
CVC Tech.Rep. #78 July, 2004

Generalized Active Shape Models Applied
to Cardiac Function Analysis

Jaume Garcia i Barnés

Computer Vision Center / Dept. Informatica (UAB)
Edifici O - Campus UAB

08193 Bellaterra (Barcelona)
jaumegb@cvc.uab.es

Advisor: Petia Radeva

Submitted to the Computer Vision Center
on July, 2004

Computer Vision Center, 2004



1



Contents

1 Objective of the present Work 5

2 Heart Structure and Physiology 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Ventricular Band Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Ventricular Band Electromechanical Activation . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Cardiovascular Diseases: A Modern Epidemic 8
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Cardiovascular Risk Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Cardiovascular Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Myocardial Ischemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.2 Myocardial Infarction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.3 Heart Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Medical Imaging Technology Overview 11
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Ionizing vs Non-ionizing Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Tomography vs Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Image Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.4.1 Coronary Angiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4.2 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4.3 Nuclear Medicine: PET and SPECT . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4.4 Ultrasound Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4.5 Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Developed Projects in Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.6.1 Contrast Echocardiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6.2 SPAMM Tagged MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Medical Imaging Analysis 17
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Active Contour Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Deformable Models in Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Shortcomings of Deformable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Incorporating A Priori Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Generalized Active Shape Models (GASM) 21
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Point Distribution Models (PDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2.1 Aligning the Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.2 Modelling Shape Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3 Active Shape Models (ASM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Extending ASM: GASM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



7 GASM Applied to Contrast Echocardiography Segmentation 27
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Analyzing Image Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Prediction Step Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Regularization Step Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.6 GASM Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 GASM Applied to Tagged MRI 34
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 SPAMM Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 SPAMM Tagged MRI Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.4 HARP: Frequency Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.5 Motion Tracking Using HARP Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.6 GASM applied to Tagged MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.6.1 Prediction Step Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.6.2 Regularization Step Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.7 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.8 GASM Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.9 A Simple Clinical Application: Myocardium Rotation. . . . . . . . . . . . . . . . . . . . . 42
8.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Results 44
9.1 On Contrast Echocardiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.2 On SPAMM Tagged MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.2.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.2.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Conclusions 52

11 Future Work 53

3



Generalized Active Shape Models Applied to Cardiac Function
Analysis

by
Jaume Garcia i Barnés

Abstract

Medical imaging is very useful in the assessment and treatment of many diseases. To deal with the
great amount of data provided by imaging scanners and extract quantitative information that physicians
can interpret, many analysis algorithms have been developed. Any process of analysis always consists
of a first step of segmenting some particular structure. In medical imaging, structures are not always
well defined and suffer from noise artifacts thus, ordinary segmentation methods are not well suited.
The ones that seem to give better results are those based on deformable models. Nevertheless, despite
their capability of mixing image features together with smoothness constraints that may compensate
for image irregularities, these are naturally local methods, i. e., each node of the active contour evolve
taking into account information about its neighbors and some other weak constraints about flexibility and
smoothness, but not about the global shape that they should find. Due to the fact that structures to be
segmented are the same for all cases but with some inter and intra-patient variation, the incorporation of
a priori knowledge about shape in the segmentation method will provide robustness to it. Active Shape
Models is an algorithm based on the creation of a shape model called Point Distribution Model. It
performs a segmentation using only shapes similar than those previously learned from a training set that
capture most of the variation presented by the structure. This algorithm works by updating shape nodes
along a normal segment which often can be too restrictive. For this reason we propose a generalization of
this algorithm that we call Generalized Active Shape Models and fully integrates the a priori knowledge
given by the Point Distribution Model with deformable models or any other appropriate segmentation
method. Two different applications to cardiac imaging of this generalized method are developed and
promising results are shown.

Keywords: Cardiac Analysis, Deformable Models, Active Contour Models, Active Shape Models,
Tagged MRI, HARP, Contrast Echocardiography.
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1 Objective of the present Work
The aim of this work is to provide a general segmentation framework that allows to incorporate a priori
knowledge to any well suited segmentation method thus improving its result, and which can be used
in many medical applications and, in particular, for cardiac imaging analysis. We also deepen into the
origins that motivate this analysis which is heart structure and physiology, diseases by which can be
affected and image modalities that allow their assessment. In this work, each section is motivated by
the previous one thus, they are distributed following a precise order.

• In section 2, we depict the heart structure and its physiology. In addition, we introduce the novel
ventricular band theory that could explain myocardium function which has not been completely
understood yet.

• In section 3, we list different diseases that can affect heart function and the risky factors that
may cause them.

• In section 4, we enumerate the different imaging techniques that have been developed to analyze
not only heart function and structure, but also any organ or tissue in the body. We depict their
characteristics and drawbacks and finally we introduce the medical imaging projects in which we
have been working on.

• In section 5, we motivate the use of automatic analysis tools that allow to extract information
from the great amount of data provided by scan devices exposed in the previous section and we
overview some segmentation methods based on deformable models.

• In section 6, we introduce the concept of Point Distribution Model, that allow to create compact
models that represent the mean shape and the variation modes of a target structure. We also
introduce the Active Shape Model algorithm that allow segmentation including a priori knowledge
about shape. We depict its limitations and propose a general framework for image segmentation
that we call Generalized Active Shape Models (GASM).

• In section 7, we apply our framework GASM to segment the myocardial structure in Contrast
Echocardiography imaging.

• In section 8, we present a novel imaging technique, SPAMM tagged MRI, that allow the visu-
alization of the trajectories that myocardium points follow due to heart beat. We overview some
techniques used to analyze them and we deepen into HARP method which, in addition, will be
used in our GASM to segment myocardium structure. Finally we present a simple and direct
application extracted from data returned by the method, namely the rotation of different sectors
of the myocardium. This can be used to characterize heart pathologies.

• In section 9, we present results of GASM performance in both Contrast Ecocardiography and
SPAMM tagged MRI.

• In section 10, we expose the conclusions extracted from the whole work.

• In section 11, we finally enumerate the tasks that we did not have enough time to perform, and
possible improvements.

2 Heart Structure and Physiology

2.1 Introduction
The heart is a strong muscular organ of the circulatory system, that constantly pumps blood throughout
the body to deliver oxygen to the cells and which is able to contract and relax rhythmically throughout
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a person’s lifetime. The heart is located in the chest between the lungs, behind the sternum and above
the diaphragm. It is surrounded by the pericardium, a fluid filled sac that surrounds the heart and the
proximal ends of the aorta, vena cava and the pulmonary artery. Heart size of an adult person is about
that of a fist, and its weight is about 250-300 g.

The heart consists of four chambers, four valves and various vessels bringing blood to and carrying
it away from the heart by veins and arteries. The upper chambers are called the left and right atria,
and the lower chambers are called the left and right ventricles (LV, RV). A wall of muscle called the
septum separates the left and right atria and the left and right ventricles (Figure 1.a). The atria act
as reservoirs for venous blood, with a small pumping action to assist ventricular filling. In contrast, the
ventricles are the major pumping chambers for delivering blood to the pulmonary (right ventricle) and
systemic (left ventricle) circulations (Figure 1.b). The LV is the largest and strongest chamber in the
heart and does the majority of the work. The LV chamber walls are only about a half- inch thick, but
they have enough force to push blood through the aortic valve and to the whole body, [36]. Four valves
ensure that blood flows only one way, from atria to ventricle (tricuspid and mitral valves), and then to
the arterial circulations (pulmonary and aortic valves).

Figure 1: a) Gross anatomy of the heart. b) Heart physiology.

2.2 Ventricular Band Anatomy

Heart’s cardiac cycle is composed of two basic functions, the contraction of the cardiac muscle (my-
ocardium), systole and its relaxation, diastole. Nevertheless, how myocardium exactly works has not
been completely well understood yet. Recent studies using advanced imaging techniques (such Spamm
tagged MRI, which will discuss and analyze in further sections), have shown the complexity of its
movement. Opposite extremes of the heart (top: base, bottom: apex ), for instance, rotate in inverse
directions, which was not obvious before these studies. This complex movement could be explained by
the revolutionary theory of the ventricular band anatomy presented by Dr. Torrent-Guasp ([37], [38],
[39], [40]). His dissection studies have lead to a description of the architecture of the LV and RV as the
result of wrapping a unique muscular band that goes from the pulmonary artery to the aorta, applying
to it a 180o torsion in its central part and joining the extremes (Figure 2.a).

Thus, LV and RV are the natural structures that appear as the consequence of this wrapping. This
band is divided in four parts namely, right ventricular segment (RVS), left ventricular segment (LVS),
descendent segment (DS) and ascendent segment(AS). The twirling of LVS and RVS, known as basal
bow, delimits the external contour of the left and right cavities. The crossing of AS and DS, forms the
interventricular septum. Figure 2.b depicts the distribution complexity of these segments.
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a)

b)

Figure 2: a) Unwrapping process of the ventricular band. b) Spatial distribution of the different segments.
Colored parts have been obtained by unwrapping a dissected heart, painting the segments and wrapping
it again.

2.3 Ventricular Band Electromechanical Activation
It is known ([42], [41]) that electromechanical propagation along the myocardium is anisotropic and
it mainly follows the same trajectories as the myocardial fibers. These, once the ventricular band is
unwrapped, are appreciated to follow the band from one extreme to the other. This leads to the
following myocardial activation sequence:

1st RVS: Its activation pulse produces the basal bow to contract.

2nd LVS: Its activation forms an external cylinder.

3rd DS: Its activation stretches the basal bow in direction to the appex (the ending corner of the heart)
thus reducing the ventricular capacity in the longitudinal direction. The consequence of this is the
ventricular ejection.

4th AS: Its activation generates a rapid ascendent displacement of the base. Recent observations have
suggested that this may produce the necessary suction forces that fill the ventricles.

According to the existence of such ventricular band, it is thus reasonable to attribute myocardial
complex movement to the electromechanical activation of the the different segments that compound the
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band. However, how the contraction of a segment can turn to the elongation of the ventricles, still
remains unknown.

This novel theory about the ventricular band is still not accepted by the whole physician community,
thus many efforts are put in investigations that analyze myocardial function using the ultimate imaging
technology (Spamm tagged MRI) so that this theory can be proven.

3 Cardiovascular Diseases: A Modern Epidemic

3.1 Introduction

Nowadays and since last century, industrialized countries have been experiencing huge social and eco-
nomic transformations that have evoqued in radical changes in lifestyle. It is true that mortality has
decayed notoriously, nevertheless the causes by which people die have also changed. Leaving aside traffic
accidents and all types of cancer, cardiovascular diseases (CVD) have grown as the main death cause in
Occident. Parallely, and not by chance, food habits is one of the factors that have changed most.

Before 1900, almost anyone died of heart diseases. Was in 1920 in the UUEE, when the country
experienced its change from traditional lifestyle, that CVD started their incidency and currently, 80% of
mortality is attributed to CVD. By the 1930’s and 1940’s, the death rate in the UUEE from atheroscle-
rotic heart disease (AHD) was increasing at an alarming rate and it was reaching epidemical proportions.
AHD is a process by which the arteries that supply blood to the heart (Figure 3.b) get narrowed and
hardened due to fatty deposits made up of cholesterol. These deposits are called plaque. As shown in
Figure 3.a, this slowly narrows the flow of blood through the vessel, and the muscle it supplies will not
get enough blood and die.

The reasons for this epidemic were not completely clear. Some scientists were convinced that there
was a single cause of atherosclerosis but most researchers favored the theory that there had to be due to
multiple causes. After II World War, the first large-scale comprehensive study to determine the cause
of AHD took place. It was called the Framingham Heart Study. It enrolled 5209 local residents ranging
in age from 30 to 62 in study. Researchers began examining the participants every two years, and they
continued to do so. In the early 1970’s, 5135 adult offspring of the original participants joined the
study. The Farmingham investigators established that there are, indeed, many factors (cardiovascular
risk factors) that predispose an individual to the development of atherosclerosis.

Figure 3: a) Process of occlusion suffered from an artery due to AHD. b) Main branches of the coronary
tree that supply oxygen to the myocardium.

