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Graph-based representations of patterns are very flexible and powerful, but they are

not easily processed due to the lack of learning algorithms in the domain of graphs.
Embedding a graph into a vector space solves this problem since graphs are turned into

feature vectors and thus all the statistical learning machinery becomes available for graph

input patterns. In this work we present a new way of embedding discrete attributed
graphs into vector spaces using node and edge label frequencies. The methodology is

experimentally tested on graph classification problems, using patterns of different nature,
and it is shown to be competitive to state-of-the-art classification algorithms for graphs,

while being computationally much more efficient.
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1. Introduction

Pattern recognition algorithms are usually designed for feature vector representa-

tions of data. Formally, a given family of objects —or more generally, patterns—

is represented in terms of numerical vectors the components of which are measure-

ments on the underlying objects. Such measurements are of crucial importance to

the problem being solved, and a proper representation in terms of good features

∗This work was done while Jaume Gibert was pursuing his Ph.D. title in the Computer Vision

Center of the Universitat Autònoma de Barcelona, Spain.
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is a key step in successfully solving pattern recognition problems. Industrial qual-

ity control, biometric person identification, optical character recognition and many

other tasks are prominent examples that have been tackled with feature vector

representations10.

The main characteristic of feature vectors that makes them widely used is the

fact that vectorial data are easily processed. Many operations on vectors are easily

accomplished due to the flexibility of vectorial spaces. This situation has led the ma-

chine learning community to develop a rich set of data processing algorithms that

have been successfully applied to multiple kinds of problems. Particular examples

include dimensionality reduction via Linear Discriminant and Principal Component

Analysis10, classification by means of Artificial Neural Networks2 and Support Vec-

tor Machines47, and clustering using k-Means and Gaussian Mixture Models10.

We should, however, point out a main restriction regarding feature vectors as

a representational paradigm of patterns. In general, there is no natural way of

representing structural relations between parts of the considered patterns under a

vectorial representation. Moreover, statistical feature vectors are restricted to be

all of the same dimension no matter the differences in terms of the inherent com-

plexity the underlying objects exhibit. These problems are easily solved by using a

representation of patterns in terms of graphs. Graphs can represent both numeri-

cal measurements and structural relations between these measurements. Numerical

measurements can be represented as labels of nodes and the structural relations

—together with some properties of such relations— can be represented by edges

between nodes. Graph-based representations for pattern recognition have been re-

cently gaining popularity and now form an important branch of research among

the pattern recognition community. An interesting survey on graph-based pattern

recognition problems and applications can be found in Ref. 8.

Despite their representational power, graphs also exhibit some drawbacks.

Mainly, these drawbacks regard the set of available algorithmic tools for processing

them and their computational complexity. As a matter of fact, even simple opera-

tions between graphs may be cumbersome to define. Classically, the only existing

pattern recognition algorithms that are available for processing instances in the

graph domain are classifiers of the k-Nearest Neighbor family together with some

similarity measure between graphs. In the past years, many efforts have been made

to overcome such limitations6. Two prominent lines of research are graph kernels

and graph embedding into vector spaces.

Graph kernels is an important research line that aims at bridging the gap be-

tween the structural formalism of graphs and vector-based machine learning algo-

rithms. By defining kernel functions for graphs one is directly capable of apply-

ing kernel machines in the domain of graphs. Kernel machines are learning algo-

rithms that are defined in terms of scalar products between input patterns. Mercer’s

theorem47 assures that any kernel function is in fact equivalent to a scalar product

in some Hilbert space and thus any learning algorithm that is defined in terms of

scalar products can be kernelized. By defining a graph kernel one can also use this
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property and make kernel machines applicable to the graph domain. Graph kernels

have been intensively investigated so far14. Diffusion kernels are those kernels that

are based on exponentiating a similarity matrix between graphs29,27. Convolution

kernels build similarity measures between graphs by convoluting similarity measures

between smaller parts of the graphs which, in general, are easier to compute21,52.

