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On-Board Object Detection: Multi-cue, Multi-modal

and Multi-view Random Forest of Local Experts.
Alejandro González, IEEE, David Vázquez, IEEE, Antonio M. López, IEEE and Jaume Amores

Abstract—Despite recent significant advances, object detection
continues to be an extremely challenging problem in real scenar-
ios. In order to develop a detector that successfully operates
under these conditions, it becomes critical to leverage upon
multiple cues, multiple imaging modalities and a strong multi-
view classifier that accounts for different object views and poses.
In this paper we provide an extensive evaluation that gives insight
into how each of these aspects (multi-cue, multi-modality and
strong multi-view classifier) affect accuracy both individually
and when integrated together. In the multi-modality component
we explore the fusion of RGB and depth maps obtained by
high-definition LIDAR, a type of modality that is starting to
receive increasing attention. As our analysis reveals, although all
the aforementioned aspects significantly help in improving the
accuracy, the fusion of visible spectrum and depth information
allows to boost the accuracy by a much larger margin. The
resulting detector not only ranks among the top best performers
in the challenging KITTI benchmark, but it is built upon very
simple blocks that are easy to implement and computationally
efficient.

Index Terms—Multi-cue, Multi-modal, Multi-view, Object de-
tection.

I. INTRODUCTION

DEVELOPING a reliable object detector enables a vast

range of applications such as video surveillance and

the practical deployment of autonomous and semi-autonomous

vehicles. In order to obtain a detector that successfully operates

under realistic conditions, it becomes critical to exploit sources

of information along three orthogonal axis: i) the integration

of multiple feature cues (contours, texture, etc.), ii) the fusion

of multiple image modalities (color, depth, etc.), and iii) the

use of multiple views (frontal, lateral, etc.) of the object

by learning a strong classifier that accommodates for both

different 3D points of view and multiple flexible articulations.

In this paper we perform an extensive evaluation providing

insights about how each of these three aspects affect accuracy,

both individually and when integrated together. The proposed

method (General scheme in Fig. 1) will be evaluated in key

objects for autonomous and semi-autonomous vehicles such

as pedestrians, cyclists and cars. With more than a decade

of history, by now pedestrian detection [1] is still a very
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Fig. 1. General scheme: From RGB images and LIDAR data to object
detection. RGB images and LIDAR data synchronized for multi-modal
representation. Multi-modal representation based on RGB images and dense
depth maps (obtained from LIDAR sparse data). Multi-cue feature extraction
over the multi-modal representation. Multi-view detection of different objects.

challenging task [2], [3], [4]. Car detection is very relevant

for driver assistance (e.g.ACC) and autonomous vehicles [5],

[6], [7], [8].

In order to integrate different cues we use HOG [9], that

provides a good description of the object contours, and LBP

[10] as texture-based feature. These two types of features

provide complementary information and the fusion of both

types of features has been seen to boost the performance of

either feature separately [11], [12], [13]. From the seminal

work of Dalal and Triggs [9] it has been seen that using

different types of gradient-based features and their spatial

distribution, such as in the HOG descriptor [9] provides a

distinctive representation of both humans and other objects

classes. However, there exist in the literature other approaches

such the integral channel features proposed by Dollar et
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al. [14] that allows to integrate multiple kinds of low-level

features such as the gradient orientation over the intensity and

LUV images, extracted from a large number of local windows

of different sizes and at multiple positions, allowing for a

flexible representation of the spatial distribution. In [15], [16]

it has been seen that including color boosts the performance

significantly, being this type of feature complementary to

the ones we used in this study. Context features have also

been seen to aid [17], [18] and could be easily integrated

as well. Exploring alternative types of spatial pooling of the

local features is also beneficial as shown in [6] and is also

complementary to the approach used in this paper.

In order to integrate multiple image modalities, we consid-

ered the fusion of dense depth maps with visible spectrum

images. The use of depth information has gained attention

thanks to the appearance of cheap sensors such as the one

in Kinect, which provides a dense depth map registered with

an RGB image (RGB-D). However, the sensor of Kinect has

a maximum range of approximately 4 meters and is not very

reliable in outdoor scenes, thus having limited applicability for

objects detection in on-board sequences. On the other hand,

Light Detection and Ranging (LIDAR) sensors such as the

Velodyne HDL-64E have a maximum range of up to 50 meters

and are appropriate for outdoor scenarios. In this work we

explore the fusion of dense depth maps (obtained based on

the sparse cloud of points) with RGB images. Following [19],

the information provided by each modality can be fused using

either an early-fusion scheme, i.e. at the feature level, or a late-

fusion scheme, i.e. at the decision level. In our study, using

an early fusion scheme, where descriptors from each modality

are concatenated, provided the best results.