8



3.2 Cardiovascular Risk Factors

A cardiovascular risk factor (CVRF) is a condition that is associated with an increased risk of developing
cardiovascular disease. The concept of CVRF has evolved since the Farmingham Heart Study, and new
factors are periodically added to the list as our comprehension of the disease process grows and also as
the society evolves. Regard that there are, for instance, new drugs as cocaine, that were not consumed
before. CVRF can be divided in two groups: those that can be changed and those that cannot. As
instances of the first group we have:

• High Blood Pressure (hypertension): Blood pressure is the force in the arteries when the
heart beats (systolic pressure) and when the heart is at rest (diastolic pressure). It is measured in
millimeters of mercury (mm Hg). High blood pressure (or hypertension) is defined in an adult as
a blood pressure greater than or equal to 140 mm Hg systolic pressure or greater than or equal to
90 mm Hg diastolic pressure.

High blood pressure directly increases the risk of coronary heart disease (which leads to heart
attack and stroke), especially along with other risk factors.

High blood pressure can occur in children or adults, but it is more common among people over age
35.

• Dyslipemia: Elevated levels of serum lipids (dyslipemia and triglycerides) are extremely common.
Epidemiological studies have shown that the level of total cholesterol in the blood is a strong
predictor of the likelihood that an individual will develop coronary heart disease (CHD).

• Cigarette Smoking: It is the major contributor to CHD, stroke and peripheral vascular disease.
It has been estimated that 30% to 40% of deaths of CHD each year can be attributed to smoking.
Individuals who smoke, regardless of their level of other risk factors are at significant risk of
premature CHD and death. Smokers, for example, have less of a chance of surviving a heart attack
than nonsmokers.

• Obesity: Any level of overweight appears to increase CHD risk. Obesity can predispose the de-
velopment of other risk factors, and the greater the degree of overweight, the greater the likelihood
of developing other antecedents of atherosclerosis (such high blood pressure and diabetes) that
will increase the probability that heart disease will develop. It also appears how the weight is
distributed may be even more important than exactly how much a person weighs.

• Diabetes Mellitus and Insulin Resistance: Individuals with diabetes mellitus which occurs
in adult life, have an increased incidence of CHD and stroke. Many individuals whose diabetes
begins after age 40 or 50 (so-called adult-onset or Type II diabetes) often have higher than normal
levels of insulin, which is an hormone responsible for maintaining blood sugar at normal levels.
Some individuals do not respond as readily to insulin, and more is required. They have insulin
resistance. Elevated levels of insulin can raise blood pressure and assist in the deposition of and
reduce the removal of cholesterol from plaques in arteries.

• Cocaine: The use of cocaine has affects especially among the young adults poblation. Cocaine
constricts the coronary arteries decreasing their blood flow to the heart and thus, reducing its
oxygen supply. This can turn to abnormal heart rhythms, high blood pressure, cardiac crisis and
even death.

In the group of risks that cannot be changed:

• Age: The risk of cardiovascular events increase as we get older. In many epidemiologic surveys,
age remains one of the strongest predictors of disease. More than half of those who die of such
attacks are over age 65.
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• Gender: Men are more likely than women to develop CHD, stroke, and other cardiovascular
diseases that are manifestations of atherosclerosis. Whether this is because male hormones -
androgens- increase risk or because female hormones -estrogens- protect against atherosclerosis is
not well understood. It is likely that both play a role, but that protective role of estrogens is the
predominant factor.

• Inheritance: There is no question that some people have a significant grater likelihood of having
a heart attack or stroke because they have inherited a tendency from their parents. In some
instances, such as familial hypercholesterolemia (very high levels of cholesterol in the blood), the
patter of inheritance is well understood and the specific biochemical defects are well characterized.
For most cardiovascular risk factors, however, the specific way in which inheritance plays a role
is not clear. As in almost situations in medicine, both heredity and environment play a role.
Individuals with a story of AHD in the family simply have to be more vigilant if they wish to avoid
heart attacks and strokes.

3.3 Cardiovascular Diseases

Atherosclerosis of the larger coronary arteries is the most common anatomic condition to diminish
coronary blood flow. The branches of coronary arteries arising from the aortic root are distributed to
the epicardial surface of the heart which, in turn, provide intramural branches leading to a structure
known as coronary tree (Figure 3.b) and which is the responsible for the myocardium blood supply.
Cardiovascular diseases are the straightforward consequence of the occlusion of these arteries, which
is produced, as we have seen, by many factors. Depending on the severity of the artery occlusion,
myocardial damages will be temporal causing myocardial ischemia or irreversible causing local necrosis
of the muscle and even an Infarction.

3.3.1 Myocardial Ischemia

Ischemic Heart Disease (IHD) is a condition in which there is acute, intermittent, or permanent compro-
mise in the oxygen supplied to the myocardium due to inadequate perfusion. This makes the myocardium
not to fully contract, leading to a decrease of the cardiac output (rate blood flow resulting from heart
pumping action). In addition ischemic myocardium is less compliant, ’stiff’, making it less able to relax
in response to blood entering in diastole phase and thus increasing chamber pressure which has adverse
consequences on myocardial pulmonary function.

3.3.2 Myocardial Infarction

Myocardial infarction (MI) is a subset of myocardial ischemia in which there is a complete absence of
oxygen supply and there is permanent damage to the myocardium. The term infarction describes necrosis
or death of myocardial cells. The time between the onset of the ischemia and the muscle cell death is
about 15 to 20 minutes in most cases. The left ventricle is the predominant site for infarction; however,
right ventricular infarction occasionally coexists with infarction of the inferior wall of the ventricle.
During acute myocardial infarction, the central area of necrosis is generally surrounded by an area of
injury, which in turn is surrounded by an area of ischemia. Thus, various stages of myocardial damage
coexist. The distinction between ischemia and necrosis is whether the phenomenon is reversible or not.

3.3.3 Heart Failure

Heart failure is a condition where the heart cannot pump enough blood throughout the body. Heart
failure does not mean that the heart has stopped or is about to stop working. It means that the heart is
not able to pump blood the way that it should. The heart cannot fill with enough blood or pump with
enough force or both. Heart failure develops over time as the pumping action of the heart grows weaker.
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It can affect the left side, the right side, or both sides of the heart. Most cases involve the left side where
the heart cannot pump enough oxygen-rich blood to the rest of the body. With right-sided failure, the
heart cannot effectively pump blood to the lungs where the blood picks up oxygen. The weakening of
the pumping ability of the heart causes: Blood and fluid to "back up" into the lungs; the buildup of
fluid in the feet, ankles, and legs; and finally tiredness and shortness of breath.

4 Medical Imaging Technology Overview

4.1 Introduction

If a CVD is detected in premature phases, there is the possibility of modifying some risky factors such as
diet, weigh, smoking habits, physical exercise etc. and keep on a normal life. Nevertheless, when injury
is in advanced stages this may be not enough. To provide a good diagnosis and plan an appropriate
treatment, the extent and localization of the damage should be known. To this purpose there are several
imaging techniques that have the ability of showing the anatomic structure and function of the heart.

When in 1895 Wilhelm Roentgen waved his hand through stream of X-rays and saw his bones
silhouetted on a screen across the room, he began a new era in medicine: for the first time, physicians
could see into the hidden recesses of the body. In the century following Roentgen’s accidental discovery,
X-ray was followed by a variety of different methods of imaging body tissues, such as ultrasound, nuclear
medicine: single photon emission tomography (SPECT) and positron emission tomography (PET);
angiography, computed tomography (CT) and magnetic resonance (MR). Regardless the method used,
all of them are based on the physics of the interaction of energy and biological tissue.

All these imaging techniques can be divided in many groups according to some characteristics.

4.2 Ionizing vs Non-ionizing Radiation

A first division could be in those which use ionizing radiation (IR) versus those that do not. The IR
group consists of those images created by the use of x-rays or γ rays. Both x-rays and γ rays are high
energy, short wavelength electromagnetic radiation (e.g. 0.1 to 0.001 angstrom range) that is capable of
penetrating and passing through most tissues. These radiation waves are created either by radioactive
nuclear decay of tracer atoms injected into the body (nuclear medicine) or by x-ray tubes, which create
their energy waves by bombarding a tungsten anode target with high energy [40 to 150 keV] electrons.
Transducing these waves into light by a fluorescent screen, sodium iodide crystal, or by photon counters
allows images (say, of differential tissue absorption - or of the radioactive atomic locations in the case of
nuclear tracers) to be formed into an image on film or displayed on a cathode ray tube display.

Radiography, angiography, CT and nuclear scintigraphy belong to this group.
Non-ionizing radiation techniques mainly use either acoustic pulses (ultrasound) for echo-ranging

imaging (somewhat like radar) or radio-waves combined with high-field magnets, in the case of magnetic
resonance imaging.

4.3 Tomography vs Projection

Another division of image techniques is the following: tomographic or projection techniques. Projection
techniques, such as x-ray films are "shadowgram-like" transilluminations of the body with a penetrating
high energy ionizing radiation. The differential absorption of this radiation by the various tissues of the
body creates on film an inverse shadow of the body. Less dense, lower atomic weight structures, such
as the lung, allow transmission of more radiation flux producing greater fluorescence on an absorbing
screen which exposes an adjacent film more densely, making those areas black. Higher atomic weight
structures (bone) absorb and block the radiation, thus do not result in the exposure of the silver halide
grains in the film emulsion, and so bony structures such as the ribs appear white (transparent). Because
of the nature of trans-illumination, various tissues are imaged as overlapping each other (Figure 4.a .b)
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and often need multiple views as, for instance, in angiography for visual under-standing. Radiography,
angiography and planar scintigraphy belong to this group

Tomography (Figure 4.c) is a "slicing" of the body into various sections and in various view planes
(and can be generated by x-rays in the case of computed tomography, or ultrasound in the case of
echocardiography) and allow presentation of anatomy in a more readily understandable way because
they avoid the confusion of overlapping structures. The tomographic sections when viewed in sequence
or integrated by a computer allow the display and understanding of 3-dimensional anatomy.

MR, CT and echocardiography belong to this group.

Figure 4: a) and b) X-ray radiography and Angiography. Two examples of projection techniques.
Overlapping of structures are clearly appreciated. c) Tomographic scheme showing how anatomy is
sliced.

4.4 Image Modalities

4.4.1 Coronary Angiography

Coronary angiography (Figure 4.b) is an X-ray examination of the blood vessels or chambers of the
heart. A very small tube (catheter) is inserted into a blood vessel in the groin or arm. The tip of the
tube is positioned either in the heart or at the beginning of the arteries supplying the heart, and a special
fluid (called a contrast medium or dye) is injected. This fluid is visible by x-ray, and the pictures that
are obtained are called angiograms. Often an angiogram is necessary before deciding whether coronary
disease needs more treatment. Due to the fact that angiography returns a 2D projection of a naturally
3D structure (coronary vessel tree), more than one projection is required in order not to omit possible
coronary lesions.

4.4.2 Computed Tomography

Computed tomography was developed in 1970’s and it supposed a great revolution since in 1895 con-
ventional x-ray images appeared. During the century the modality evolved but the underlying idea
remained the same: the absorption of x-rays as they pass trough different parts of the body. One of
its limitations was the inability to produce sectional information due to the impossibility to distinguish
depth. CT resolved this problem. CT scanners produce multiple cross-sectional images of the body from
which a 3D volume can be derived. The mathematical tool that allows for the image reconstruction from
x-ray projections was created in 1917 by Radon, but was not until computers were fast and economic
enough that it could be applied. Currently there exist more sophisticated CT scanners that supply
straightforward 3D volumes in relatively short time.

In cardiac imaging respiratory and cardiac motion causes non-negligible artifacts that have to be
compensated. A technique that tries to overcome these limitations is single slice sequential (transaxial).
First of all the patient is asked to hold the breath so that first artifact disappears. After this the sequence
acquisition is performed for each plane separately. The acquisition is triggered with the ECG although it
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is sensitive to irregular heart beats and arrhythmias. The temporal resolution of this technique is 100ms
and its main limitation is the difficulty to coverage the whole heart volume in just one breath hold.
This last drawback can be overcome by multislice sequential (transaxial) imaging, which simultaneously
acquires multiple slices at each position. This reduces considerably the aquisition time.