Finally, walk kernels are the family of kernel functions that compute the similarity

between two input graphs by looking for the common random walks the involved

graphs share25,4,15. Recently, in Ref. 50, a comprehensive work has been published

where a unification of several graph kernels is proposed.

The other prominent line of research is graph embedding into vector spaces.

They provide an interesting way of making applicable any learning algorithm orig-

inally designed for feature vectors to graph-based representations. The main idea

is to define a way to map every graph in a given dataset into a point in a vector

space. Several ways of assigning pattern vectors to graph-based representations are

known from the literature. A very well known example is the one in Ref. 30. The

authors propose a way of assigning a feature vector to every graph by making an

eigen-decomposition of its adjacency matrix. From the leading eigen-modes of the

adjacency matrix, several unary and binary features are extracted and arranged

as the components of a feature vector. For instance, features are defined in terms

of leading eigenvalues or inter-mode distances. Another example of graph embed-

ding is the one proposed in Ref. 54. In this case, the authors use the Laplacian

matrix and its eigen-decomposition to extract features for a vector representation

of graphs. By sampling elementary symmetric polynomials on the eigen-modes of

the Laplacian matrices, this approach permits to extract node invariant features

for the vectorial representation of graphs. A recent work following this line of re-

search is the one in Ref. 41. The Ihara Zeta function is a model that characterizes

a graph in terms of its prime cycles. In Ref. 41, it is used together with the coeffi-

cients of a polynomial expansion to properly characterize graphs in a vector form.

Another notable work is the one proposed in Ref. 44. Based on the dissimilarity

representation formalism39,40, vectorial representations of graphs are extracted by

computing the edit distance of a given graph to a set of graph prototypes. The

distances of a graph to these prototypes constitute the components of the final vec-

torial representation. In fact, this methodology leads to high classification rates on

various diverse datasets of graphs. Another family of embedding methods are the

so-called isometric embeddings. Given a dissimilarity matrix of graphs, points in a

vector space might be built so that they respect as much as possible the original

distances in the graph space. A prominent example can be found in Ref. 23, where a

PCA-inspired algorithm is applied to a given dissimilarity matrix based on constant

shifting embedding. Finally, in the field of chemoinformatics, we also encounter the

so-called fingerprint characterization of molecules16. Particular molecular substruc-

tures (subgraphs) are counted in each molecule and a feature vector is built based

on the occurrence of each of these substructures. For instance, in Refs. 28, 22 the

authors compute vectorial features based on particular paths or cycles that occur



March 15, 2013 13:21 WSPC/INSTRUCTION FILE jgibert˙IJPRAI

4 J. Gibert, E. Valveny and H. Bunke

in every molecule.

As already stated, in contrast to graph kernels which make applicable only ker-

nel machines to the graph domain, graph embeddings make any learning algorithm

applicable to graph-based pattern representations. The main drawback that graph

embedding methodologies exhibit is, however, their high computational complex-

ity. In some cases, an eigen-decomposition of a matrix has to be performed for

every graph. In others, several edit distances to a set of prototypes have to be

computed. Finally, in the case of the fingerprint characterization, several subgraph

structures need to be sought in every graph which constitutes a hard graph match-

ing problem. In this work we aim at overcoming these limitations and present an

efficient graph embedding methodology for graphs with discrete attributes. It is

essentially an arrangement of the information stored in the nodes and the edges

of the graphs in a vectorial form. This embedding is conceptually simple and has

a very low computational complexity. We define a vectorial representation for a

discrete attributed graph in terms of frequencies of its node and edge labels. In

particular, the vectorial representation we propose has a natural link to the above

mentioned random walk family of kernels and the so-called fingerprint character-

ization of molecules. The proposed features might be understood as 0-length and

1-length walks in the graphs. Random walk kernels provide an implicit formulation

of walks of unrestricted length while fingerprint methodologies build up a pattern

vector for graphs counting occurrences of particular substructures. The relation be-

tween our proposal and these approaches is clear since we only consider a subset of

walks in the graphs and these are also counts of simple substructures. More details

on these connections as well as a discussion of the advantages of our proposal with

respect to these systems will be given in Section 3.4.