Object detection based on data coming from multiple

modalities has been a relatively active topic of study [1], and

in particular the use of 2D laser scanners and visible spectrum

images has been studied in several works, for instance [20],

[21]. Only recently authors are starting to study the impact

of high-definition 3D LIDAR [21], [20], [22], [23], [24],

[25], [26]. Most of these works propose specific descriptors

for extracting information directly from the 3D cloud of

points [20], [22], [23], [24], [25], [26]. A common approach is

to detect objects independently in the 3D cloud of points and in

the visible spectrum images, and then combining the detections

using an appropriate strategy [22], [23], [26]. Following the

steps of [21], dense depth maps are obtained by first registering

the 3D cloud of points captured by a Velodyne sensor with the

RGB image captured with the camera, and then interpolating

the resulting sparse set of pixels to obtain a dense map where

each pixel has an associated depth value. Given this map,

2D descriptors in the literature can be extracted in order to

obtain a highly distinctive object representation. Our work

differ from [21] in that we use multiple descriptors and adapt

them to have a good performance in dense depth images.

While [21] employs a late fusion scheme, in our experimental

analysis we evaluate both early and late fusion approaches in

the given multi-cue, multi-modality framework.

Learning a model flexible enough for dealing with multiple

views and multiple positions of an articulated object is a hard

task for a holistic classifier. In order to fulfill this aspect we

Fig. 2. Multi-view, Multi-cue, Multi-modal detector scheme. 1) Split training
set samples in different views. 2) Generate a multi-modal representation using
RGB and depth. 3) Extract multi-cue features. 4) Train a random forest of
local experts for each view. 5) Ensemble different views detection.

make use of Random Forests (RF) of local experts [27], which

has a similar expressive power than the popular Deformable

Part Models (DPM) [28] and less computational complexity.

In this method, each tree of the forest provides a different

configuration of local experts, where each local expert takes

the role of a part model. At learning time, each tree learns

one of the characteristic configurations of local patches, thus

accommodating for different flexible articulations occurring

in the training set. In [27] the RF approach consistently

outperformed DPM. An advantage of the RF method is that

only a single descriptor needs to be extracted for the whole

window, and each local expert re-uses the part of the descriptor

that corresponds to the spatial region assigned to it. Its

computational cost is further significantly reduced by applying

a soft cascade, operating in close to real time. Contrary to the

DPM, the original RF method learns a single model, thus not

considering different viewpoints separately. In this work, we

extend this method to learn multiple models, one for each 3D

pose, and evaluate both the original single model approach

and the multi model approach. Several authors have proposed

methods for combining local detectors [28], [29] and multiple

local patches [30], [31], [32]. The method in [33] also makes

use of RF with local classifiers at the node level, although

it requires to extract many complex region-based descriptors,

making it computationally more demanding than [27].

Most relevant to this paper is the approach presented in

[13] where the authors combine multiple views (front, left,

back, right), modalities (luminance, depth based on stereo,
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Fig. 3. Dense depth map generation scheme. From a cloud of points to a
dense depth map: Filter cloud of points for synchronize with view field of
image. Projection of 3D points into 2D image coordinates. Interpolate depths
for getting a dense depth map.

and optical flow), and features (HOG and LBP). The main

differences between [13] and our work are as follows: i) in

order to complement RGB information, we make use of a sen-

sor modality, high-definition 3D LIDAR, which has received

relatively little attention in pedestrian detection until now, but

it is being used for autonomous driving, and ii) while [13]

makes use of an holistic classifier, we make use of a more

expressive patch-based model, and iii) in [13] multiples cues

are combined following late-fusion style, while we consider

also early-fusion, which, in fact, gives better results in our

framework.

Our analysis reveals that, although all the aforementioned

components (the use of multiple feature cues, multiple modali-

ties and a strong multi-view classifier) are important, the fusion

of visible spectrum and depth information allows to boost

the accuracy significantly by a large margin. The resulting

detector not only ranks among the top best performers in

the challenging KITTI benchmark, but it is built upon very

simple blocks that are easy to implement and computationally

efficient.

The rest of the paper is organized as follows. In Sect. II

we develop our proposal. Section III presents the experiments

carried out to assess our proposal step by step, and discuss

the obtained results. Finally, section IV draws our main

conclusions.

II. MULTIVIEW RGBD-RF FOR OBJECT DETECTION

We propose a complete framework in which our final model

incorporates the multi-cue characteristic by extracting HOG

and LBP descriptors. Also the multi-modal characteristic by

extracting information from RGB and depth modalities, which

will be combined at feature level (early fusion) or at decision

level (late fusion). Finally we will use a multi-view model

in which we will separate the problem into n− views for

combining them in a final ensemble. In Fig. 2 is shown

a scheme of the proposed method applied for pedestrian

Fig. 4. Multi- View Random Forest scheme. For each view is learnt a different
random forest, and each tree has different configuration of random patches.

detection. In addition we will model objects both holistically

and as a set of relevant patches. In the former case the model

will be learnt with linear SVM; and in the latter with a Random

Forest of Local Experts.