A final and inevitable drawback is the invasive character of this image modality. CT exposes the
patient to harmful x-ray radiation. The exposure is greater than in a single x-ray radiography in the
sense that CT combines information of several radiographs.

Figure 5: a) CT scanner device. b) Sectional CT image showing different organs.

4.4.3 Nuclear Medicine: PET and SPECT

Meanwhile CT provides anatomical information in addition, Nuclear Medicine (NM) or radionuclide
scanning, provides information about the metabolic functions of the human body. To create these
images, compounds like simple sugars (i.e. glucose) are labelled with signal-emitting tracers (radiophar-
maceuticals) and are injected into the patient. A scanning machine records the signals these tracers emit
as they journey through the human body and collect in the various organs targeted for examination. A
computer reassembles the signals into images, resulting in pictures, which show functioning of the organs
and tissues. The scan is made by slices, as in CT, so that 3D information is achieved. This is called
Emission Computed Tomography (ECT). Other difference in respect to the CT is that this is based on
energy attenuation, while ECT is based on energy radiation (Figure6.a).

The technique of ECT can be classified into two separate modalities: Single-photon emission computed
tomography (SPECT) and Positron emission tomography (PET). SPECT uses radioisotopes where a
single γ-ray is emitted per nuclear disintegration, while PET uses radioisotopes where two γ-rays are
emitted simultaneously when a positron from nuclear disintegration annihilates in tissue.

In cardiac imaging, PET is a very useful tool for myocardial perfusion assessment, i.e., the blood
flow (Figure6.b and .c). It shows the parts of the muscle that have been affected by an ischemia or an
infarction and the extent of it so the patient can be given the appropriate treatment.

Despite the great potential of NM, it has several disadvantages. The first one is its poor spatial
resolution. For this reason there is a considerable interest in combining NM with other image modalities
that provides good spatial resolution. PET/CT is an instance of it. Other drawback is the hazardous
character of NM. Despite radiopharmaceuticals are designed to fulfill several safety conditions such that
natural clearance process must remove them in a short time, in practice isotopes used in PET imaging
do not completely meet them.

4.4.4 Ultrasound Imaging

The use of ultrasound in medical imaging started in the 1950’s. During that decade, advances in tech-
nology made it possible and ultrasound became a medical tool for diagnosis. Ultrasound refers to sound
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Figure 6: a) Energy absorption in CT and energy emission in NM. b) Image of heart which has had a
myocardial infarction (heart attack). The arrow points to areas that have been damaged by the attack,
indicating "dead" myocardial tissue. c) Normal heart.

waves of frequencies above 20 KHz which humans cannot perceive. Nevertheless, for medical, applica-
tions frequencies must lie between 500 KHz and 30 MHz. This kind of images are based on ultrasound
emission pulses and posterior reception of their echoes when interacting with internal structures of the
body. The processing of the echoes generate the image. Ultrasound imaging techniques are very attrac-
tive due to the fact that they provide real time sequences using compact equipment the price of which
is relatively small compared to other imaging techniques. And moreover, it is a non-invasive technique.

The most common ultrasound device consists of a transducer that is placed against patient skin
surface, and as close as possible to the organ to be seen. Between the skin and the transducer a sound
wave conductor gel is applied in order to reduce external noise. Nevertheless, there are other ultrasound
devices. It is worth mentioning intravascular ultrasound (IVUS). Transcatheter IVUS imaging is a
technique in which a miniaturized ultrasound transducer, mounted on the tip of catheter, is inserted
directly into an artery or vein to produce unique images of the composition of the vessel in detail to
evaluate atherosclerotic plaque deposits and obtain information of vessel lumen etc. However, the lack
of third dimension to provide more details on the exact position and orientation of these planes makes
difficult the task of reconstructing with accuracy the architecture of the vessel and the morphology of
the plaque. To overcome this limitation, IVUS/angiography fusion is an interesting technique that must
be taken into account.

There is an interesting property of sound. When the signal reflects to moving structures, like moving
cells, the original signal undergoes a detectable change in frequency that is called the Doppler effect.
This effect also occurs when the transducer is moving and the tissue remains still or when the interface
is moving and the transducer is stationary. This property is of importance because, among others, it
allows the visualization of myocardial perfusion. Due to the fact that red cells are too small, echocontrast
agents made of microbubbles that act as echopotentiators are injected to the patient in order to enhance
visualization. This technique called Contrast Echocardiography, contrary to PET, is non-invasive and,
meanwhile few hospitals posses PET scanners, ultrasound equipment is available almost everywhere.

An important limitation of the ultrasound imaging is that the quality of images is very poor. Spatial
resolution rang goes from 1-3 mm or 2-5 mm depending on the method used and it is very sensitive to
noise giving echographic images a typical speckles appearance.

4.4.5 Magnetic Resonance

Magnetic resonance imaging (Figure 8.c) depends on immersing the body in a steady, strong magnetic
field, commonly up to 1.5 Tesla (i.e. 15,000 Gauss for reference, the earth’s magnetic field is about 0.5
Gauss). Some modern "whole-body" (i.e. apertures wide enough to accept a person’s thorax) machines
now operate at 4 or more Tesla. Hydrogen atoms, pervasive in the water which makes up about 70% of
the body’s mass, have a dipole property by virtue of their characteristic spins. These spinning atoms,
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Figure 7: a) Echocardiography. Long axis view of the heart. b) IVUS section showing inner vessel
morphology. c) Contrast echocardiography showing myocardium perfusion.

influenced by the permeating magnetic field, precess like a top and a slight majority of hydrogen atoms
precess in alignment with the dominant magnetic field. Subjecting the body tissues to an additional
magnetic field gradient to prepare a specific tissue slice of the body for imaging while adding a precisely
tuned radio frequency pulse permits these specially prepared hydrogen atoms to absorb this radiation
in a resonant fashion. Hydrogen atoms, by virtue of their surrounding magnetic environment and their
excited state, alter their net magnetic axis direction temporarily. This excited state rapidly decays to
a lower energy state while emitting its own unique radio frequency signal which can be detected by an
external radio-frequency coil. From these signals there are mathematical methods, as mentioned in CT,
for calculating tissue-related images.

Special pulse-echo sequences permit high level signals to be detected from flowing blood, therefore
images can be created of the vasculature and its blood velocity characteristics. So-called "functional
MRI" detect differences oxygen-saturated and de-saturated blood. Thus brain processes of "thought"
such as vision, motor control and speech can be detected (though at low spatial resolution) by virtue of
their local oxygen consumption when activated.

Recently a new imaging technique based on MR principles have been developed. It is called Tagged
MRI (Figure 8.b) and it marks the myocardial tissue by applying a sequence of radio-frequency pulses to
pre-saturate thin planes of the myocardium prior to the imaging. These "tags" persist in the myocardium
through the heart cycle and deform by the underlying movement of the heart. This technique allows every
myocardial point to be tracked. This technique is very valuable due to the fact that the myocardium is
a very uniform tissue and the lack of identifiable marks makes point tracking an impossible task for the
rest of imaging techniques.

4.5 Discussion

As we have seen, there are multiple medical imaging techniques that can be used in order to assess
CVD, nevertheless not all of them will be always used. There are many criterions for the choice of one
technique or another. Amongst them there are issues such, equipment cost and thus availability of the
equipment in an hospital, or invasiveness of the technique (ionizing or not). Echography has arised as
one of the most used imaging techniques, due to its cost/image quality/versatility ratio despite CT and
MR scanners are also quite extended. NM are the least widespread imaging techniques.

Currently the trend in medical imaging points to multimodality image fusion. It involves combining
the power of different imaging techniques to enhance the final result and obtain better diagnostics. In
this sense we mention PET/CT fusion, which mixes the functional information given by PET and the
spatial resolution given by CT. Another fusion technique involves IVUS with angiography. The method
overcomes the lack spatial information presented by IVUS and the lack of morphological information of
the artery presented by angiographies.
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Figure 8: a) Myocardium seen in an ordinary MR image. Uniformity of the tissue and the lack of
landmarks is well appreciated. b) Tags printed over the myocardium provided by MR tagging. c) MR
Scanner device.

4.6 Developed Projects in Medical Imaging

We have been working in two medical imaging projects. The imaging modalities involved were Contrast
Echcardiography and SPAMM tagged MRI. To them we applied the segmentation framework that we
have developed and that we expose in further sections, to extract structural and quantitative information.

4.6.1 Contrast Echocardiography

To asses the severity of cardiovascular diseases, often it is of importance to analyze the blood flow
supplied to the myocardium. This is called myocardial perfusion. Due to the fact that LV performs
the most energy-consuming function of the heart, the oxygen delivery to the whole body, it would be
interesting to quantify its blood perfusion as it can be decreased up to three or four times if there is an
obstruction of the epicardial or intramyocardial arteries (Figure 3.b).

The most widespread image techniques for myocardial perfusion analysis are SPECT, PET and MR.
Although they give high quality information about myocardial perfusion they are not widely available in
most hospitals because of their cost. Moreover, SPECT and PET use ionizing radiation, as we have seen
in section 4.2, which makes them invasive to the patient. The availability, low cost and non-invasiveness
of echocardiography, in addition to great progresses in microbubble contrast agents during last decade,
have projected the contrast echocardiography [44] as a powerful tool in the myocardial assessment.
These microbubbles, act as echoenhancers of sound amplifying the reflected waves and thus enhancing
the resulting image.

However, it is difficult to get conclusions directly from images. Quantitative parameters must be
extracted to interpret the sequence of perfusion images. This is done by tracking myocardial points
along the cardiac cycle meanwhile the process of destroying the microbubbles (using a high energy
pulse) and reperfusing again is repeated ([78], [79]).

4.6.2 SPAMM Tagged MRI

Magnetic Resonance is one of the most common, non-invasive, cardiac imaging techniques as it can
provide into a single sequence examination, information about anatomy, structure, global and regional
function and contraction of the heart. Nevertheless, the lack of identifiable landmarks within the my-
ocardium (Figure 8.a) makes motion assessment limited due to the fact that many patients may have
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significant regional dysfunction while maintaining an ejection fraction relatively within normal limits.
To overcome this limitation, a new image modality is designed: Tagged Magnetic Resonance (TMR)
([55], [56], [57]) (Figure 8.b), which uses a special pulse sequence to spatially modulate the longitudinal
magnetization of the subject prior to acquiring image data. This is called SPAMM and produces a
grid over the myocardium, which deforms by the underlying motion of the heart. Thus, inner tissue
deformation becomes visible.

Despite the potential of this imaging technique, MR tagging has not been established as a standard
clinical tool though it is very used in research. Results from MR tagging have been found to agree well
with echocardiographic data, [54]. It also has been proven that tagging enables accurate measurement
for diseases such as hypetrophic cardiomyopathy (HCM), arteriosclerosis and to better understand the
correlation of coronary artery disease with myocardial motion abnormalities.

5 Medical Imaging Analysis

5.1 Introduction

The role of medical imaging has expanded beyond simple visualization of anatomic structures due to its
rapid development and proliferation. It has become a tool for surgical planning and simulation, intra-
operative navigation and diseases progress tracking. Also quantitative data derived from images has
become a valuable method to asses the severity of a particular disease and compare it to other solved
(or non-solved) cases. Computer assistance is thus required to extract relevant information amongst
the great amount of data returned by image devices. This process should be done in as minimal time
as possible because in some cases time could mean to save a life or not. In addition we cannot expect
a radiologist to spend many hours in front of a computer postprocessing and analyzing endless raw
image sequences because accurate and repeatable data must be extracted without inter or intra-observer
variability addition. For this reason automatic or at least, minimal-human-interaction postprocessing
methods must be tailored for each particular problem.

The main issue in medical image analysis is to analyze anatomic structures of the body, for this reason
the main task given an image, is to separate them from other non-interesting parts of the image. This
is known as segmentation and is the process by which a point is labelled as belonging to the structure
of interest or not. In computer vision there are many segmentation techniques. Basic segmentation
techniques such as thresholding, watersheds, edge-detectors like sobel, prewitt or canny and ridge and
valley dettectors are not well suited due to noise and other artifacts that may cause incorrect regions
and boundary discontinuities.