The remainder of this paper is structured as follows. In the next section we

introduce the basic notation. We also present in detail graph edit distance and a

corresponding graph kernel that will serve us as a reference system. In Section 3, we

provide a formal description of the proposed embedding methodology and discuss

the existing connections with other graph characterization formalisms. In Section

4, we present the experimental part of this work. Finally, Section 5 concludes the

article by summarizing the main contributions and discussing open issues.

2. Graph Matching

In this section, we recall some concepts related to graphs and graph matching and

establish the notation that is going to be used on this paper from now on.

2.1. Basics Concepts

Definition 1. (Graph) A graph g is a four-tuple g = (V,E, µ, ν), where V is a

non-empty set of nodes, E ⊆ V × V is the set of edges, µ : V −→ LV is the node

labelling function and ν : E −→ LE is the edge labelling function. LV and LE are

the corresponding sets of labels for the nodes and edges, respectively.
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An edge e ∈ E in a graph g is given by its source and its target nodes, e = (u, v).

A graph is called undirected if for each edge (u, v) ∈ E there exists the edge

(v, u) ∈ E. A walk of length n is a sequence of n + 1 nodes (v1, . . . , vn+1), where

vj ∈ V, ∀ j ∈ {1, . . . , n + 1} and (vi, vi+1) ∈ E, ∀ i ∈ {1, . . . , n}. The sets of labels

can be of any type, thus allowing for a wide spectrum of graph representations. For

instance, the set of node and edge labels can be finite alphabets, sets of numbers, or

even sets of vectors. A special labelling function is the one that maps every node (or

edge) to the same label, called the null label ε. In this situation the graph is said to

be node unattributed (or edge unattributed). When one of the labelling functions

is of this special type, we can omit it in the definition of the graph. For instance, an

edge unattributed graph is defined by g = (V,E, µ). In this paper, we will mainly

work with undirected graphs whose node and edge labelling sets are always finite

discrete alphabets: LV = {α, β, γ, . . . , ω} and LE = {a, b, c, . . . , z}.

2.2. Exact and Inexact Graph Matching

Graph matching is the process by which one is capable to tell how similar or dis-

similar two graphs are. Graph matching techniques can be split into two main

categories, namely, exact and inexact graph matching. Exact graph matching aims

at deciding whether there is a one-to-one map from the nodes of one graph to the

nodes of the other graph respecting the topology and the labelling characteristics of

the involved graphs. Such a map is called a graph isomorphism and, if there exists

a graph isomorphism, the two corresponding graphs are called isomorphic. In the

context of exact graph matching, similarity measures can be defined by means of

maximum common subgraph and minimum common supergraph7,13,51. However,

such approaches are often not applicable to pattern recognition problems since the

extraction of graphs from patterns is usually a noisy procedure that leads to errors

and distortions. Thus, more general algorithms that are capable of coping with

structural deformations and labelling errors are needed.

This leads to the definition of the second category of graph matching algorithms,

which consists of the so-called error-tolerant, or inexact, methods. Several error-

tolerant graph matching algorithms have been proposed in the literature8. Because

of its broad applicability, we describe in the next section graph edit distance as the

main paradigm of error-tolerant graph matching5,46,45. In the experimental part of

this work, we will use it as a reference method to compare our approach with.

2.3. Graph Edit Distance

The main idea of graph edit distance is to define a dissimilarity measure between two

given graphs by taking into account the minimum number of structural transfor-

mations that are needed to convert one graph into the other. Basic edit operations

are defined in terms of insertion, deletion and substitution of nodes and edges.

