenting a rich level-set topology, the

length of the time interval influences on the level of de-
tail of the longest level curves (we remit the reader to Sec-
tion V-A for examples on the impact of this parameter).
Because these curves are usually descriptive of image fea-
tures, we recommend using .

Experiments in Sections IV and V show that the set
guarantees noise removal and ge-

ometry preservation.
b) Gray-Level of Target Curve: Since geometric

flows are designed for curves rather than for images,
the proper way to apply them to image denoising is
through a level-set decomposition ([4], [20]). Because
such decomposition adds an extra computational cost, we
suggest filtering the image itself and computing any stop
quantity over a curve describing the image features. The
latter can be either a curve of a (manually chosen) gray

level or image edges. In this manner, stopping quantities
are smoother in time (see Section V) so that standard
stabilization criteria work fine.

IV. EXPERIMENT I: COMPARISON TO

OTHER FILTERING TECHNIQUES

The methods tested are the Perona–Malik model (PMM) [23],
the anisotropic diffusion (AD) method [29], the mean curvature
flow (MCF) [10], the min–max flow (MMF) [19], and the sto-
chastic geometric flow (STF) [28]. The time step in the Euler
scheme chosen is for diffusion processes and

for curvature flows.

A. Methodology of Comparison

We consider that assessment of performance should take into
account quality of the restored image as well as the criterion
used to decide when the method has reached its best restoration.
Quality of the restorations will be measured with the standard
quantities, as follows.

1) Signal-to-noise ratio (SNR):

where denotes the original image and denotes the
evolution of the noisy image. The higher it is, the more
quality the restored image has.

2) Contrast-to-noise ratio (CTN): This quantity measures the
edge preserving rate of the method. It is defined as the
ratio between the difference of means in the interior
and exterior of the object of interest and the vari-
ance in the exterior of the object of interest

The issues followed to select the best performer are
1) contrast preserving capabilities and overall quality in

image restorations;
2) convergence to nontrivial steady states;
3) smooth convergence and stabilization of the iterative

process;
4) robustness to high noise and the embedding image.
We have chosen a nonconvex M-shape and a circle corrupted

with a 50% of uniform noise and a gaussian noise of .
Any shape reconstructions are obtained applying a threshold of
value 0.5 to the filtered images.

B. Step 1: Best Restorations

Fig. 4 displays results for the M-shape and Fig. 5 for the
circle. The best performances (second columns for uniform
noise and third for gaussian one) correspond to the images
achieving the best SNR. The number of iterations necessary to
reach these images is displayed underneath. Shapes recovered
(first columns), correspond to uniform noise, for the M-shape,
and Gaussian noise, for the circle.

The visual quality of the restored images (Figs. 4 and 5) is
similar for all methods. Background artifacts in some images fil-
tered with RCF are common to all geometric flows. Geometric
flows are designed to smooth curves rather than images, there-
fore they are always prone to produce funny patterns in noisy
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Fig. 4. M-shape best reconstructions.

backgrounds. This is not a main inconvenience if the aim of the
filtering procedure is to restore a shape, which is the natural ap-

Fig. 5. Circle best reconstructions.

plication of geometric flows. In fact, all reconstructed shapes
have similar quality, matching the original templates. In the case
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Fig. 6. M-shape quality numbers graphics.

Fig. 7. Circle quality numbers graphics.

Fig. 8. Asymptotic behavior in terms of SNR. (a) Uniform noisy M-shape and (b) gaussian noisy circle.

of STF the circle hexagonal-like appearance could be improved
by increasing the number of vertices of the final STF state.

We note that the number of iterations needed to achieve op-
timal restorations varies with noise.

C. Step 2: Asymptotic Behavior

Evolution of quality measurements in time (Figs. 6–8) reflects
convergence to nontrivial steady states, as well as a resemblance
between original and evolved images. Final states after 3000
time units are overimpressed on the graphics of Fig. 8.

Plots corresponding to techniques that converge to nontrivial
steady states (RCF, MMF, and, to some extent, STF) asymp-
totically tend to a positive number (the final image SNR/CTN
value). Meanwhile, graphics of methods yielding trivial images
(AD, PMM, and MCF) present a maximum and then tend to zero
at a rate related to the speed of convergence.

Diffusion processes (AD and PMM) fail to maintain quality
numbers, especially for CTN values [Figs. 6 and 7(b) and (c)].
The decay is more significant if the measure noise increases
and is more prominent in the case of gaussian noise. Geometric
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Fig. 9. Speed graphics for Gaussian noise on the M-shape.