Deformable models offer a unique and powerful approach to image analysis that combines geometry,
physics and approximation theory. They are well suited in segmenting and tracking anatomic struc-
tures by exploiting (bottom -up) constraints derived from the image data together with (top-down) a
priori knowledge about the location, size, and shape of these structures. The inherent continuity and
smoothness of the models can compensate for noise, gaps and other irregularities in object boundaries.

Deformable models were first proposed for computer vision and computer graphics in the mid 1980’s
by Terzopoulos et al. in [1]. He also introduced the theory of continuous (multidimensional) deformable
models in Lagrangian dynamics setting [2], based on deformation energies in the form of generalized
splines (controlled continuity) [3]. Deformable contour models, a particular case of deformable mod-
els, were introduced in [4] and became very popular under the name of snakes. Snakes are planar
parametrized curves that are used to approximate shapes of object boundaries in images, assuming
that curves are piecewise continuous or smooth. These kind of deformable models are also known as
parametric deformable models.
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5.2 Active Contour Models

Formally, a snake is represented by v(s) = {(x(s), y(s)} ∈ R2, where x(s) and y(s) are spatial coordinate
functions and s ∈ [0, 1] is the parametric domain; that tries to minimize its energy Esnk which is, in
turn, a composition of two other energies: internal and external

Esnk(v) = Eint(v) + Eext(v). (1)

Internal energy imposes constraints about curve smoothes and flexibility

Eint(v) =
∫ 1

0

α(s)‖∂v

∂s
‖2 + β(s)‖∂2v

∂2s
‖2ds, (2)

while external energy attracts the curve towards image main features (boundaries in image segmentation)

Eext(v) =
∫ 1

0

P(v(s))ds. (3)

In this equation P(x, y) denotes a scalar potential function specially constructed from image so that local
minima coincide with intensity extrema, edges, and other features of interest. There are many ways to
create a potential, the original idea found in [4] proposes

P(x, y) = −|∇(G(x, y) ∗ I(x, y)|2, (4)

where I(x, y) is the image and G(x, y) is the gaussian filter. Nevertheless it is known that this is not
the best way to define the potential and proposes to use contours found by an edge detector (canny for
instance) and to propagate them by using a gaussian filter to smooth. Another way to construct more
robust potential fields is using distance maps or even functions of them

P(x, y) = d(x, y); P(x, y) = −e−d(x,y)2 (5)

where d(x, y) represents the distance between (x, y) and the nearest point over the contour. This potential
defines a metric so that at each point distance from contours is known, nevertheless more information
about the nearest contour would valuable in order to properly drive the snake. This is what is proposed
in [5], where gradient direction of contours are also propagated. Depending on the potential that is
synthesized, and thus the external forces, snakes’s behavior will vary leading to different segmentation
results.
In accordance with the calculus of variations, the contour v(s) which minimizes the energy (1) must
satisfy the Euler-Lagrange equation

− ∂

∂s
(α(s)

∂v

∂s
) +

∂2

∂s2
(β(s)

∂2v

∂2s
) +∇P(v(s)) = 0 (6)

This vector-valued PDE expresses the balance of internal and external forces when the contour rests in
equilibrium. The first two terms represent the internal stretching and bending forces respectively, while
the third term represents the external forces that couple the snake to image data.

In many medical imaging applications, structures evolve in time. Heart is an example of it. Thus,
extending the above formulation such that incorporates dynamic information to segment is of great
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interest. This can be done by considering an evolving contour v(s) = {(x(s, t), y(s, t)} ∈ R2 where
t ∈ [0,∞]. Solution (6) is thus extended to

µ
∂2v

∂t2
+ γ

∂v

∂t
− ∂

∂s
(α(s)

∂v

∂s
) +

∂2

∂s2
(β(s)

∂2v

∂2s
) = −∇P(v(s)) (7)

The first two terms on the left hand side of this PDE represent inertial and damping forces. Equilibrium
is achieved when the internal forces balance and the contour comes to rest, i.e., ∂v/∂t = ∂2v/∂t2 = 0,
which yields the equilibrium condition (6). To solve (6) and (7), numerical methods have to be applied.

5.3 Deformable Models in Medical Imaging

The underlying idea of snakes is the same for all the parametric deformable models. Following works
have also been applied to medical imaging analysis: [6], [7], [8], [9], [11], [10], [12]. In them, users can
use the interactive capabilities of these models and manually fine-tune them and, when the contour is
fitted, it can be used as initial boundary approximation for neighboring slices in tomographic images
and the resulting contours can be connected to form a continuous 3D surface model ([13],[14], [11], [10],
[7]). This idea is the same for tracking structures in 2D image sequences, where the final segmentation
in one frame becomes the initialization of the active contour in the next. This way, the method becomes
faster.

5.4 Shortcomings of Deformable Models

The application of snakes and other similar deformable contour models to extract regions of interest
(segmentation) is, however, not without limitations. First of all, snakes have to be initialized close
enough to the boundary of interest in order to get influenced by its potential (external) forces, and
avoiding them to fall into wrong local minima, i.e., get trapped by the forces of wrong (spurious)
boundaries (shape degeneration). Thus to initialize the snake is certainly a problem that have to be
carefully treated.
Another drawback is the election of the elasticity parameters α and β. A compromise have to be reached
so that these parameters ensure smooth properties of the snake while allowing it to fit boundaries with
high curvature.
Topologically, snakes are not well resolved. They are not able to change their topology, an interesting
property that would be desirable in many medical imaging applications.
There are other issues as convergence, numerical stability or computational cost which are more related
to the numerical implementation of the snakes.

Various methods have been proposed to improve the above limitations and to fully automatizate
segmentation process. For instance [11] and [10] use an "inflation" force that expands the snake beyond
spurious edges making it fall into strong boundaries. It also makes the final result less sensitive to the
initialization procedure. These kind of "inflation" forces were introduced in [1].
In order to reach global solution, [15] use dynamic programming to perform a more extensive search for
global minima. [16] and [17] minimize the energy of active contour models using a simulated annealing
which is known to give global solutions and allow the incorporation of non-differentiable constraints.
In [16], [18], [19], [20], [21] and [22], the use of discriminant functions is proposed in order to incorporate
region based features. Discriminant function allows the inclusion of additional image features in the
segmentation and serves as a constraint for global segmentation consistency. The result is a more robust
energy functional and a much better tolerance to deviation of the initial guess from the true boundaries.
Sensitivity to insignificant edges is decreased.
Recently, several works ([23], [24], [25], [26], [27]) have been developing topology independent shape
modelling schemes that allow a deformable contour or surface model to not only represent long tube-
like shapes or shapes with bifurcations, but also dynamically change its topology when required. This
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kind of deformable models, are known as geodesic deformable models. They are based on active contours
evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally
split and merge, allowing the simultaneous detection of several objects and both interior and exterior
boundaries. The proposed approach is based on the relation between active contours and the computation
of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose
metric is defined by the image content. This geodesic approach for object segmentation allows to connect
classical "snakes" based on energy minimization and geometric active contours based on the theory of
curve evolution.

5.5 Incorporating A Priori Knowledge
Despite deformable models are well suited in medical analysis, their formulation is too general and often
they are not enough to obtain the desired results. The structures to be segmented are quite complex and
not always completely visible but partial. Nevertheless they are present and despite between subjects
certain variability is appreciated, we beforehand know approximately the shape we are looking for,
its size, orientation etc. It would be desirable to incorporate as many a priori information into our
deformable model as possible, in order to obtain a more robust method able to find out the structure of
interest, even in the worst conditions.

A first instance of deformable models that incorporate a priori knowledge about shape, are those
based on superquadrics. Superquadrics contain a small number of intuitive global shape parameters
that can be tailored to the average shape of a target anatomic structure. Furthermore, the global
parameters can often be coupled with local shape parameters such as splines resulting in a powerful
shape representation scheme thus, while global parameters efficiently capture the gross shape features
of the data, the local deformation parameters reconstruct the fine details of complex shapes ([28], [29],
[30], [31]).

Another interesting way to add a priori knowledge about shape ([32], [33], [34], [35]), is by capturing
the statistics of shapes in a training set. Special landmarks (always the same) are manually marked
for each image. A point distribution model is constructed by applying a PCA to this data thus, all
"allowable" shapes are generated by using the mean shape and a weighted sum of the major modes of
variation. Object boundaries are then segmented using this point distribution model by examining a
region around each model point to calculate the displacement required to move it towards the boundary.
These displacements are then used to update the shape parameter weights.

5.6 Discussion
We have mentioned multiple segmentation methods all of them in the field of deformable model tech-
niques. Each of them trying to solve any limitation presented by its predecessors. Nevertheless, none of
them can be chosen as the optimal medical imaging segmentation method. There are two basic factors
to have into account when choosing a particular method:

• Depending on the shape complexity (topology, curvature etc.) of the target structure to be seg-
mented, a method or another will be required.

• Quality of images will strongly depend on the device used to obtain them (CT, MR, Echogra-
phy). Some devices will present artifacts that will require sophisticated segmentation methods to
overcome them.

Certainly it would be desirable for a method to be capable to deal with all structures and all kind
of images, but the reality points that segmentation methods must be tailored for every problem in
particular.

Another desirable property that segmentation methods should present is the completely automated
interpretation of medical images. This would increase the speed, accuracy, consistency and reproducibil-
ity of the analysis. However, the interactive or semiautomatic methodology is likely to remain dominant
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in practice for some time to come, especially in applications where erroneous interpretations are unac-
ceptable.

6 Generalized Active Shape Models (GASM)

6.1 Introduction

If we think of natural objects, a banana for instance, we will describe it, more or less, as a yellow curved
narrow ellipsoid, whose length goes between 10 and 25 cm approximately. This general description of
a banana, certainly embeds the whole range of banana shape variability (the color, for our purpose,
is meaningless). Having this in mind, a good approach in describing objects, is to represent them as
constrained variations applied to a golden object. In this section we introduce a method to create compact
models from a set of significant examples that can represent both: shape and allowable variability, by
extracting statistical information from the distribution and the relation between labelled points that
represent the target structure.

In the previous section we have reviewed many segmentation methods in the framework of the
deformable models. Those that incorporate a priori knowledge embed into a flexible model, seem to be
the most suited for medical imaging analysis. Thus, if we are able to incorporate the shape model above
mentioned to the deformable model, we will get a powerful segmentation tool.

6.2 Point Distribution Models (PDM)

In order to obtain a model that represents the shape variation of a certain structure or object, a point
distribution model (PDM), the first step is to assemble a training set of images that recovers the shape
range in which the particular structure or object can vary [35].

Once the training set is constructed, is the turn for the most important (and time-consuming) step
of the process: the point labelling of the training set. This is given an image, to label points over
its boundary. It is worth mentioning that the contour represented by such points do not have to be
connected due to the fact that the construction of the model just takes into account the global spatial
relations between points regardless which part of structure they belong to and if they are connected
(Figure 9 (a), (b)).

Figure 9: Point labelling in a connected boundary, a), and in an unconnected boundary b).

Care must be taken when labelling points because each of them represents a particular part of the
structure that has to be preserved along the set. For instance, Figure 10.a shows an image of a printed
circuit board in which a PDM of transistors have to be derived. Figure 10.b show the points that will
be labelled. In this model, for instance, points {0, 31} always represent one end of the wire, meanwhile
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points {5, 6, 7, 8, 9, 10} represent a side of the resistor’s body and so on. Finally in Figure 10.c we can
appreciate shapes extracted from the training set, following the labelling point criterion.

Given the ith image in a training set composed of N instances, we will represent the ith shape as
an ordered set of M points. No matter which order criterion is used, though chosen one it must be
respected. The most common representations are:

Xi = [xi
1, y

i
1, x

i
2, y

i
2, . . . , x

i
M , yi

M ]T ; i ∈ 1, . . . , N (8)

or equivalently:
Xi = [xi

1, x
i
2, . . . , x

i
M , yi

1, y
i
2, . . . , y

i
M ]T ; i ∈ 1, . . . , N (9)

These raw representation of the shapes is still not prepared to extract meaningful data, and have to
be aligned in a common coordinate system. This process is known as shape alignment.