More precisely, given two graphs g1 and g2, a sequence of edit operations

e1, e2, . . . , en is sought, consisting of the deletion of some nodes and edges of the first
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graph g1, substituting some other nodes and edges of g1 by those of g2, and finally

inserting the nodes and edges that are needed to obtain the second graph g2. Such

a sequence of operations is called an edit path and there is obviously an infinite

number of edit paths that transform graph g1 into graph g2. For instance, one could

always remove all nodes and edges of the first graph and then insert all nodes and

edges of the second graph. This procedure is in fact an edit path transforming g1
into g2, but it might not be regarding the actual structural deformations between

both graphs in a proper way. In order to find the most appropriate edit path out of

all existing ones, edit costs are assigned to each of the edit operations, correspond-

ing to the strength of each operation. Such edits costs are usually given in terms of

a cost function. Defining such a function is a key issue in the application of graph

edit distance and several ways have been proposed to tackle the problem35,36. The

basic idea is to define them in such a way that there exists an inexpensive edit path

between two similar graphs and an expensive one between two dissimilar graphs.

Formally, the edit distance between two graphs is thus defined as the cost of the

edit path that has the minimum cost among all the existing paths:

Definition 2. (Graph Edit Distance) Given two graphs g1 = (V1, E1, µ1, ν1)

and g2 = (V2, E2, µ2, ν2), the edit distance between g1 and g2 is defined as

d(g1, g2) = argmin
e∈E(g1,g2)

n∑
i=1

c(ei) (1)

where e = (e1, . . . , en) is an edit path from the set E(g1, g2) of all existing edit paths

from g1 to g2, and c(ei) is indicates the cost of the edit operation ei.

Computing the edit distance between two graphs is a problem of high compu-

tational complexity. Typical solutions are based on exploring all possible mappings

from the sets of nodes and edges of one graph to those of the other graph. Such

procedures have an exponential complexity in the number of nodes of the graphs

and thus they are restricted to graphs with just a small number of nodes. Subop-

timal methods for computing the edit distance of graphs have been widely studied

and they allow larger graphs as input. Commonly, suboptimal methods are based

on local search in the graphs reducing the search space of possible node-to-node

mappings3,48. In Ref. 24, the distance between graphs with unlabelled edges can be

efficiently computed by a linear programming approach. Two modifications of an

optimal algorithm are presented in Ref. 38 in order to speed up the edit distance

computation. The idea is to split the graphs into smaller subgraphs and transform

the problem into that of finding an optimal match between the sets of subgraphs

by dynamic programming. Finally, in Ref. 43, a suboptimal algorithm based on

bipartite graph matching is presented. The idea is to use Munkres’ algorithm33 to

find the optimal assignment of nodes based on a cost matrix regarding all possible

substitutions of the local structure of all nodes in the two involved graphs. This

suboptimal approach has been proved to obtained results similar to the optimal edit

distance while drastically reducing the computation time. All graph edit distance
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computations that are reported in this work will be done by using the suboptimal

approach of Ref. 43.

2.4. Relation of Graph Edit Distance to Graph Kernels

In Ref. 37, graph edit distance is used to define several graph kernels. The idea

is to convert a dissimilarity measure into a similarity measure by a monotonically

decreasing transformation.

Definition 3. (Similarity Kernel) Given two graphs g1 = (V1, E1, µ1, ν1) and

g2 = (V2, E2, µ2, ν2), the similarity kernel based on the edit distance is defined as

κG(g1, g2) = exp(−γ · d(g1, g2)) (2)

where d(g1, g2) is the edit distance between graphs g1 and g2, and γ is a positive

real-valued parameter, γ > 0.

Under this kernel, very dissimilar graphs (large edit distance) are given a low

value, close to zero, while similar graphs (low edit distance) will produce kernel

values close to one. This kernel function is, however, not positive definite since

graph edit distance is not generally a definite negative distance53,9. Nevertheless, as

pointed out in Refs. 37 and 20, there is evidence that proves the utility of indefinite

kernels in conjunction with kernel machines under certain specific conditions. This

kernel function will also be used as a reference system.

3. Embedding of Graphs via Label Frequencies

In this section, we give a formal description of our graph embedding procedure. A

graph embedding is a mapping from the domain of graphs into a Euclidean vector

space, φ : G → Rn. We define the embedding of a graph into a vector space in

terms of single and binary relations between node labels.