Fig. 10. Criterion A. (a) AD, (b) MMF, (c) STF, and (d) RCF.

flows are more robust against the nature of noise and are more
sensitive to the geometry of the underlying shape [see CTN
graphics in Figs. 6(b) and (c) and 7]. As expected, MCF is, by no
means, the worst performer, especially when nonconvex shapes
are evolved [Figs. 6 and 8(a)]. Among all techniques, RCF and
MMF graphics are the only ones that match, for all cases, the
model of a nontrivial steady state. Final images in Fig. 8 reflect
quality numbers stability.

Because Step 2 discards MCF and PMM, Step 3 will only be
applied to AD, MMF, STF, and RCF.

Fig. 11. Criterion B. (a) AD, (b) MMF, (c) STF, and (d) RCF.

D. Step 3: Evolution Stabilization

The stopping parameters are for critA and
for critB. We will keep the former stopping

values for the remains of the paper. In order to produce an ex-
periment as balanced as possible, we have tried the criteria on
the gaussian noisy M-shape and the uniform noisy circle.

Figs. 9 and 12 plot evolution speeds and RCF roughness mea-
sure versus time in the case of Gaussian and uniform noise, re-
spectively. Images stabilized using critA are shown in Figs. 10,
13, and those achieved with critB in Figs. 11 and 14.
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Fig. 12. Speed graphics for uniform noise on the circle.

Fig. 13. Criterion A. (a) AD, (b) MMF, (c) STF, and (d) RCF.

Standard numeric stabilization techniques ([6], [27]) need ei-
ther an accurate implementation (CritA) or a smooth process
(CritB). Speed graphics assess their applicability. If they asymp-
totically converge to zero, both criteria are valid, CritA is still
applicable if plots just tend to zero, while CritB is satisfied for
speeds asymptotically converging to a (positive) value. It fol-
lows that oscillating or irregular speeds difficult stopping the
iterative process.

Both AD and MMF speeds [Figs. 9 and 12(a) and (b), re-
spectively] are of an oscillating nature and present a signifi-

Fig. 14. Criterion B. (a) AD, (b) MMF, (c) STF, and (d) RCF.

cant lack of smoothness (especially in the case of MMF). This
makes critB fail to stabilize the evolution in most cases. Images
in Figs. 11 and 14(a) correspond to AD final state and Fig. 11(b)
to MMF final state for the gaussian case. Only in the case of
uniform noise MMF stabilized using critB [Fig. 12(b)]. Reg-
ularity of STF speed [Figs. 9 and 12(c)] is just on the edge of
critB applicability, so that a large time interval fails to stabilize
the evolution. This is a main inconvenience because STF slow
noise removal rate makes critB yield images that may not be
completely clean [Fig. 11(c)]. On the other side, RCF roughness
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Fig. 15. Highly noisy M-shape. First row: Gaussian. Second: uniform.

measure [Figs. 9 and 12(d)] presents a smooth enough asymp-
totic behavior as to apply critB without strict restrictions. Be-
sides, since RCF is a good noise remover, images in Figs. 11
and 14(d) are close to the ones getting best quality numbers in
Figs. 4 and 5.

For all methods, roundoff errors in combination with the
method behavior difficult success of critA. In the case of AD,
rapid convergence to a constant image makes critA stop the
evolution at too blurred images [Fig. 10(a)]. For MMF, critA
reveals to be efficient to stabilize images [Figs. 10 and 13(b)],
although they may be far from final states because of evolution
irregularity. Images obtained with STF present similar anoma-
lies than those achieved with critB. The compromise between
noise removal and shape preservation may not be achieved
with a fixed . It follows that the M-shape image [Fig. 10(c)]
still presents background noise, while the circle of the clear
image in Fig. 13(c) starts differing from the theoretical final
hexagon that, according to [28], should be the one of maximum
size inside the circle. Finally, numeric errors induced by the
embedding image may overerode shapes smoothed with RCF
[Figs. 10 and 13(d)].

For assessment of quality of the restored shapes in the case
of highly noisy images, we will use critA for MMF, STF, and
critB for RCF.

E. Step 4: Robustness

In order to assess robustness, we have corrupted the M-shape
with a Gaussian noise of parameters [Fig. 15(a)]
and a 70% of uniform noise [Fig. 15(e)]. We have chosen a
gaussian noise of positive mean in order to determine the depen-
dence of each of the methods on the gray-level, , defining the
curve of interest. We recall that this value is inherent to MMF
formulation, as it switches between evolution by negative and
positive curvature, while RCF only uses the parameter in its nu-
meric implementation.

Images filtered are in Fig. 15 and the model of shapes re-
stored in Fig. 16. Images filtered with RCF [Fig. 15(d) and
(h)] are prone to present more background artifacts than those
that MMF yielded [Fig. 15(b) and (f)]. However, reconstructed
shapes [Fig. 16(d) and (h)] are more accurate and smoother for
RCF filtered images. Shapes obtained with MMF [Fig. 15(b)

Fig. 16. Shapes for high noise. First row: Gaussian. Second: uniform.

and (f)] still present irregularities and those obtained with STF
may hardly resemble the original ones because of an insufficient
noise removed.