Figure 10: a) Image of a printed circuit board showing examples of resistors. b) Ordered set of labelled
points in a shape. c) Examples of resistor shapes from a training set.

6.2.1 Aligning the Shapes

The modelling method works by examining the statistics of the coordinates of the labelled points over
the training set. Before this, a process of alignment of the shapes must be done in order to remove
similarities between shapes, i.e., rotation, scaling and translation artifacts. This way we will be able to
capture information about the intrinsic shape variation between the examples in the training set.

We will first consider the problem of aligning two shapes Xi and Xj , by finding the least squares
solution of the following expression:

Eij = ‖Xi −M(Xj)‖22 (10)

i.e., the parameters of M that minimize 10, where M is a similarity that rotates by θ, scales by s
and translates by t = (tx, ty) the points of the jth shape Xj as:

M

(
xj

k

yj
k

)
=

(
(s cos(θ))xj

k − (s sin(θ))yj
k + tx

(s sin(θ))xj
k + (s cos(θ))yj

k + ty

)
(11)

If we translate the centroids of the shapes to the origin, we can assume that tx = ty = 0. Finally if
we set a = s cos(θ) and b = s sin(θ), the solution that minimizes (10) is given by [43]:
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(12)

We have seen how to align two shapes. The iterative procedure used to align a set of shapes to a
common frame of reference is known as Procrustes Analysis. It works by minimizing the distance to a
computed (at each step) mean shape. Thus, given the shapes extracted from the training set {Xi}N

i=1

the procedure to align them is described as follows:

1. Translate the centroid of each shape to the origin.

2. Arbitrarily choose a shape in the training shape set as the mean shape, X̄.

3. Using equations (12), align each shape Xi to X̄ by applying to every point the following transfor-
mation

(
x̂i

k

ŷi
k

)
=

(
a −b
b a

)(
xi

k

yi
k

)
(13)

4. Calculate the mean of the aligned shapes:

X̄ =
N∑

i=1

X̂i (14)

5. Go to step 3 until convergence.

6.2.2 Modelling Shape Variations

Now that all the shapes are aligned, we can think of their mean shape as the golden or idealized shape
that represents the class of the target structure (remember the golden banana). Now shape variation has
to be measured. A common technique that allows this measurement is the Principal Component Analysis
(PCA), which transforms a set of correlated samples into a lower-dimensional set of uncorrelated samples.
Let {X̂}N

i=1 be the set of aligned shapes, we can imagine every X̂i ∈ R2N obtaining thus, a cloud of
points in this space. What PCA does, is to find a new lower-dimensional orthogonal axis centered in X̄
that follow the directions of higher variance. Each axis is known as principal component or principal
mode of variation of the cloud. Now, any point X ∈ R2N can be represented in this new P -dimensional
space (P < 2N), by projecting it to the new axis (Figure 11).

The procedure for computing PCA is as follows:

1. The center of mass of the shape cloud is computed. In our case this is the last mean shape
computed using equation (14) before convergence was reached in the alignment iterative method.

2. The correlation between individual shape elements is computed by calculating the covariance ma-
trix, C:

C =
1
N

N∑

i=1

(Xi − X̄)(Xi − X̄)T (15)
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Figure 11: A simple visual depiction of PCA applied to a set of 2D points clustered around X̄, which cre-
ates a set of principal components φ1 and φ2. Any point X can be approximated by the main component
which codifies most of the information meanwhile information provided by φ2 is underestimated.

3. The modes of variation, the ways in which the points of the shape tend to move together, are
described by the unit eigenvectors of C, Φi of eigenvalue λi:

CΦi = λiΦi (16)

and

ΦT
i Φi = Id (17)

which means that the eigenvectors are orthonormal. By convention we assume that λi ≥ λi+1 ∀i ∈
{1, . . . , 2N}. It can be shown that the eigenvectors of the covariance matrix corresponding to the
largest eigenvalues, describe the most significant modes of variation in the variables used to derive
the covariance matrix, and that the proportion of the total variance explained by each eigenvector
is equal corresponding to the eigenvalue.

The ith eigenvector affects the kth point in the PDM by moving it along a vector parallel to
vi

k = (dxi
k, dyi

k), where dXi = Xi − X̄ and which is obtained from the kth pair of elements in Φi

4. Most variation can usually be explained by a small number of, P , modes. A method for calculating
P is to choose the smallest number of modes such that the sum of the variance explained is
sufficiently large in respect to λT , where

λT =
2N∑

i=1

λi (18)

Thus, the number of modes have to be chosen so that they can explain most of the shape variation
observed in the training set.
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5. Having computed X̄ and Φ, any point X ∈ R2N can be expressed in the new coordinate system
as:

X = X̄ + Φb (19)

where

b = ΦT (X − X̄) (20)

Nevertheless we reach the dimensionality reduction by choosing an appropriate number of variation
modes, P for instance, that sufficiently explains the shape variation, thus any point in R2N will
now be approximated (projected) in this reduced space RP by

X ≈ X̄ + ΦP bP (21)

where

bP = ΦT
P (X − X̄) (22)

and

ΦP = (φ1|φ2| . . . φP ) bP = (b1, b2, . . . , bP )T (23)

We have seen a method that given a set of shape samples, the training set, allow us to build a
compact model of shape and allowable variation. This PDM determines a way to obtain valid shapes by
varying the shape parameter bP among a valid range: given its ith component, bPi, it is constrained to
−3
√

λi ≤ bPi ≤ 3
√

λi. this is due to the fact that PCA assumes that the initial data cloud is a single
cluster with an independent gaussian distribution along each principal component axis. Thus, given any
(aligned) shape X̂ ∈ R2N , we can find the valid shape most similar to it by projecting the point into the
new axes to find the valid shape parameter as in (22), and then, we generate the valid form, using (21).

As we previously told, it would be interesting to add the PDM, to a deformable model in order to
perform a ’smart’ segmentation.

6.3 Active Shape Models (ASM)

Active Shape Models (ASM) is a method created by Cootes et al [34], that incorporates shape information
using the PDM above mentioned (a priori knowledge) to perform a more robust segmentation.

The steps followed by this algorithm are:

1. Suppose that we have previously created the PDM that recovers the shape variability of the class
of the target structure. A first step consists of placing the class representant, i.e. the mean shape,
close enough to the solution (we mentioned in the previous section that this is a problem that have
to be treated separately and particularly for each problem). Due to the fact that the coordinate
system of the training set and the one of the input image are different, we will have to apply
a similarity to the mean shape. This is a composition of translation, rotation and scaling. Let
[M0

θ,r,T ]−1 be this similarity, we initialize the shape as X1 = [M0
θ,r,T ]−1(X̄)
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Figure 12: Strong edges search by every point in the shape model along their normal profile.

2. Given the ith shape Xi, for each labelled point in the shape boundary (xi
k, yi

k), a new position for
it is searched. This is done along a perpendicular segment to the boundary that passes through
this point. See Figure 12. This gives us an hypothesized shape which have to be supervised, i.e.,
to be said if it is a valid shape (those represented in our PDM) or not. And if not, to find the most
similar valid shape.

3. Xi is aligned to X̄ so that they share coordinate system and comparisons between them can be
performed. Let M i

θ,r,T be this the alignment transformation, X̂i = M i
θ,r,T Xi ∈ R2N is calculated.

4. The most similar valid shape to X̂i is obtained by projecting this shape to the new axes obtained
by the PCA as in (22): bi = ΦT

P (X̂i − X̄) and thus,

X̃i = X̄ + ΦT
P bi (24)

5. Finally the step of disaligning the allowed shape is performed. This is done by applying the inverse
similarity obtained before:

Xi+1 = [M i
T,r,θ]

−1X̃i (25)

6. Go to step 2 and repeat the process until convergence is reached.

6.4 Extending ASM: GASM
Clearly ASM is robust method well suited for medical imaging segmentation in the sense that has
incorporated a priori knowledge about the shape of the structure that must be segmented. Nevertheless
there is a weak point left in this method. It is the way that labelled points of the shape hypothesize
their next position. They are constrained to search for strong edges along a normal segment and this,
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often will not be enough to reach a desirable result. Some improvements have been performed in [33],
where grey level appearance in a neighborhood of each labelled point is learned.

and nevertheless they remain analyzing along a normal segment. If we analyze what ASM does, we
realize that, in fact, ASM is a recurrent combination of two main step, namely:

• Prediction Step: Each point in the structure boundary hypothesizes a new position along a
normal segment according to some criterion. This step, as we have mentioned, is the weak point
of the method and the one prone to be improved.

• Regularization Step: A global correction is applied to the hypothesized shape provided in the
previous step. This is the key step of the process and the one which is the great innovation in the
sense of including statistical information about shape. This part will be preserved.

Lets focus on the prediction step. Notice that if we apply just this step to segment any structure
without the regularization process, we will get a poor segmentation method that is not able to deal
with most of the structures appearing medical imaging. Thus, we realize that what makes ASM a
really powerful method is its regularization step. So any intent to improve ASM, passes through the
improvement of its prediction step. This is exactly what we will do in this work.

Our main aim is to give a general framework for medical imaging segmentation which will be composed
of the two previously mentioned steps. By general framework, we do not mean a unique segmentation
method that is exactly the same for every structure and every imaging modality. This would contradict
what we mentioned in section (5.6). But, given any segmentation problem, image properties have to be
taken into account so that an appropriate prediction step can be derived, meanwhile regularization step
does always remain the same.

This framework allows the fully integration of a priori knowledge of shape to any segmentation method
(snakes, balloons, optical flow etc.) to enhance its performance. Deformable models and particulary
ACM, are powerful segmentation methods that exploit visual cues to derive external forces that drive
the snake to the desired boundary. Nevertheless they are local methods in the sense that each node
evolves according to its neighbors and some criterions about elasticity and smoothness but without
taking into account the global shape of the target structure. Thus, mixing them with a priori knowledge
given by PDM in a common framework, will lead to a robust segmentation method that includes both,
low and high level information. We call it Generalized Active Shape Models (GASM).

7 GASM Applied to Contrast Echocardiography Segmentation

7.1 Introduction

Most of the work for analyzing automatically the myocardial perfusion, have been done using SPECT
or MR imaging: [48], [49], [51], [50]. Due to the novelty of contrast ecocardiography imaging less work
have been developed, however some approaches have been done in the framework of tracking myocardial
points but they are reduced to some ROIs. These have to be actualized due to the myocardium motion in
order to extract meaningful data. The easiest way to do so is by manually actualize them. Nevertheless,
the great amount of images and the lack of identifiable landmarks inside the myocardium, emphasizes
the need for automatic methods. First attempts ([45], [46]), have been done in the field of optical
flow [80]. Also non-rigid registration have been proposed in works such [81]. In [47], it is proposed
to segment the ventricle walls by using ACM and ASM. This fits our proposed two-step framework for
image segmentation nevertheless, the authors model the shape with the first M coefficients of its discrete
cosine transform instead of the raw coordinates which is not considered for us though it is an interesting
approach. Our method [53] has similarities to them. We segment the full myocardium in order to track
the whole contour. To achieve it we apply GASM combining ACM and ASM, which allows us to take
advantage of the experts knowledge (a priori knowledge) about variability of the target structure.
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Figure 13: Frame of contrast Echocardiography. The inverted U-shape is the structure to be segmented,
the myocardium seen in the long axis view.

7.2 Analyzing Image Drawbacks

Despite contrast agents have lead to imaging quality enhancement, the difficulty for contour definition
in echocardiography still remains. Thus, the target structure (Figure 13) may not be easy to segment
due to the lack of some of its parts. We first analyze all the drawbacks that our images may present.
Figure 14 shows an instance of each of them.

• In Figure 14.a, we can appreciate the lack of right side border of themyocardium and in Figure 14.b,
both of them are missing. In this frame we also can appreciate a gap inside the right branch. This
is the papillary muscle, a structure of the myocardium that has to be ignored by the segmentation
because it does not provide relevant information.