3.1. Basic Procedure

Given a graph g = (V,E, µ) without edge attributes and with node alphabet LV =

{l1, l2, . . . , ln}, a simple vectorial representation of g is, for instance, the one that

takes, as each component, the number of times each node label appears in the

graph, i.e.,

xg = (#(l1, g),#(l2, g), . . . ,#(ln, g)) , (3)

where #(li, g) refers to the frequency that li happens to be the label of a node

in graph g. For example, both graphs g1 and g2 in Fig. 1 have node alphabets

LV = {A,B,C} and they both have two labels A, one B and one C. Their respective

vectorial representation in this form would be xg1 = xg2 = (2, 1, 1).

In the simple example of Fig. 1, one gets the same vectorial representation

from both graphs, although the graphs differ in their edge structure. Thus, more
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Fig. 1. Two non-isomorphic graphs with the same vectorial representation counting node label
appearances.

components should be added to the vectors in order to make this representation

more discriminative. This can be achieved by considering not only the labelling

frequencies but also the frequencies of the structural links between any two differ-

ent nodes according to their corresponding attributes. More precisely, the vector

representation (3) is enriched by O(n2) components of the form

#(li ↔ lj , g), (4)

counting how many edges between every pair of node labels occur in a given graph.

With this information at hand, the vectors xg1 and xg2 in the example above will

no longer be equal because the features #(A↔ B, g) and #(A↔ C, g) are, in fact,

different. In the following order,

xg = (#(A, g),#(B, g),#(C, g),

#(A↔ A, g),#(A↔ B, g),#(A↔ C, g),

#(B ↔ B, g),#(B ↔ C, g),#(C ↔ C, g)), (5)

the vectors xg1 and xg2 become

xg1 = (2, 1, 1, 1, 2, 1, 0, 1, 0),

xg2 = (2, 1, 1, 1, 1, 2, 0, 1, 0).

Obviously, these two vectors are now a more proper representation of the graphs in

Fig. 1.

3.2. Adding Edge Attributes

The example given above is built on graphs whose edges are unattributed. Let us

now assume that graphs have discrete labels on their edges and that the edge alpha-

bet is LE = {a, b, . . . , z}. In this situation, we should take into account those edges

that are attributed with different labels but link nodes with the same attributes. In

the example of Fig. 2, both graphs have only two nodes and one edge. The topology

and their node labels are the same, but the edge labels differ.

Consequently, the relation #(A ↔ B, g) between nodes with labels A and B

should be redefined so as to distinguish between different labels. The edge on the
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BA BA
a b

Fig. 2. Two edges with different attributes joining equally labelled nodes.

left graph of Fig. 2 will count as an appearance of the relation between nodes with

labels A and B, having edge label a, this is

# ([A↔ B]a, g) ,

while the edge on the right graph will count for the relation between nodes with

label A and B, having edge label b, this is

# ([A↔ B]b, g) .

3.3. Formal Definition

To formalize the distinction of edges with different labels, consider a set of graphs

G = {g1, . . . , gN}, with gi = (Vi, Ei, µi, νi) being the ith graph in the set with

labelling alphabet LVi
for the nodes and LEi

for the edges. We assume that all

graphs in G have the same labelling alphabets, this is LVi
= LVj

and LEi
= LEj

for all i, j ∈ {1, . . . , N}. We do not assume, however, that each node and edge

label occurs in each graph. Let LV = {α1, . . . , αp} and LE = {ω1, . . . , ωq} be the

common labelling alphabets.

For each graph g = (V,E, µ, ν) ∈ G, we define p unary features regarding the

number of times each label in LV appears in the graph, this is

Ui = #(αi, g) = | {v ∈ V |αi = µ(v)} |. (6)

For the edges we will distinguish two different scenarios. We will construct fea-

tures in the case where edges of the graphs remain unattributed and features in the

case of attributed edges. Binary features for edge unattributed graphs are defined

by

Bij = #(αi ↔ αj , g)

= | {e = (u, v) ∈ E |αi = µ(u) ∧ αj = µ(v)} |, (7)

and binary features for edge attributed graphs are defined by

Bkij = # ([αi ↔ αj ]ωk
, g)