A. Multi-cue feature representation

In order to improve the object detection accuracy it is widely

used the incorporation of different cues or features. This

incorporation looks for complementarity by using different

cues for describing the same object. In order to incorporate

different cues in our framework we use the HOG [9] descriptor

(shape) and the LBP [34] descriptor (texture). Both descriptors

are combined using an early fusion technique, concatenat-

ing them, obtaining a robust descriptor with complementary

information (HOGLBP). HOG descriptor is composed by a

histogram of gradient orientations. Given a candidate window

the histograms are calculated on overlapped blocks inside

it. LBP descriptor calculates histograms of texture patterns

over the same overlapped blocks than HOG. This texture

patterns are based on value differences between the central

pixel and the surrounding ones in a 3× 3 neighborhood. We

use our own implementation that includes some modifications

that improve the final detection rate. The first modification

is included in the image pyramid construction. The image re-

size process is done by bilinear interpolation with antialiasing,

which helps the gradient calculation and thereby the HOG

descriptor classification accuracy. The second modification is

included in the LBP descriptor. When the value differences

are calculated we accept as equal values the ones included in

a defined range, this range (defined as ClipT h) allows that

small noises (small value changes) do not affect the texture

pattern (more details in [35]).

B. Multi-modal image fusion

Keeping in mind that more complementarity is better for

object detection, we want to explore the integration of different

modalities. Usually information is extracted from a single-

modal sensor (RGB camera), but we combine this visual
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information with 3D information extracted from a LIDAR

sensor. In order to transform the point cloud obtained using

the LIDAR into a dense depth map, we follow the approach

presented by Premediba et al. [21]. In this method, the 360◦ 3D

point cloud from the LIDAR sensor is filtered in order to take

only those points included in the viewfield of the RGB camera.

In order to do this each point Pi is projected into the image

plane using the calibration and projection matrices provided

in the dataset, using T M = P2×R0×VtC, where, P2 is the

projection matrix from camera coordinate system to left color

image coordinate system, R0 is the rectification matrix, and

VtC is the projection matrix from velodyne coordinate system

to camera coordinate system. Once we have the transformation

matrix (T M) we can project any 3D point (defined by its

3D coordinates [x3D,y3D,z3D]) to its correspondent point in

the image plane (defined by its 2D coordinates [x2D,y2D])
by applying [x2D,y2D,1] = TM ∗ [x3D,y3D,z3D,1]. Then the

points that fall inside the image borders are selected, while

the others are rejected, ending up with points that form a

sparse depth image, time and space synchronized with the

visual image. At this step by defining a neighborhood (N)

for each valid pixel of the depth map we interpolate the

information for filling the missing values. In order to calculate

the missing values we use the bilateral filtering formalism [36]:

Dp =
1

Wp
∗∑qεN Gd(‖p− q‖)∗Gi(

∣

∣Iq

∣

∣)∗ Iq where Iq is the depth

value of the point q, Gd weights points q inversely to their

distance to position p, Gi penalizes as function of their range

values, and Wp is a normalization factor. After this process,

the pixels without depth information will be filled, ending up

in a dense depth map (see Fig. 3).

At this point, for each candidate window we extract HOG

and LBP features over each modality (visual and depth). Then,

we combine these features into a single detector. There are two

approaches for performing this combination. The first one is to

use an ensemble of detectors (late fusion); in this case we train

two separate detectors, one per modality. The second one is

to combine at feature level the two modalities (early fusion);

in this case we train a single model using as descriptor the

concatenation of the features computed at each modality.

C. Multi-view classifier

In general, reducing intra-class variability is a good way

to better discriminate a class from potential false positives

(background). One of the biggest causes of the large variability

in object detection, is the pose and orientation of the object.

In order to solve this problem we propose to use a multi-view

approach. Given a set of annotated pedestrians for training a

detector, we propose to separate them into n different views

depending on its orientation and aspect ratio; obtaining in

this way a partition of n subsets where the variability among

the samples in each subset is lower than in the original set.

The partition is obtained by using a cluster method with

regular-spaced seeds in orientation space, in particular using

K-Means [37]. After splitting the training samples using this

automatic approach, we can set the canonical size of the

detection window for each subset (aspect ratio) by selecting

the mean size among the samples in each partition set. Thus,
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Fig. 5. Pedestrian Orientation Histogram and Distribution. Upper image
shows the assigned views against the angle for each training sample. Bottom
images show the training samples distribution in the clustering space (angle
and aspect ratio).

this process allows the final detector to deal with objects in

different orientations, having each orientation its own aspect

ratio (e.g. we use a different bounding box aspect ratio for

modeling frontal-viewed pedestrians than for modeling side-

viewed ones). In figure 5, 6, and 7 it is shown the training

samples and their views definition based on the clustering pro-

cess for the pedestrians, cyclists, and cars classes respectively.