The higher irregularity in MMF reconstructions for Gaussian
noise reflects its undesirable dependency on the gray-level .
In the case of RCF, dependency reduces, in the worst case, into
an over erosion of the target shape.

We conclude that not only is our method the one achieving the
best compromise between quality of restored image and evolu-
tion stabilization, but also the best suited for a nonuser interven-
tion application.

V. EXPERIMENT II: APPLICATION TO IMAGE

FILTERING AND SHAPE RECOVERY

This part is devoted to results on real images obtained with
RCF and the geometric flows MMF and STF. On one hand, ex-
periments should serve to clarify some of RCF numerical as-
pects (stopping parameters and speed over target curves). On
the other hand they should show those cases where RCF has ad-
vantages over MMF and STF. The following set of real images
has been tested.

A. Faces and Real Objects

The portrait of Marilyn [Fig. 7(a)] will serve to illustrate
the role of in RCF numeric scheme. We run RCF with

and . Fig. 17 displays the Mar-
ilyn’s gray-level images (first row) and the target level curve
(second row). Images stabilized with the shortest time intervals
[Fig. 17(b) and (c)] keep the most descriptive facial features
(eyes, mouth, and nose), while spurious details in the hair
have been removed [see curves in Fig. 17(f) and (g)]. Besides,
although the smoothest Marilyn image [Fig. 17(d)] may seem
rather eroded, the essential facial features are still identified in
the target curve [Fig. 17(h)].

We have chosen the buildings of Fig. 18(a) and (e) for our first
comparison between RCF, MMF, and STF. Because of their dif-
ferent geometric designs, they will illustrate capability of each
of the methods to retain shape models in practical applications.
The stop criteria are critA with for MMF and STF
and critB with for RCF over image edges.
The squared shaped arch of Fig. 18(a) is perfectly kept by MMF
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Fig. 17. Stop parameters impact on RCF filtering of Marilyn. Gray-level images are in the first row and the descriptive level set is in the second row.

Fig. 18. Buildings filtering.

[Fig. 18(d)] and, though a bit rounder, by RCF [Fig. 18(b)]. Al-
though we used the same parameters than in [28], rectangles
have almost disappeared in the STF image [Fig. 18(c)]. In the

case of Fig. 18(e), the oval arch appears nicely in images filtered
with RCF [Fig. 18(f)] and MMF [Fig. 18(h)], while the building
filtered with STF [Fig. 18(g)] only keeps a squared-shaped ver-
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Fig. 19. (First row) Speeds on whole image and (second row) image edges for (a), (d) RCF; (b), (e) STF; and (c), (f) MMF.

sion of the biggest ones. Because a threshold on image gradient
guides MMF filtering, the (irrelevant) lights appear as bright
spots in Fig. 18(h) and dark arch contrast (the ones at the bottom
of the building) has lowed down. Meanwhile, RCF succeeds in
yielding a smooth image keeping the essential geometric fea-
tures of the building.

Speed plots in Fig. 19 correspond to the building in Fig. 18(e).
Quantities have been computed on the whole image (first row)
and on image edges (second row). In all three geometric flows,
graphics for edges are smoother in time, which motivates using
the latter for evolution stabilization. We note that graphics re-
flect the error in RCF implementation (Section V): peaks in
Fig. 19(d) correspond to the error introduced by the collapsing
of a small image edge.

The second comparison on the car plate of Fig. 20(a) shows
the contrast preservation of geometric flows and RCF higher
efficiency for shape restoration. Curves in the second column
correspond to image canny edges. We argue that the filtering
should preserve image sharpness and regularity of the numbers
and letters borders [Fig. 20(b)], while superfluous details (small
letters at the plate bottom and stamps) and noise that may mis-
lead a latter segmentation process should be removed. First, no-
tice that all three geometric flows stabilize images [Fig. 20(c),
(e), and (f)] with contrast changes equal to the original. Edges
[Fig. 20(d)] of the RCF final image yield plate numbers that,
though a bit smoother, perfectly match the original ones. Mean-
while, edges extracted from images stabilized with MMF and
STF [Fig. 20(f) and (h)] are over smoothed and the geometry

Fig. 20. Filtering of plate. (a), (b) Original. (c), (d) RCF. (e), (f) MMF.
(g), (h) STF.

(and even topology) of the resulting numbers is significantly
different.
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Fig. 21. Cross sections of IVUS sequences. (a) Original IVUS images and
(b) segmenting curve. Steady-state attained with (c) RCF and (d) the resulting
segmenting curve).