= | {e = (u, v) ∈ E |αi = µ(u) ∧ αj = µ(v) ∧ ωk = ν(e)} |. (8)

These two sets of edge features —based on whether we consider the attributes

on edges or not— give rise to two different vectorial representations of a given graph

from G.
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Definition 4. (Graph Embedding) For the edge unattributed case, the em-

bedding of a graph g ∈ G into a vector space is defined as the vector

ϕ1(g) = (U1, . . . , Up, B11, . . . , Bij , . . . , Bpp ) , (9)

and for the edge attributed case as

ϕ2(g) = (U1, . . . , Up,

B1
11, . . . , B

1
ij , . . . , B

1
pp

B2
11, . . . , B

2
ij , . . . , B

2
pp,

...

Bq11, . . . , B
q
ij , . . . , B

q
pp ), (10)

where 1 ≤ i ≤ j ≤ p, and Ui, Bij and Bkij are defined as in Eq. (6), (7) and (8),

respectively.

3.4. On the relation to other graph kernels and embeddings

As already pointed out in the introductory section of this work, the embedding

features that have been presented in the previous sections have a close relation

to other existing methodologies for graph characterization. In particular, we find

interesting connections to the fingerprint methodologies and to the random walk

family of kernels.

Fingerprint methods Fingerprint characterizations aim at describing the topo-

logical structure of graphs by counting the appearance of particular substructures

in every graph. Formally, a graph is encoded using vectorial features which re-

gard the number of times each of these substructures is present in it. Given a set

H = {hi}1≤i≤n of n graph substructures, a graph g is embedded into an n dimen-

sional space by

g 7−→ (#(h1, g),#(h2, g), . . . ,#(hn, g)), (11)

where #(hi, g) is the number of times the graph substructure hi ∈ H appears in

the graph g.

It is clear that the embedding methodology proposed in this work is a special

case of this way of characterizing graphs in terms of feature vectors. In our frame-

work, the set H is simply the set of all nodes with a certain label and the set of

all node-edge-node walks with all possible label sequences. In the case of molecule

characterization —where this approach has shown successful results—, the set of

substructures is carefully chosen based on prior chemical knowledge31. Such prior

knowledge may be available in a chemical task, but might not be at hand in the

general case. In our case, we want to be as general as possible and so we avoid

the problem of substructure selection by considering all discrete labels and pairs of

labels that occur in the graphs. In particular, the finding of these substructures is a
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much easier step than the case of more complex substructures, which will constitute

a costly graph matching problem.

Indeed, the complexity of building a system in the general fingerprint character-

ization is high since one has to decide which substructures need to be sought. On

top of that, one has to find a suitable number of such substructures. By contrast,

the complexity of building a system in our embedding framework is very low since

there are no such free meta-parameters. The number of node and edge labels to

consider is firmly defined and there are no choices.

Random walk kernels Generally speaking, random walk kernels try to infer the

similarity between two graphs by considering the amount of random walks the

involved graphs share. Formally, graphs are implicitly embedded into an infinite di-

mensional space where each feature regards the number of times a specific sequence

of node and edge labels appear in the graph. The graph similarity is computed by

the standard dot product in this implicit Hilbert space.

The idea was originally proposed in Ref. 15, where it is also shown an efficient

way to compute such kernel function by means of the direct product graph. The

direct product graph G× of two graphs g1 and g2 is the graph whose nodes are pairs

of nodes of g1 and g2 with the same labels, and edges link nodes in the product

graph whenever the corresponding pairs of nodes were also connected in the original

graphs. The key idea is to realize that walks in the direct product graph G× are

common walks between g1 and g2.

Formally, let A× be the adjacency matrix of the direct product graph of g1 and

g2. The random walk kernel is defined by

κ×(g1, g2) =

|V×|∑
i,j=1

[ ∞∑
k=0

λkA
k
×

]
ij

(12)

where V× denotes the set of nodes of the direct product graph and λ = λ0, λ1, . . .