In order to cluster we use the orientation angle (α) and the

aspect ratio (AR) of the sample.

D. Object model

In our study we focus on two different models: one holistic,

where the object descriptor takes into account the candidate

detection window as a whole; and a patch-based one where

random subsets of patches are used for generating different

object configurations which are further assembled to form the

overall object model. As holistic model we use the linear

SVM (linSVM) classifier which has a good compromise

between computation time and accuracy. This model learns

the max-margin hyperplane that better splits the positive and

negative samples in the descriptor space (either HOG, LBP

or HOGLBP in our case). As patch-based model we use

our Random Forest (RF) of Local Experts. The forest is

composed of trees. Each tree is able to return a classification

probability (of being object) given a candidate window that

must be classified. The forest classification probability is

obtained by averaging the classifications probabilities of the
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Fig. 6. Cyclist Orientation Histogram and Distribution. Upper image shows
the assigned views against the angle for each training sample. Bottom images
show the training samples distribution in the clustering space (angle and aspect
ratio).

trees. Each tree of the forest is a binary tree, where at

each node there is either one local expert (decision node) or

a leaf node (with the corresponding probability distribution

of object vs background). The local experts decide whether

to route the tree search towards the left or the right; a

search that starts in the root of the tree and ends in a leaf

node. The probability distribution at the reached leaf provides

the classification probability of the tree. In this case, each

expert consists in a linSVM classifier that takes into account

the descriptor (HOG/LBP/HOGLBP) of only a pre-assigned

(during the learning stage) patch within the candidate window

under classification. Thus, each tree corresponds to a different

configuration of patches (see Fig. 4), and thus the forest

is an ensemble of patch-based configurations which where

automatic learned. In this paper we use the RF formed by

100 trees, 7 levels as maximum depth, we refer to [27] for

details about the training of such RF of local experts.

III. EXPERIMENTAL RESULTS

In this section we will evaluate each step of the proposed

approach: multi-cue, multi-modal and multi-view as we have

described in previous sections, in order to fulfill this evaluation

we will use HOG and LBP features and as classifier the SVM

with linear kernel, and the Random Forest. Letting us with

a bunch of possibles detectors: HOG/linSVM, LBP/linSVM,

HOGLBP/linSVM, HOGLBP/RF. We will use as baseline for
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Fig. 7. Car Orientation Histogram and Distribution. Upper image shows the
assigned views against the angle for each training sample. Bottom images
show the training samples distribution in the clustering space (angle and aspect
ratio).

comparing the different steps the HOG/linSVM detector which

was the first milestone in pedestrian detection.

a) KITTI Dataset: in this paper we use the KITTI

dataset since it provides synchronized camera and LIDAR

data. KITTI dataset for object detection includes 7,481 training

images and 7,518 test images, comprising a total of 80,256

labeled objects. Annotations are provided only for the training

set. For this reason we split the training set into a training set

(the first 3,740 images) and a validation set (the last 3,741

images) as in [21], these subsets are used for the evaluation of

each step of our approach. The original training and testing set

will be used for training and testing the optimal configuration

of the detector, i.e., in order to compare with the state-of-the-

art methods using the KITTI web page for submitting results.

During training we consider pedestrians, cyclists and cars

higher than 25 pixels and not occluded (Reasonable subset).

b) Evaluation protocol: As evaluation methodology we

follow the de-facto Caltech standard for pedestrian detection

[4], i.e., we plot curves of false positives per image (FPPI)

vs miss rate. The average miss rate (AMR) in the range of

10−2 to 100 FPPI is taken as indicative of each detector

accuracy, i.e.. the lower the better. Also we will evaluate using

the KITTI evaluation framework in which the precision-recall

curve is calculated for ranking the methods by the average

precision (AP), i.e., the higher the better. For testing we use

the reasonable subset in the caltech evaluation and the KITTI

evaluation is performed over three different subsets depending
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Fig. 8. Results over validation set using a) HOG/linSVM, b) LBP/linSVM, c) HOGLBP/linSVM, d) HOGLBP/RF. All detectors under the different sources:
RGB (Red), Depth (Green) and RGB+Depth (Early fusion (Blue) and late fusion(Black)); and using a single-view (Continuous line) and multi-view (Dot line)
approaches. The number in parenthesis for each curve represents the average miss rate (AMR).

on height and occlusion level: easy subset (Min height: 40

px; max occlusion level: fully visible; max truncation: 15%),

moderate subset (Min height: 25 px; max occlusion level:

partly occluded; max truncation: 30%), hard subset (Min

height: 25 px; max occlusion level: difficult to see; max

truncation: 50%). This KITTI evaluation will be performed

in the validation set and in the final testing set.