• In Figure 14.c, we can appreciate at the top of the image a gap along the endocardial border. This
is not any myocardial structure, but it is an image artifact.

• In Figure 14.d, corners of the myocardium are vanished.

• In Figure 14.e, we can appreciate the low contrast presented between the myocardium and the
background. The left myocardium branch has almost disappeared.

• In Figure 14.f, we can appreciate how the right branch of the myocardium is stacked on the left
border of the visual field.

Now that we have the problem in mind it is time to develop a strategy that allows us to segment the
myocardium properly. Our purpose is to apply the framework that we have proposed in the previous
section: GASM. This will consist of two main steps: Prediction and Regularization.

7.3 Prediction Step Background

The best way to develop this step is just to think of the best segmentation method we would apply to
the problem without considering the regularization step. This last will always improve the prediction
so, the more accurate the first step is, better results we will get.

As prediction step we will use ACM techniques, nevertheless our snake will differ from classical snakes
in the synthesis of its external forces (F ). We will derive these forces from simple image characteristics
namely, contours extracted by an ordinary edge detector and gradient directions. This way, our snake
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a) b) c)

d) e) f)

Figure 14: Different artifacts that can be found in Contrast Ecocardiography. Among them, lack of
borders, vanishing of structures, gaps, etc.

a) b)

c) d)

Figure 15: Filtered image a). Edges extracted by Canny b). Distance Map c). Angle Map d).
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will not be attracted by any nearby contour, but only those that meet certain properties that we will
impose.

In order to get good results, a preprocessing of the images must be done to smooth the speckle
appearance (typical in ultrasound images) while preserving as much as possible the image contours. For
this reason, given an image I, it is filtered using an anisotropic diffusion filter [52], thus obtaining If .
Figure 15.a shows its performance. Now, using an edge detector, Canny for instance, contours from the
filtered image are extracted (Ic) (Figure 15.b). One of the two ingredients that will compose our external
force will be extracted from the gradient direction of If over the contours in Ic. The second will be the
normal vectors of the snake ant each node. Mixing them we will impose that the condition by which a
snake node is allowed to be attracted by a contour is that the normal vector of that node is similar than
the gradient direction of the nearest contour. By similar, we will understand that their angle absolute
difference between these vectors is less than π/2.

The numerical implementation of equation (6) from section (5.2) allow us to deform the snake
(thought in practice as a set of nodes) until it reaches the global minimum which is supposed to coincide
with the image boundaries. It is as follows:

{
xt+1 = (A + γId)−1(γxt + Fx(xt, yt))
yt+1 = (A + γId)−1(γyt + Fy(xt, yt))

(26)

where A (the scatter matrix) codifies the smoothness constraints, γ affects to the speed convergence
and F = (Fx, Fy) are the external forces that make the nodes move. F is often directly defined as
F = −5P (x, y), where P is usually any of (5) or (4). Nevertheless, to fit our purposes, we will synthe-
size the following external force:

F (x, y) = −〈−→vc(x, y),−→vs(x, y)〉∇D(x, y) (27)

where D is the distance map (Figure 15.c) obtained by propagating distances from the contours in
Ic, −→vc(x, y) is the gradient direction of If in the nearest edge point to (x, y) (in distance D) and −→vs(x, y)
is the normal vector to the snake, fixed one of the two possible, at the point (x, y). Three issues have to
be mentioned:

• First of all, notice that −→vs(x, y) is not defined ∀(x, y) ∈ R2, but only in the snake node that, at
this moment, is placed over (x, y).

• The same way we previously have created the distance map D (by propagation), we have to create
an angle map DΨ (Figure 15.d) so that, at each point (x, y) we know not only the distance to
the nearest edge point but also the gradient direction of it [5]. This is also done by information
propagation.

• Let

〈−→vc ,
−→vs〉︸ ︷︷ ︸

K

=





(0,1] if angle(−→vc ,
−→vs) < π/2

0 if angle(−→vc ,
−→vs) = 0

[-1,0) if angle(−→vc ,
−→vs) > π/2

The term K makes the snake be attracted by contours that have similar orientation (angle between−→vc and −→vs < π/2) and rejects it from contours which have opposite directions (angle > π/2). In
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case that K = 0, the only forces that act in these points are internal forces. Figure 16 depicts this
idea.

Figure 16: A detail of the constraints that the external force apply to the snake.

7.4 Regularization Step Background

To apply the regularization step to the process and thus incorporate a priori knowledge about shape,
first of all the PDM has to be created. To this end, a training set made of 70 images from four different
cardiac cycles had been created. This set covered the wide range of shape variation. An expert clinician
was asked to manually label 40 landmarks on every image to delimitate the myocardium structure. After
the PCA was applied, a PDM was obtained with 10 principal modes of variation which could explain
the 98.5% of the shapes in the training set. In Figure 17 we can appreciate the first eight modes of
variation.

7.5 Initialization

As we have told, the initialization of the model is a problem that has to be separately treated as there
is not a unique way to do it. What it is certainly common is that the model has to be placed near the
final result. Initialization can be as sophisticated as desired depending on if our aim is to reach a fully
automated method or a semi-automated method. In the present work, we developed an initialization
method that fully automatize the segmentation process.

We have selected four key points over the shape model. These, as shown in Figure 18.a, are the
left and the right corners (CL and CR) and the top points of the endocardium and the epicardium, the
internal and external part of the myocardium respectively (TI and TE). Thus, to initialize our snake
(S0), we will search for these points on the image and wrap the mean shape so that its key points fit
those in the image, X̄ 7−→ S0 (Figure 18.c).

To find the corners we use the Harris Corner Detector. Once found, we look for the most significant
gradient of I(x, y) along the line defined by points C = (CL + CR)/2 and T , where T is the top point of
the sectorial ROI that contains the echocardiogram, this gives us TI . As we could observe in most of
the frames, the point TE remains almost fixed, so we consider it fix (Figure 18 (b)).

Notice that the implementation of the corner detector allows the fully automatization of the process
nevertheless, a minimal-human-initialization would consist of just marking manually these two points.

31



Figure 17: First eight modes of variation. Each row represents one of them and is specialized on a
particular aspect of the shape. Central column is common for all variation modes due it is the mean
shape.

7.6 GASM Performance

Now that we have developed a prediction method (the snake guided by special forces) and we have
trained a PDM (regularization step), it is time to apply our segmentation framework: GASM.

Given the snake at time t, St = {(xs,t, ys,t)
M
s=1} we hypothesize the new position of the snake nodes

S̃t+1 by applying eq. (26). We regularize S̃t+1 looking for the most similar valid image given by our
PDM. First of all, we have to align S̃t+1 (we apply the similarity Mθ,r,T ) and then project it into the
shape space to get the parameters b as in Eq. (22). Then we get the plausible shape by Eq. (21) and
finally, to get the next snake St+1, we disalign X (undo the similarity: M−1

T,r,θ). This can be condensed
by the following equations:
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a) b) c)

Figure 18: Mean shape X a). Key points found in the target frame b). Initial Snake: mean shape
warped to fit the key points c).

{
S̃t+1 = (A + γId)−1(γSt + F )
St+1 = M−1

T,r,θ[X + PPT (Mθ,r,T (S̃t+1)−X)]
(28)

If we iterate the process, once evolving followed by correcting, we realize that the shape constraints
given by the PDM are too strong and hardly lets the snake search for new positions (as we mentioned in
the previous section). To solve this we apply the corrections every Q steps. In this particular problem
we used Q = 2.

In Figure 19 we show the evolution of the initial Snake under the GASM framework.

Figure 19: Segmentation process: Target frame a). Initial Snake b). Snake at time steps t = 1, 2, 5, 7, 10
c), d), e), f) and g). Convergence at t = 17 h).

7.7 Discussion

We would like to mention the advantages given by the GASM segmentation framework and how it deals
with the drawbacks of images introduced in section (7.2):
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• The natural smoothness constraint that ACM have implicitly, avoid that the snake falls into the
spurious gaps (Figure 14 (c)) or heart structure gaps (Figure 14 (b)) that may appear in the
images.

• The special external forces that we have tailored for this problem in particular, avoid the epicardium
contours shrink to endocardium contours when they are not present as in (Figure 14 (a) and (b)).
This is due to the fact that their gradient direction is opposite (not similar).

• PDM apart from regularizing the hypothesized shape, deals with drawbacks that the snake cannot.
For instance when contour information is not available at all, as in Figure 14 (e) or when the branch
has collapsed as in Figure 14 (f). Notice that this last case is particularly modelled by the 5th

variation mode (Figure 17).

8 GASM Applied to Tagged MRI

8.1 Introduction

In this section, we will introduce a novel method that allows us to track myocardial points along the
cardiac cycle called HARP (harmonic phase) tracking, and which will be used as the prediction step
in our GASM segmentation framework. We will derive a method that allows both, point tracking and
myocardium segmentation.

From point tracking and structure segmentation many information will be derived such myocardial
stress and strain, rotation etc. By expanding point tracking to 3D, the reconstruction and movement
of the myocardial fibers will become available allowing for the prove or disprove of the ventricular band
existence.

a)

b)

Figure 20: a) Ordinary MR sequence. No landmarks are appreciated over the myocardium. Only
Contraction activity can be appreciated. b) TMR sequence. The tissue tagging reveals myocardium
points movement.

8.2 SPAMM Tagging

SPAMM is the acronym for SPAtial Modulation of Magnetization, thus what SPAMM tagging does is
precisely this. Given a tomographic magnetized plane in MR images, this method applies a special radio
frequency (RF) pulse that modularizes the underlying magnetization of the tissue making appear dark
stripes or tags (Figure 20 (b)). Due to the fact that these tags are a property of the hydrogen atoms of
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the myocardium, they will remain the same as the heart beats and the tags will move according to the
underlying movement of the myocardium.

The simplest tagging pattern is the 1D 1-1 SPAMM that applies one single RF pulse. Let every
material point be marked by its position p ∈ R3 at the reference time t = 0, which is usually considered
at end-diastole when the left ventricle is full of blood and the heart is relatively slow-moving. Let I(p)
be the intensity of this material point in absence of the tag pulse sequence. This is the magnetization
provided by ordinary MR. The application of an 1D 1-1 SPAMM tag pattern [55]

s1(p;w,α) = cos2(α) + sin2(α) cos(wT p) = d0(α) + d1(α) cos(wT p) (29)

will produce the image

I1(p) = I(p)s1(p;w,α) (30)

where α is the so called tip angle and w is the gradient that determines the direction and the width
of the tags. To produce a bidimensional tag pattern, 2D 1-1 SPAMM, two 1D 1-1 SPAMM sequences
are applied in rapid successions with linearly independent gradient directions w1 and w2 and tip angles
α1 and α2, which produces

I2(p) = I(p)s1(p; w1, α1)s1(p; w2, α2) (31)

Substituting (29) in (31) and using the following trigonometrical identity

cos(α) cos(β) =
cos(α + β) + cos(α− β)

2
(32)

the 2D tagged image I2 can be written as the sum of four other images that are tagged using 1D
patterns

I2(p) =
4∑

i=0

I(p)di(α1, α2) cos(wT
i p) =

4∑

i=0

Di(p;α1, α2) cos(wT
i p) (33)

where the functions di, i ∈ {0, . . . , 4} are easy to deduce and w0 = 0, w3 = w1+w2 and w4 = w1−w2.
An improved version of 2D 1-1 SPAMM is proposed in [56] and it considers more RF pulses with their
relative amplitudes distributed according to the binomial sequence, resulting in sharper stripes. This
finest tag pattern is given by

sN−1(p; w, α, θ) =
N−1∑

k=0

dk(α) cos(kwT p) (34)

The resultant tagged image can be written as

I2(p) =
K∑

k=0

Dk(p;α1, α2) cos(wT
k p) (35)

where K = (N − 1)2.