(λk ∈ R;λk ≥ 0,∀k ∈ N) is a sequence of weights. In particular, exponentiating the

adjacency matrix to the power of k has an interpretation in terms of how many

walks of length k are there between two nodes of the direct product graph.

With respect to our embedding methodology, we build similar sets of features.

We count how many nodes are there with a certain label (all possible walks of length

0) and how many edges with a certain label are there between two specific node

labels (all possible walks of length 1). Once these features are built, we may compare

those for every two graphs doing standard vector operations for comparison.

All in all, the relation of the random walk kernel with the proposed embedding

methodology is the fact that we actually build a subset of the infinite set of fea-

tures that this kernel methodology implicitly builds. The main advantage over it

is, however, the fact that we explicitly build these features and so more flexible

comparisons can be made than just the standard dot product. Also, the efficiency

of the random walk kernel is governed by the infinite sum in Eq. (12), which is
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quite more complex than our approach.

Discussion The random walk kernel is in fact an infinite dimensional fingerprint

characterization of graphs, counting the appearance of all possible label sequences

in the graphs. Both methodologies are thus closely related. However, as the selection

of substructures in the fingerprint characterization is based on prior knowledge and

it is not easy to define in the general case, we will only use the random walk kernel

as a reference method to compare our approach with.

Extensions of the random walk kernel exist in the literature. For instance, in

Ref. 25, a marginalized version of it is proposed by considering expectation of walks

in the graphs instead of just their presence. Authors of Ref. 31 extend this very

same idea in order to avoid backtracking walks in graphs. Such extensions usually

perform better than the original formulation of the kernel. In any case, we will use

the original one since —as we have already discussed— the features we compute

are a particular subset of the implicit features of the random walk kernel and thus

we understand it is a good trade-off between the family of random walk kernels and

the fingerprint methods for graph comparison.

4. Experiments

In the experimental evaluation, we aim at discovering the differences between the

two vector embedding systems proposed in the last section in the context of various

classification tasks, and compare their performance with two reference systems.

Results will be given in terms of classification accuracies. We will describe the

datasets used in the experiments, explain the experimental setup, and show the

results that were obtained.

4.1. Databases

We have used 6 datasets of graphs for evaluation of the proposed methodology.

All graphs employed in this work have discrete attributes. The datasets are split

into two main categories regarding the nature of patterns they represent. The first

group of graphs represent objects in images and the second one represent molecule

structures.

4.1.1. Object datasets

We construct graphs with discrete attributes from three publicly available large im-

age databases. All databases represent different objects under a rotating viewpoint.

In particular, we used the Columbia Object Image Library (COIL)34, the Amster-

dam Library of Object Images (ALOI)17, and the Object Databank by Carnegie-

Mellon University (ODBK)49.

The COIL dataset is a collection of images of 100 different objects. Pictures of

each object are taken at intervals of 5 degrees of rotation, leading to 72 images per



March 15, 2013 13:21 WSPC/INSTRUCTION FILE jgibert˙IJPRAI

Embedding of Graphs with Discrete Attributes via Label Frequencies 13

object and a total of 7200 images. Examples of such images can be found in the top

row of Fig. 3. From the 72 images of each object, we have selected 24 for training

(one at each 15 degrees of rotation) and from the remaining ones, we randomly

selected 5 for validation and 10 for testing. This leads to a training set of 2400, a

validation set of 500, and a test set of 1000 images.

The ALOI dataset is a generalization of the COIL dataset. Images of 1000

objects are acquired by changing the illumination and the view pose of the objects

several times, leading to a total amount of 110,250 images. In the middle row

of Fig. 3, some examples can be found. To keep the computational time within

reasonable limits, we only use 50 randomly picked objects from the 1000 categories

in this dataset. For the 72 different images of an object at 5 degrees of rotation,

we proceed as for the COIL dataset: we keep 24 images (one at each 15 degrees

of rotation) for training and, from the remaining ones, we randomly select 5 for

validation and 10 for testing. The training set thus consists of 1200, the validation

set of 250, and the test set of 500 images.