c) Multi-cue: We start by evaluating the gain obtained

by using multiple cues, for that reason we start by comparing

each single-view (SV) detector. However, first of all we

have tuned the LBP parameters, getting ClipThRGB = 4 and

ClipT hDepth = 0.2. These parameters mean that, for calculat-

ing the texture pattern, we will treat as the same value those

in the range on 4 luminance units for the RGB modality and

0.2 meters in depth. As it is usual for pedestrian detection

to use the Caltech standard evaluation method, we plot the

FPPI curves in Fig. 8. Comparing the AMR in SV experiments

HOG/linSVM (Fig. 8a) against HOGLBP/linSVM (Fig. 8c),

we can see that the gain in AMR is around 12 points with RGB

modalities, around 4 with depth, around 2 when combining the

two modalities using an early fusion approach, and 7 when

a late fusion approach is used. The same behavior can be

seen also if we compare the LBP/linSVM (Fig. 8c) against the

HOGLBP/linSVM where we obtain improvements of around

10 , 3, 4 and 5 respectively.

d) Multi-modal: Regarding the evaluation of the multi-

modal approach, we compare the SV-HOG/linSVM detector

over RGB and Depth against its combination RGB+Depth. In

order to select the best type of modality fusion we evaluate

both the late and early fusion techniques. In Fig. 8 we can see

that the early fusion method improves the performance (lower

AMR) with respect to the late fusion for all the proposed

models. Taking into account this fact for now ahead when

we compare against RGB+Depth we are making reference

to the early fusion approach. In the rest of the paper it will

be used the KITTI evaluation method in order to compare

the results using all the different classes. In Tables I, II,

and III (Pedestrian, Cyclists and Cars results respectively)

comparing the SV experiments HOG/linSVM in RGB, Depth

and RGB+Depth we can see how the multi-modal experiments

outperform the single-modal ones. In pedestrian class (Table

I) we obtain an AP gain of ∼ 21 against RGB and ∼ 12
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TABLE I
RESULTS FOR PEDESTRIAN DETECTION USING DIFFERENT SUBSETS FOR TRAINING (SINGLE-VIEW (SV), MULTI-VIEW (MV)), MODALITIES, AND

DETECTORS, TESTED OVER THE VALIDATION SET. FOR EACH DETECTOR AP FOR KITTI EVALUATION IS SHOWN . BEST AP FOR EACH DETECTOR IN

EACH MODALITY IS INDICATED IN BOLD, WHILE THE BEST DETECTOR ACROSS THE DIFFERENT MODALITIES IN RED

Evaluation Detector
RGB Depth Early Fusion Late Fusion

SV MV SV MV SV MV SV MV

AP (Easy)

HOG/linSVM 0.50 0.54 0.59 0.62 0.71 0.73 0.63 0.65
LBP/linSVM 0.52 0.56 0.62 0.65 0.69 0.75 0.66 0.68
HOGLBP/linSVM 0.64 0.68 0.65 0.67 0.74 0.76 0.70 0.73
HOGLBP/RF 0.73 0.75 0.74 0.75 0.79 0.79 0.77 0.79

AP (Moderate)

HOG/linSVM 0.38 0.41 0.46 0.47 0.57 0.58 0.49 0.51
LBP/linSVM 0.41 0.44 0.48 0.50 0.57 0.61 0.52 0.54
HOGLBP/linSVM 0.50 0.54 0.51 0.52 0.61 0.62 0.56 0.58
HOGLBP/RF 0.59 0.60 0.58 0.58 0.65 0.66 0.62 0.63

AP (Hard)

HOG/linSVM 0.33 0.35 0.40 0.41 0.50 0.51 0.43 0.44
LBP/linSVM 0.36 0.38 0.42 0.43 0.50 0.53 0.45 0.47
HOGLBP/linSVM 0.43 0.47 0.45 0.46 0.53 0.55 0.49 0.51
HOGLBP-RF 0.51 0.52 0.50 0.50 0.56 0.57 0.54 0.55

TABLE II
RESULTS FOR CYCLIST DETECTION USING DIFFERENT SUBSETS FOR TRAINING (SINGLE-VIEW (SV), MULTI-VIEW (MV)), MODALITIES, AND

DETECTORS, TESTED OVER THE VALIDATION SET. FOR EACH DETECTOR AP FOR KITTI EVALUATION IS SHOWN . BEST AP FOR EACH DETECTOR IN

EACH MODALITY IS INDICATED IN BOLD, WHILE THE BEST DETECTOR ACROSS THE DIFFERENT MODALITIES IN RED

Evaluation Detector
RGB Depth Early Fusion Late Fusion

SV MV SV MV SV MV SV MV

AP (Easy)

HOG/linSVM 0.43 0.52 0.44 0.42 0.62 0.66 0.48 0.51
LBP/linSVM 0.34 0.48 0.48 0.46 0.62 0.62 0.50 0.53
HOGLBP/linSVM 0.49 0.60 0.48 0.49 0.69 0.69 0.55 0.59
HOGLBP/RF 0.64 0.70 0.49 0.49 0.72 0.73 0.54 0.57