8.3 SPAMM Tagged MRI Analysis Techniques
Given a volume of tagged images, it is certainly difficult to extract conclusions. First techniques of
computer-assisted analysis of SPAMM tagged MRI were proposed by the same creators of this tagging
technique. In [58] they perform manual marking of tag intersections and follow them along the sequence.
In [59] spectral filters are used in order to isolate frequential components produced by SAPMM tagging
so that filtered images are prepared for their tags to be detected. In [60], in addition, a modification of
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the histogram is performed to enhance image contrast between tags and tissue. Some other works use
ACM to localize and track the tags in time. In [61], they use the so called implicit snakes, 3D B-splines,
in addition to two coupled surfaces that deform to fit myocardium borders. In [63] 4D B-splines are
used. In [62] morphological techniques are used to eliminate tags in order to segment myocardium while
tags are tracked by matching a template of their expected profile using least squares. [69] use truncated
polynomial expansion and [70] use a stochastic estimation scheme.

All these analysis techniques are developed to track tag lines and even supposing that their perfor-
mance is optimal, there is problem left. This is that they are able to track only points over the tags
but not points between them. The application of some interpolation process is required in order to get
dense motion estimation.

HARP (HARmonic Phase) is a novel and fast technique that overcomes the previous drawback. It is
a spectral method that naturally provides information about the movement not only of tag points but
also inter-tag points. This method was introduced by Osman et al. ([64], [65], [66]). Some works as
[68], use HARP principles and orthogonal myocardium views (short axis and long axis) in combination
to a 3D geometric model based on finite elements to estimate the real movement. A similar approach is
exposed in [67].

8.4 HARP: Frequency Domain Analysis

The key point in tagged MR image is not to study them in the spatial domain but in the frequency
domain, where the spectral peaks (Figure 21.a) contain information about motion, each of them in a
certain direction. If we filter a single peak, back in the spatial domain we get a complex image the
phase of which is linearly related to the directional component of the true motion. Obtaining the phase
is quite difficult due to the tangent operator, even though we will see that the principal values of the
phase, lying in [−π, π], are enough to estimate small motions.

Notice that equation (35) can be rewritten as

I2(p) = D0 +
K∑

k=1

Dk
ei(wT

k p) + e−i(wT
k p)

2
(36)

what makes appear (2N − 1)2 spectral peaks in the Fourier domain (Figure 21). This gives us the
opportunity to isolate any of the summands of the expression (36) by filtering its correspondent peak.

Expression (36) is a formulation valid just for the first frame, the reference frame. As the heart
deforms, a material point within the myocardium moves from its reference position p to a new spatial
position x at time t and it is given by the reference map p(x; t) so, for any point x in any frame (time
t), we have the formulation

I2(x; t) = D0 +
K∑

k=1

Dk
ei(wT

k p(x;t)) + e−i(wT
k p(x;t))

2
(37)

Notice that filtering the nth spectral peak, we obtain the complex function

In(x; t) =
Dn

2
ei(wT

n p(x;t)) (38)

in which its phase is linearly related to the reference map

wT
n p(x; t) (39)

This means that the phase is an intrinsic property of the material points, thus if we are able to track
their phase, we will also be able to track them. Nevertheless, we will not be able to calculate the phase
due to the arc tang operator wrapping effect. Instead we will calculate its principal values which will
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provide the so called HARP images (Figure 21 (b), (c)). These will be crucial in motion tracking. The
HARP image associated to a given spectral peak is defined as

an(x; t) = ∠In(x; t) =

{
tan−1( Im(In)

Re(In) ) Re(Ik) ≥ 0

tan−1( Im(In)
Re(In) ) + π otherwiswe

(40)

It is worth to mention that despite the true motion of the heart is in 3D, in this work we consider
just the apparent motion that is in 2D. This means that we assume that the gradient directions of the
tagging pulse are parallel to the image plane thus, what we see in the images are projections of the real
movement.

a) b) c)

Figure 21: TMR Fourier transform with the main harmonic peaks in orthogonal directions to be filtered
a). HARP images obtained by filtering two of the principal harmonics in orthogonal direction, vertical
b) and horizontal c).

8.5 Motion Tracking Using HARP Images
In this section we present the engine that makes possible the point tracking and which is based on the
previously introduced HARP images.

Given any frame in a tagged sequence, Ii, we can calculate its HARP images, φh(x; i) and φv(x; i),
(Figure 21 (b), (c)) which embed tag information in both directions, horizontal and vertical, by filtering
the principal spectral peaks in these direction (Figure 21.a). Thus given any point x ∈ Ii we can
associate to it a pair of angles. Those that share the same coordinates in φh and φv, x 7−→ φ(x; i) =
[φh(x; i), φv(x; i)]T .

Recall that phase is an intrinsic property of the tissue, thus the key is to realize that any point will
maintain its pair of angles along the whole sequence. To calculate the position of a given point x̃ in the
next frame , x, we look for the nearest point (in the next frame) that possesses the same pair of angles.
This condition is written as

φ(x̃; i) = φ(x; i + 1) (41)

and finding x̃ is equivalent to solve the following bidimensional non-linear equation

φ(x̃; i)− φ(x; i + 1) = 0 (42)

which is done by applying the Newton-Raphson iteration method

xn+1 = xn − [∇φ(xn, i + 1)]−1[φ(xn, i + 1)− φ(x̃, i)] (43)

Details about the practical implementation of equation (43) are exposed in [71].
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8.6 GASM applied to Tagged MRI

HARP method is a powerful technique that provides optical flow in SPAMM tagged sequences and
it is particulary well suited in obtaining such information for all points so no interpolation process is
required. Nevertheless we want to know the displacement map not for all of them but only those in the
myocardium. Due to the fact that HARP method does not incorporate structural information, we will
embed a segmentation process in it. This will allow to avoid calculations in the outer points and process
will become faster. Apart, obtaining myocardium segmentation which is of importance in itself. We will
mix both, point tracking and segmentation in our proposed segmentation framework: GASM.

8.6.1 Prediction Step Background

Recall section (7), to segment myocardium, the inverted U-shape, we applied GASM scheme where the
prediction step used an ACM. In the current problem it seems complicated to synthesize external forces
that can drive a snake through all the tag ridges without getting stacked on them. Nevertheless in our
segmentation scheme (GASM), prediction step not always has to be an ACM. The philosophy is that
this step has to be tailored for the current image characteristics. This is precisely what we have done.
We use the displacement map provided by HARP method as the prediction step.

We define the displacement map as
{

u : U× R −→ U
(x; i) 7−→ x̂− x

where U is the image domain and x̂ is the solution of the equation (42). This map tells us given a
point x in the ith frame, where it is going to be in the (i + 1)th frame.

Thus given the myocardium contour in the ith frame, which is thought as a set of M nodes as any
snake, Ci = {xi

k}M
k=0, we predict its next position in the (i + 1)th frame by

C̃i+1 = {x̃i+1
k }M

k=0 (44)

where x̃i
k = u(xi

k, i).

a) b)

Figure 22: a) The 12 key points that divide the myocardium in 6 parts: A, AS, AL, I, IS and IL and
which are used to mark the rest of points. b) Labelling order of the 48 points that are used to represent
the myocardium shape.
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8.6.2 Regularization Step Background

Due to the fact that tags outside the myocardium are not stable because of the blood flow, among others,
HARP performance in the borders is not as precise as inside. This can often lead to a bad prediction
of the segmentation proposed by equation (44) in the previous step. For this reason, the regularization
step is required.

As ever, we will model myocardium shape variation in a PDM. To label points in the structure
borders, we will consider 12 key points that will serve as reference for a further ordered labelling. These
are the meeting points of the RV and LV epicardium, a and b, with their projections to the endocardium,
c and d; middle point between a and b, e (with its projection f); the same to the other side produce g
and h and finally the same between a and g, and b and g is performed in order to obtain i, j, k and
l (Figure 22 (a)). These points divide the myocardium in four different regions namely, anterior (A),
anterior septum (AS), anterior lateral (AL), inferior (I), inferior septum (IF) and inferior lateral (IL).
These parts will be useful when extracting information from point displacement. Having marked the key
points, we in addition mark three equally-spaced points among them which turns to a shape represented
made of 48 points. Their labelling has to be done always the same way. We do it as shown in Figure 22
(b).

To derive the PDM we collected 165 images to create the training set that covered the range of shape
variation appreciated in the myocardium. These were not tagged MR images because point labelling is
more difficult in them due to the tagged appearance. Despite of that we used ordinary MR images where
the structure of the myocardium is the same and, in addition, LV is well contrasted. Thus the labelling
becomes friendlier. After applying the PCA to the extracted shapes, we obtained a 10-dimensional
model that could explain 97.75% of the shape variation appreciated in the training set. Figure 23 show
the first seven modes of variation.

8.7 Initialization

It is difficult to fully automatize the segmentation process, for this reason we manually perform the first
segmentation (minimal human-interaction). Nevertheless, such initialization can not be performed to the
first frame due to the fact that this frame is completely tagged, even blood, making almost impossible
to distinguish the target structure (Figure 24 (a)). Instead of this, we will initialize the segmentation
in the second frame C2 and calculate the segmentation of the first frame by applying the inverse of the
first displacement map u−1

1 as

C̃1 = {x̃1
k}M

k=0 (45)

where x̃1
k = u−1(x2

k, 2)
It is possible that even the second frame it is difficult to segment. The idea is also applicable in this

case. We segment the third and we calculate the previous segmentation using first and second inverse
displacement maps. In fact this can be generalized so that it is plausible to start with any frame.

8.8 GASM Performance

Once both, the prediction step is created and PDM derived from the training set, we apply the GASM
framework. Notice that the method that will serve as prediction step will also be used as to obtain dense
motion inside the myocardium.

We manually initialize segmentation in an appropriate frame, ith for instance, then we propagate
backwards this initial shape by dilating the ROI given by the manual segmentation. Then we perform
HARP method (from previous frame to present) inside this ROI and use the inverse of the displacement
map to calculate the predicted previous shape. After this the regularization step is applied in order
to obtain a valid shape. This is repeated until first frame is segmented. Then we use forward shape
propagation to segment frames from the initial to the last one. HARP method is applied to points
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Figure 23: First seven modes of variation. Each row represents one of them and is specialized in a
particular aspect of the shape. Central column is common for all variation modes due it is the mean
shape.

inside the ROI provided by manual initialization. This time without dilating it. We predict next shape
by applying the obtained displacement map and then we regularize it, and so on until last frame is
segmented.

The following equations formalize this idea:
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a) b)

c) d)

Figure 24: a) Initial frame. Due to the total tagging of the image, it is impossible to distinguish
myocardial structure. b) In second frame tagged blood has disappeared so manual segmentation becomes
possible. c) Inverse of the displacement map between first and second frame. d) Segmentation of the
first frame





Ci Initial segmentation
C̃j−1 = u−1(Cj , j − 1) Backwards segmentation (prediction)
Cj−1 = M−1

T,r,θ[X + PPT (Mθ,r,T (C̃j−1)−X)] Backwards segmentation (regularization)
C̃j+1 = u(Cj , j) Forwards segmentation (prediction)
Cj+1 = M−1

T,r,θ[X + PPT (Mθ,r,T (C̃j+1)−X)] Forwards segmentation (regularization)

(46)

Where X̄ is the mean shape of the PDM and Mθ,r,T is the appropriate affine similarity that aligns
the current predicted shape to the mean. Recall that in the application of the GASM framework in
section (7), we did not applied regularization step every but every Q = 2 steps. Here we apply it every
step (Q=1).

In Figures 25, 26, 27 and 28, we can appreciate displacement map provided by HARP method, GASM
segmentation, tag tracking and synthetic grid deformation respectively.
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Figure 25: Instance of the displacement map provided by HARP method in a middle SPAMM tagged
sequence. The map has been restricted to myocardium due to the influence of GASM segmentation.