Fig. 22. (a) Longitudinal cut of IVUS. (b) Shape segmenting blood and tissue.
(c) The original cut and the smoothed shape with RCF.

B. Application to Medical Images

We have applied our technique to segment the luminal area in
intravascular ultrasound sequences (IVUS) [9]. Since the grey
level of ultrasound images expresses the material impedance,
black pixels correspond to blood and white ones to tissue. The
aim was to obtain a model of the artery reflecting its geometry by
means of a procedure requiring the minimal manual intervention
as possible.

Fig. 21(a) shows a cross section of an IVUS sequence and
Fig. 21(b) the level curve that separates blood from tissue. The
inner border corresponds to the curve segmenting blood and
tissue. The image achieved by RCF is displayed in Fig. 21(c)
and the corresponding segmenting curve in Fig. 21(d). Notice
the way the RCF-smoothed curve captures the characteristic fea-
tures of the curve in Fig. 21(b), such as the small oval in its
inner border. Fig. 22 shows a longitudinal section [Fig. 22(a)]
and the binary image [Fig. 22(b)] that represents the segmenting
curve. The wavy shape, characteristic of IVUS longitudinal cuts,
reflects cardiac motion and is of clinical interest; meanwhile,
small irregularities are caused by blood turbulence. The model
recovered by RCF is a smooth shape [Fig. 22(c)] that keeps the
same number of undulations than the original cut.

VI. CONCLUSION

This paper introduces a new methodology in image filtering
for the design of an operator converging to nontrivial smooth
states. Rather than focusing on resemblance to the original
noisy image to ensure non triviality, we suggest defining a
stopping factor in terms of the regularity of the image level sets
and use standard numeric stop criteria to stabilize the iterative
smoothing. This leads to image operators with parametric
values independent from the particular image we handle.

Based on the limitations and advantages of current
anisotropic filtering techniques, we present a novel curvature
flow that adds a measure of shape irregularity (the roughness
measure) as a stopping factor to the mean curvature flow. The
technique is the shape smoothing equivalent to the Perona–
Malik diffusion in the sense that it inhibits any deformation
on arcs complying to a given degree of differentiability. This
selective shape smoothing makes our RCF enjoy from the reg-
ularization properties of the mean curvature flow but converge
to nontrivial steady states. Since the roughness measure cancels
on RCF final curves, the associated image operator admits a
stop criterion exclusively based on the image evolution.

Our analysis is based on a methodology of comparison de-
signed to assess quality of the restored image, stability in time
of the method quality measurements, and establishing an effi-
cient stop criterion for unsupervised procedures. Experimental
results show that RCF is the best performer in terms of image
quality and evolution stabilization. Results on real images illus-
trate RCF efficiency to restore smooth models of the image level
sets in real applications.

APPENDIX

ERROR IN RCF LEVEL SETS FORMULATION

Let us deduce the formula for the error in RCF level-sets for-
mulation given in Section III-A. We recall the reader that the
difference between the two-dimensional (2-D) structure tensor

and the exact value computed along the level line was given
in terms of the curve curvature and the curvature of the
image gradient integral curves by the formula

(6)

where is the size of the window used to compute 2-D convo-
lutions. For the sake of notational simplicity, the scale will
be dropped, the projection matrix onto a vector will be noted
by , and convolutions will be evaluated at the origin. In a
level-sets formulation, the parameterization of a curve is the im-
plicit one. Since this coordinate change is local, formula (6) only
holds for bounded domains of integration. We recall that this is
the case in the discrete numeric implementation, so that there
is no loss of generality in assuming that the coordinate is the
parameter and .

For each image point denoted by ,
the point achieving the distance from the image pixel to .
Notice that it coincides with the pixel projection onto along
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Fig. 23. (a) Tube parameterization versus implicit and (b) coordinate change.

the normal direction . The Taylor development of at
yields

(7)

Trigonometric arguments [see Fig. 23(b) for a graphical repre-
sentation] yield

Using the Taylor development of and , it
follows that:

Further, since , we conclude that
the change of coordinates is given by

This bounds the first summand of (7) as

(8)

Taking into account that in an implicit parameterization the
norm of the curve first derivative equals

, we have that the partial with respect to the arc
length is given by

Then, by the Frenet formulae, it follows that the first derivative
in (8) equals:

For the second term of (7), because corresponds to the unit
tangent of the flow lines, again the Frenet yields

(9)

where stands for the flow lines curvature. Blending together
(8) and (9), we conclude that the tensor computed with a 2-D
Gaussian kernel defined in a window of size equals

which proves the formula for the error because

provided that the angle of the unit tangent does not turn around
more than in a neighborhood of each point in the target curve,
so that we can ensure that is bounded by a constant .
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