AP (Moderate)

HOG/linSVM 0.31 0.41 0.30 0.29 0.44 0.49 0.34 0.39
LBP/linSVM 0.29 0.41 0.34 0.33 0.48 0.50 0.38 0.43
HOGLBP/linSVM 0.39 0.50 0.34 0.35 0.52 0.54 0.42 0.48
HOGLBP/RF 0.50 0.57 0.33 0.35 0.52 0.55 0.41 0.45

AP (Hard)

HOG/linSVM 0.28 0.38 0.28 0.27 0.41 0.45 0.32 0.36
LBP/linSVM 0.26 0.38 0.31 0.30 0.45 0.46 0.35 0.39
HOGLBP/linSVM 0.35 0.46 0.32 0.33 0.48 0.50 0.38 0.44
HOGLBP/RF 0.45 0.52 0.31 0.32 0.47 0.50 0.38 0.41

TABLE III
RESULTS FOR CAR DETECTION USING DIFFERENT SUBSETS FOR TRAINING (SINGLE-VIEW (SV), MULTI-VIEW (MV)), MODALITIES, AND DETECTORS,
TESTED OVER THE VALIDATION SET. FOR EACH DETECTOR AP FOR KITTI EVALUATION IS SHOWN . BEST AP FOR EACH DETECTOR IN EACH MODALITY

IS INDICATED IN BOLD, WHILE THE BEST DETECTOR ACROSS THE DIFFERENT MODALITIES IN RED

Evaluation Detector
RGB Depth Early Fusion Late Fusion

SV MV SV MV SV MV SV MV

AP (Easy)

HOG/linSVM 0.26 0.72 0.22 0.78 0.29 0.77 0.17 0.78
LBP/linSVM 0.11 0.62 0.04 0.70 0.11 0.71 0.10 0.71
HOGLBP/linSVM 0.16 0.66 0.18 0.70 0.21 0.72 0.06 0.72
HOGLBP/RF 0.29 0.81 0.38 0.81 0.37 0.82 0.24 0.82

AP (Moderate)

HOG/linSVM 0.21 0.67 0.17 0.56 0.24 0.69 0.18 0.71
LBP/linSVM 0.11 0.60 0.03 0.61 0.11 0.65 0.12 0.67
HOGLBP/linSVM 0.14 0.65 0.16 0.63 0.19 0.67 0.11 0.68
HOGLBP/RF 0.26 0.75 0.28 0.61 0.29 0.76 0.24 0.75

AP (Hard)

HOG/linSVM 0.17 0.52 0.14 0.44 0.19 0.54 0.15 0.57
LBP/linSVM 0.10 0.48 0.03 0.49 0.09 0.52 0.09 0.54
HOGLBP/linSVM 0.11 0.52 0.13 0.50 0.14 0.54 0.09 0.55
HOGLBP/RF 0.21 0.61 0.22 0.48 0.23 0.62 0.20 0.62
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Fig. 9. Detection results for pedestrians, cyclists, and cars, in the moderate case (Tables I, II, and III for details). In red the best result of each configuration.

against Depth. This behavior is repeated if we look at the

different SV proposed models: LBP/linSVM (∼ 17 / ∼ 7),

HOGLBP/linSVM (∼ 10 / ∼ 9) and HOGLBP/RF (∼ 6 / ∼ 5).

Repeating this analysis in cyclists (Table II)and cars classes

(Table III) we observe improvements in all different detectors

if we compare the multi-modal version against its single-modal

counterpart.

e) Multi-view: In order to show the gain obtained by the

introduction of a multi-view (MV) model we will compare the

SV-HOG/linSVM against the MV version. In Table IV shows

the different view’s relevant values, min and max angle, aspect

ratio and number of samples. The number of views for each

class is defined according to the appearance symmetries of

the class. For instance, pedestrians present a very similar pose

appearance when imaged from frontal and rear views; thus,

we use a single frontal-rear view. Analogously, for left and

right views; thus, we use a single left-right view. Note that

frontal-rear and left-right views look different, mainly due to

the pose of the legs and arms. Vehicles are very different

than pedestrians in this sense. For instance, for some vehicles

even frontal and rear views are really different. Therefore, we

decided to incorporate more views, in particular eight: frontal,

rear, right, left, right-frontal, left-frontal, right-rear, and left-

rear. Cyclists correspond to an intermediate situation between

pedestrians and vehicles. However, we think they are more

close to pedestrians and, therefore, for this study we have

assumed frontal-rear and left-right differences, i.e. two views

too. Looking again at Tables I, II, and III, where the results

for the different classes are tabulated, and comparing the SV-

HOG/SVM against its MV counterpart, for pedestrian detec-

tion (Table I) we obtain an AP improvement of ∼ 4 (RGB), ∼ 3

(Depth) and ∼ 2 (RGB+Depth). The same behavior is obtained

by comparing the other SV pedestrian models against its MV

counterpart: LBP/linSVM (∼ 4 / ∼ 3 / ∼ 6), HOGLBP/linSVM

(∼ 4 / ∼ 2 / ∼ 2) and HOGLBP/RF (∼ 2 / ∼ 1 / ∼ 0).