8.9 A Simple Clinical Application: Myocardium Rotation.

There are many applications that could be derived from the information extracted by both point tracking
and structure segmentation such stress and strain parameters. The concept of strain, a measure of
length change or displacement gradient, and stress, the force per unit area on an infinitesimally small
plane surface within the material, are of fundamental importance in assessing the regional function of
ventricular muscle and measuring myocardial viability in order to classify whether a heart beats normally
or not. Other applications can be those that mix information from orthogonal tagged planes (not treated
in this work) to construct a full 3D model of myocardial fiber function from which data related to the
ventricular band could be obtained. The application we derived from data provided by HARP - GASM,
is about myocardial rotation in the six zones in which it is divided namely A, AS, AL, I,IS and IL as
depicted in Figure 22 (a). To this end we have calculated the absolute and relative rotation suffered
from each point in these particular zones and, as output, we have shown the mean of all of them. This
have been done for all frames of a particular tomographic plane.

To calculate the relative rotation suffered from a particular point in the myocardium and in the ith
frame, xi, we consider the angle between the vectors vi = xi −Oi and vi+1 = u(xi, i)−Oi+1, where Oi

and Oi+1 are the centers of mass of the LV in ith and (i + 1)th frame respectively; and u(·, i) is the ith
displacement map provided by HARP method between frames i and i+1 (Figure 29). Absolute rotation
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Figure 26: Instance of the segmentation provided by GASM framework in a middle SPAMM tagged
sequence.

will be the sum of the previous relative rotations.
Physicians use the rotation information to characterize different pathologies that can affect heart

function. Thus, myocardium rotation calculated in the six different zones of the myocardium is a valuable
quantitative tool to assess myocardial dysfunctions. In Figures 30 and 31 we show separately rotation
information (absolute and relative) in case of healthy adult and a patient with cardiomyopathy, in three
acquisition planes belonging to base, middle and apex. In Figures 32, 33 and 34, we depict overlapped
rotation information belonging to healthy and pathological (Myocardiopathy) patients in basal, mid and
apical planes, so that differences appear clearer for the physicians. In the graphics legend, pathology
P#1 refers to dilated myocardiopathy, P#2 to myocardiopathy affecting LV contractility and finally
P#3 to myocardiopathy affecting RV. Some studies about myocardial rotation (or torsion) are [75], [76]
or [77].

8.10 Discussion

In this section we have successfully applied our segmentation framework GASM in which we have em-
bedded the tracking method HARP. Thus, by using HARP we have tailored a prediction step for this
particular problem and, by incorporating segmentation information in point tracking, we have avoided
multiple useless calculations in outer points.
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Figure 27: Tag tracking. Tags are manually segment in the first frame and let evolve according to the
displacement map provided by HARP method in a middle SPAMM tagged sequence.

We would like to mention a difference between the application of the GASM framework in this
problem and in the one exposed in the previous section. In the Contrast Echocardiography, we could
segment single frames independently from the others due to the fact that GASM was applied in the
snake evolution and the prediction step was the shape proposed by snake forces. This focus differs from
the way that GASM has been applied to the present problem. In this one, frames can not be segmented
independently because the prediction step is made of optical flow provided by HARP method and it
needs the whole sequence to be derived.

9 Results

9.1 On Contrast Echocardiography

Our images were acquired with a Philips Sonos 5500 (Andover, Mass) echocardiography system and the
contrast used was Sonovuer. Visualization was performed by the Power- Angio technique. To test our
algorithm, we took 180 images of dimension (480 x 385), from 4 cardiac cycles, different from those 50
used to create the training set, and applied (28) to each of them independently. When we compared the
results to the experts segmentations we found that in 95% of the cases the maximum difference reached
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Figure 28: A synthetic grid overprinted over the myocardium and deformed by displacement map pro-
vided by HARP method in a middle SPAMM tagged sequence.

Figure 29: Scheme of the method used to calculate point rotation.
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Figure 30: Rotation parameters for a healthy adult in each of the six myocardial zones in, basal a),
mid b) and apical c) plane. Continuous curve represents total rotation (respect to the first frame), and
dashed curve, the relative rotation to the previous frame.
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Figure 31: Rotation parameters for a pathological patient in each of the six myocardial zones in, basal
a), mid b) and appical c) plane. Continuous curve represents total rotation (respect to the first frame),
and dashed curve, the relative rotation to the previous frame.
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Figure 32: Rotation data mixed for healthy adults and patients with cardiac disease. Each plot belongs
to a different myocardial zone and they belong to a middle plane.
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Figure 33: Rotation data mixed for healthy adults and patients with cardiac disease. Each plot belongs
to a different myocardial zone and they belong to an apical plane.
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Figure 34: Rotation data mixed for healthy adults and patients with cardiac disease. Each plot belongs
to a different myocardial zone and they belong to a basal plane.

was less than 12 pixels and the mean difference less than 4 pixels (Figure 35). Errors in segmentation
are caused basically by a wrong initialization of the snake. In some frames, myocardium corners are not
well defined (because of the image noise) and Harris corner detector can not deal with this. Another
reason could be that the shape we are trying to segment do not belong to the learned shapes.
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Figure 35: Maximum difference a) and mean difference b).

Finally notice that we have tested the algorithm independently from each frame without tacking
advantage of the segmentation result obtained for the previous one. In practice, this is taken into
account, thus Harris corner detector (which is prone to fail in presence of some drawbacks) have to be
implemented just in the first frame where usually image artifacts are still not present. This leads to a
more robust segmentation and probably improves results obtained in previous section.
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9.2 On SPAMM Tagged MRI

Magnetic resonance images were obtained with a Phillips Intera Gyroscan 1,5 T magnetic resonance
scanner (Phillips Medical Systems, Best, The Netherlands).

The results of the whole method will be tested in two ways. First of all we will test the HARP
method performance which, as we have told, is the core for the prediction step; and second, we will
test GASM framework in segmentation performance. In addition HARP method will be tested in both
synthetic and real image sequences. Segmentation test in synthetic sequences makes no sense due to the
fact that we see tag evolution restricted to myocardium structure and segmentation has already been
done.

9.2.1 Synthetic Data

We have created a synthetic model based on the work presented in [72], where they have developed a full
3D model of a tagged LV. Nevertheless we adopt some of their ideas just to develop a 2D model that will
allow us to create tagged MR sequences and which is governed by six parameters namely, translation
in x and y, rotation, shear, eliptication and radial compression (Figure 36). These, properly mixed will
lead to planar tagged LV sequences. From the synthetic sequence we know exactly its displacement map,
which will be compared to the one given by the HARP algorithm.

Figure 36: We can appreciate in the six first rows synthetic sequences varying for each one of the
parameters x translation, y translation, rotation, shear, eliptication and radial compression. Last row
mixes all the parameters to obtain a realistic movement of the tags.

Five synthetic sequences have been created and for each of them we have calculated the difference
between both displacement maps at every point. Mean difference has been extracted. Results are shown
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in Figure 37 where we can appreciate that error is almost the same (0.4 pixels) for every frame in the
sequence. Tag evolution does not affect HARP performance in synthetic images. Nevertheless we will
see that this is not true in real data.
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Figure 37: Mean of the distance error obtained in synthetic sequences

9.2.2 Real Data

HARP method testing on real data, has been done using 6 different patients whose tomographic scan
volumes consisted of four SPAMM tagged sequences of the myocardium, each of them belonging to a
different short axis plane: one to the appex, two to the middle and the last to the base. In each sequence
we have manually tracked a set of eight points randomly distributed over the myocardium and compared
the result with the displacement map provided by the HARP method. In Figure 38 .a, .b and .c we show
the mean error of the method for the base, middle and appex planes respectively, and in Figure 38, the
total mean error.

We can appreciate that error has grown in respect to the one obtained in synthetic sequences. The
reason by which the same method applied to real images differs from previous results can be explained
by the following:

• There is an image artifact in SPAMM tagged images that is worth to be mentioned. This is
the longitudinal relaxation of magnetization, in virtue of which contrast between tags and tissue
decreases (fading) (Figure 39 (a)). This affects directly to the harmonic peaks of the Fourier
transform which are the base for HARP method making the method lose precision (Figure 39 (b)).
This artifact occurs in latest frames of the sequence. In Figure 38 we can appreciate how fading
artifact affects the HARP performance. From the sixth frame, error increases up to one pixel or
more.
There are some works that try to improve this lose of contrast as in [60]. Nevertheless the best
way to improve this drawback is by applying CSPAMM tagging [73] (Complementary SPAtial
Modulation of Magnetization) to images. This is an innovative technique of tagging to improve
the contrast of tags and minimize their fading in latest frames of the sequence.

• Another characteristic from real images is that the acquisition plane in MR scan device is fixed
while the heart moves a little along the long axis. This may cause to appear or disappear some
tags (from other planes). Obviously this artifact does not appear in synthetic images. In the base
planes, this artifact is accentuated because over-basal structures may appear. This explains why
error in base is slightly greater than in appex or middle planes.

• Finally to mention that as frequency filter, we have chosen one for the first frame big enough to
capture their movement for posterior frames while avoiding to overlap with neighboring peaks.
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Figure 38: Mean error of HARP method performed on each frame at base a), middle b) and appex c).
In the we appreciate total mean error.

Probably in real sequences the tag movement is greater than the one that initial filter can hold.
In [74] they construct optimal band pass filters to obtain HARP images.

In regard to GASM segmentation performance, we mention that given an initial segmentation, the
next one should have an error no greater than error appreciated in HARP tracking as this method is the
core of the prediction step in GASM framework. Nevertheless applying just this first step (prediction)
errors accumulate and segmentation performance fails. It is the second step (regularization) that over-
comes this problem by applying a global correction over the proposed shapes and errors remain over the
order of those appreciated in HARP performance.

A reason by which segmentation may fail, apart from previously mentioned drawbacks of the HARP
method is that current myocardium shape does not belong to the PDM created from the training set.
For this reason is important to assemble a shape set as complete as possible.

10 Conclusions

In medical imaging, automatic analysis of data provided by imaging scans is crucial in order to extract
useful, reliable and reproducible quantitative data that physicians can interpret. In the analysis process,
segmentation is the most important task to be performed and also the most difficult due to the fact that
anatomical structures are not always well defined. For this reason, we encourage to use segmentation
methods that incorporate as much a priori information about shape as possible. Thus, a method that fully
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a)

b)

Figure 39: We can appreciate the fading artifact that affects the last frames in SAPMM tagged sequences
and also their Fourier transform. HARP method is damaged by this artifact causing a loss of precision
of the method.

integrates the power of locally searching for possible contours such deformable models, with information
about target structure, will lead to a robust method capable of dealing with most of medical imaging
segmentation problems. GASM tries to fulfill this philosophy. It provides a general framework for image
segmentation by mixing local searching in the prediction step with global shape correction given by
the PDM in the regularization step. Despite the generality of GASM formulation, it is not a unique
segmentation technique that can be applied to any problem, but it has to be tailored by designing
an appropriate prediction step tacking into account both, image features and drawbacks. As instance,
our prediction step in Contrast Echocardiography allowed the epicardial contours not to shrink the
endocardial contours when not full structural information is available. By the other hand,using HARP
method in SPAMM tagged MRI as prediction step, allowed us to derive a method able to track and
segment at once and, in addition, to avoid useless calculations. In both problems, regularization step
outperformed the result given by prediction step. Thus, different prediction steps implies different
behavior and properties of the method.

GASM clearly improves any segmentation method performance by incorporating shape information
as long as the training set is complete enough in the sense that it assembles all the variability that the
structure might present.

11 Future Work
Our future work will be focused on two ways. The first one will be related to GASM where we will try
to incorporate more a priori knowledge in order to provide of more robustness the method.

The second way relates to the special application of Tagged MRI: A first task to be done is to revise our
HARP method in order to decrease the reported error in point tracking. To decrease segmentation error,
we also will create a more complete PDM that can deal with as many as myocardium deformations as
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possible and overcome the present drawback that some shapes are not contempled by the current model.
And also we will apply ICA filters in order to improve tag detection.

It also will be of interest to derive other applications, apart from rotation, that allow to extract
quantitative data prone to be used by the physicians, such as stress and strain. In order to facilitate
their job, it would be of interest to create some user friendly interface that they can easily use to open
new investigation lines.

A certain challenge will be to use orthogonal tagged planes (long axis) that allow us to derive 3D
motion and extract any data in the whole heart volume.

An interesting issue will be to use our application in CSPAMM tagged images which will provide
stability in tag contrast along the sequences and it will probably improve results.
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