Following the same analysis in cyclists (Table II) and cars

detection (Table III), we observe a similar behavior getting

improvements in each one of the proposed detectors.

f) Discussion: Each of the mentioned detectors in Sec-

tion III is developed using RGB, Depth and Early Fusion

and Late Fusion information sources in order to compare the

accuracy under the different conditions. Also for evaluating

the multi-view performance the experiments are carried out

using a single-view (all samples) and a multi-view (sam-

ples divided in different views). In Tables I, II, and III we

show the accuracy measurements over the validation set. The

measurements include the KITTI evaluation methodology for

easy, moderate and hard pedestrian subset. Figure 9 shows
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Fig. 10. Precision-recall curve of the testing set for each subset: easy, moderate and hard, for pedestrian, cyclist and car classes.

TABLE IV
MULTIVIEW PARTITION

Class View
Angle

Aspect Ratio Num. Samples
min max

Pedestrian

Left 136 219
2.50 940

Right -42 37

Front 37 136
2.69 1415

Back 219 318

Cyclist

Left 127 234
1.85 328

Right -68 49

Front 49 127
0.97 760

Back 234 292

Car

Right -44 4 0.37 902

Right-Front 4 65 0.36 274

Front 65 107 0.74 1713

Front-Left 107 151 0.50 4170

Left 151 219 0.37 1194

Left-Back 219 257 0.57 1850

Back 257 284 0.84 4061

Back-Right 284 316 0.55 1542

graphically the results for the moderate case. Regarding the

obtained results it is easy to see the accuracy improvements

at each step of the proposed method. First we can see the

improvement introduced by the RF over the other detectors.

Comparing the results obtained in each column (training subset

and information source) we obtain always the best accuracy

in the HOGLBP/RF detector. The second improvement is

introduced by the multi-view proposed method, comparing

each row (detector) we obtain the best performance for each of

the information sources (RGB, Depth, Early Fusion and Late

Fusion) when we perform the multi-view ensemble classifier.

The third improvement is introduced by the early fusion of

information sources, in this case for each detector and given

a training subset we obtain the best performance in the Early

Fusion experiment.

An interesting result can be observed in Table II (cyclist).

In particular, SV and MV models report very similar accuracy

when relying on Depth. In fact, only for HOG+LBP the MV

models tend to perform better than the SV. The reason is

that many times the bike itself is not visible for the LIDAR,

so cyclists resemble pedestrians. Thus, while the SV models

tend to be more blurry, in this case when using a MV model,

some of the views may be especially sensitive to pedestrians;

which turns out to be worse for the evaluation protocol we

follow, since when a pedestrian is classified as cyclist, this is

considered an error (false positive). However, this may depend

a lot in the particular data we have for training. Overall, still

combining multiple features, views and modalities compensate

TABLE V
EVALUATION AND COMPARISON OF MULTI-VIEW RGBD RF DETECTOR

USING THE FINAL TEST SET FOR PEDESTRIAN DETECTION

Rank Method Moderate Easy Hard

1 Regionlets 61.15 % 73.14 % 55.21 %

2 MV-RGBD-RF 56.59 % 73.30 % 49.63 %

3 pAUCEnsT 54.49 % 65.26 % 48.60 %

TABLE VI
EVALUATION AND COMPARISON OF MULTI-VIEW RGBD RF DETECTOR

USING THE FINAL TEST SET FOR CYCLIST DETECTION

Rank Method Moderate Easy Hard

1 Regionlets 58.72 % 70.41 % 51.83 %

2 MV-RGBD-RF 42.61 % 52.97 % 37.42 %

3 pAUCEnsT 38.03 % 51.62 % 33.38 %

this circumstance. On the other hand, it is more difficult to

confuse pedestrians with cyclists, because the pose of the

cyclists may be inclined on the bike, thus not common for

pedestrians. This fact, together with the circumstance of having

less training examples of cyclists that pedestrians and cars,

lead to a poorer detection accuracy for cyclist than for the

other classes, which can be seen by comparing Tables I, II,

and III, as well as in Fig. 10.

If we compare the baseline method SV-HOG/linSVM

against our proposed multi-cue, multi-modal and multi-view

Random Forest of Local Experts we obtain an AP gain of ∼ 29

in pedestrians detection, ∼ 30 in cyclists detection, and ∼ 50

in cars detection, in the validation set (Tables I, II, and III

respectively).

Regarding the final approach MV-HOGLBP/RF early fusion

of RGB and Depth in Table V and comparing against the meth-

ods with an associated paper in the competition, we obtain an

AP of 73.30%, 56.59%, 49.63% for the easy, moderate and

hard subset respectively, ranking the second best pedestrian

detector in the challenge. In Table VI, we obtain an AP of

TABLE VII
EVALUATION AND COMPARISON OF MULTI-VIEW RGBD RF DETECTOR

USING THE FINAL TEST SET FOR CAR DETECTION

Rank Method Moderate Easy Hard

1 spLBP 77.39 % 87.18 % 60.59 %

2 Regionlets 76.45 % 84.75 % 59.70 %

3 3DVP 75.77 % 87.46 % 65.38 %

4 SubCat 75.46 % 84.14 % 59.71 %

5 AOG 71.88 % 84.36 % 59.27 %

6 MV-RGBD-RF 69.92 % 76.40 % 57.47 %
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53.97%, 42.61%, 37.42% for the easy, moderate and hard

subset respectively, ranking the second best cyclist detector

in the challenge. Finally in Table VII, we obtain an AP of

70.40%, 69.92%, 57.47% for the easy, moderate and hard

subset respectively, ranking the sixth best car detector in the

challenge. Fig. 10, shows the precision-recall curves obtained

over each subset using the final approach.

It is worth to mention that the first ranked method in pedes-

trian/cyclist detection, i.e. Regionlets [38], appeared posterior

to our random forest of local experts but has common key

ideas such as using HOG and LBP as features, and being

patch-based. Thus, we think our conclusions also apply for

them. Analogously, spLBP [39] is a better ranked method

for car detection which appeared after our proposal, sharing

ideas such as the subcategorization (multi-view approach) as

well as using patch-based features (ACF [14]) too. Therefore,

in line with our conclusions. In fact, new approaches are

constantly appearing in this ranking, especially since the

irruption of Convolutional Neural Networks (CNNs) in the

computer vision community. In fact, as future work we plan

to evaluate the use of not too deep CNNs as multi-cue, multi-

view, and multi-modal local experts.

Finally, it is also worth to mention the computational

complexity, in comparative terms, of applying multi-view

multi-modal models. First of all, note that many methods

in the literature use HOG and LBP as features, as well as

pyramidal sliding window for providing candidate windows

for their classification. Thus, our method is not different

in this. Second, regarding the MV setting with respect to

the SV setting, we remark that the same pyramids of HOG

and LBP features have been used to apply SV and MV

models; therefore, the main cost of the algorithm, i.e. feature

extraction, is shared, it does not depend on the number of

views. The only difference is in the number of scalar products

of the object models (holistic linSVM, small linSVMs of

RF nodes) times the feature vectors (HOG, LBP, HOGLBP).

If the computational complexity of such scalar products for

evaluating a single view is O(c), to evaluate nv views, will

be O(nvc). Third, a similar reasoning applies when we have

to detect different objects. We have used the same pyramid

of features for all cases, the differences among objects is,

again, the number of scalar products (models × features)

required in each view of each object. Overall, lets O(cm
f ) be

the computational complexity of generating the pyramid of

features for the modality m (depth, RGB), lets O(co
v) be the

average complexity of the mentioned scalar products for a

single view of the object o, lets no
v be the number of views

considered for the object o, lets N be the number of objects

we want to detect, and lets M be the number of considered

modalities; then, the computational complexity of the multi-

view multi-modal approach is O((∑N
o=1 no

vco
v)+(∑M

m=1 cm
f )). As

a reference, for an image of size of 1242× 375pixels, our

RGB-SV-HOGLBP/linSVM pedestrian detector runs at 2.5fps

in a CPU i7-5930K, at 119fps in a NVIDIA GTX960, and at

20fps in a NVIDIA Tegra X1.

IV. CONCLUSIONS

In this paper we develop a complete multi-cue, multi-

modal and multi-view framework for object detection. We have

shown the applicability to different models (holistic, patch-

based), obtaining significant accuracy improvements. In this

paper we focus on object detection using HOG/linSVM as

baseline applying the different proposed method: different cues

(HOG and LBP), different modalities (RGB and Depth) and

different views (Frontal, Lateral, etc.), thus, our immediate

future work will focus on detection using more complex

features (motion, context), classification algorithms (CNN),

and modalities (disparity, far infrared). Also the candidate

generation and re-localization based on segmentation as in

[38] could be integrate in this pipeline improving the obtained

results.
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Barcelona (UAB) in 2008. He received his M.Sc.
in Computer Vision and Artificial Intelligence in
2009 and his Ph.D. degree in 2013 at the Com-
puter Vision Center (CVC/UAB). He is currently
a research scientist at CVC. His research interests
include pedestrian detection, virtual worlds, domain
adaptation and active learning. He is a member of
the IEEE.

Jaume Amores received the Ph.D. degree from the
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