Finally, the ODBK dataset is rather different from COIL and ALOI. It is a col-

lection of 209 different object models that have been rendered with photo-realistic

quality using 14 different viewpoints. The bottom row of Fig. 3 shows some exam-

ples. We select 100 of the 209 objects. Out of the 14 viewing points of each object

model, 12 are views arising from 30 degrees rotation and 2 are the top and the

bottom views. We only keep the 12 rotated viewpoints, 6 of which are used for

training (one at each 60 degrees of rotation) and the remaining six are randomly

put either in the validation or in the test set. We eventually have a training set of

600 images, and a validation and test sets of 300 images each.

The graph extraction process is the same for the three datasets and it is illus-

trated in Fig. 4. Given the original image (Fig. 4(a)), we first segment it (Fig. 4(b))

using the graph-based image segmentation approacha described in Ref. 12. We crop

the meaningless regions by convoluting the image with a mask (Fig. 4(c)) that

distinguishes the object from the background. The mask is constructed by first

thresholding the grey-level image to remove the background and then closing pos-

sible holes in the object by mathematical morphology operations. We finally obtain

a segmented version of the original object (Fig. 4(d)).

From the segmented object images we extract discrete attributed graphs in the

following way. Each region in the image is assigned to one of the eleven colors of

the color naming theory. In Ref. 1 the authors proposed a model by which an RGB

value is assigned to one of the eleven basic colorsb. We label each region in our

segmented objected by the color naming output of this model when providing the

mean RGB value of all pixels in the region. By doing so, our node labelling alphabet

aThe source code of a C++ implementation is publicly available at the author’s web page:
http://people.cs.uchicago.edu/∼pff/segment/
bA Matlab implementation is also publicly available in the author’s web page:

http://www.cat.uab.cat/Publications/2008/BVB08/
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Fig. 3. Examples of images in the object datasets.

(a) Original image (b) Segmented image (c) Image mask (d) Result

Fig. 4. Object segmentation for graph extraction.

will be

LV = {Black, Blue, Brown, Green, Grey, Orange,
P ink, Purple, Red, White, Y ellow }. (13)

Regarding the edges of the graphs, we link all adjacent regions, this is, we put an

edge between every two regions whose borders have neighbouring pixels. In order

to label these edges, we compute the length —in pixels— of the common border

between two adjacent regions. Such length is normalized by the sum of the lengths of

all common borders in the image. After such normalization, the interval [a, b] ∈ R,

where a and b are the shortest and the longest normalized common borders in the

graph respectively, is further discretized into three equal bins regarding the amount

of pixels they share. The edge of those regions that share a short border —this is,
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(a) Active (b) Non-active

Fig. 5. Examples of molecules from the AIDS dataset.

those in the first bin of the discretization— will be labelled by Short, those falling

in the second bin by Medium and those in the third by Long. The edge alphabet is

thus

LE = {Short, Medium, Long }. (14)

4.1.2. Molecule datasets

The second group of datasets is formed by three molecule datasets. Molecule com-

pounds are certain biological structures that are easily represented by graphs.

Atoms in the molecules are represented by nodes whose labels are the correspond-

ing atomic elements. Edges represent the covalent bonds and they are labelled with

the corresponding bond type.

The first dataset of molecules is the AIDS database from the IAM Graph

Database Repository42. Graphs are constructed from the AIDS Antiviral Screen

Database of Active Compounds11. They consist of molecules that are either posi-

tive or negative against HIV activity. In Fig. 5 an example of a molecule of each

class is shown. For training and validation purposes, 150 molecules are used in each

set, while 1500 are used for testing. In this dataset, 21 different atomic elements

happen to be the label of a node in the training set. Thus the size of the node label

alphabet is 21. For the edges, only three labels are there: single, double, and triple

bonds.

The second dataset of molecules is also taken from the IAM Graph Database

Repository42. The Mutagenicity dataset (MUTAG) is composed of molecules that

are divided into two classes, mutagen and non-mutagen. The mutagenicity of a

molecule is a biological property that restricts its potential to become a commercial

drug26. In this dataset, 1500 molecules are used for training, 500 for validation and

2337 for testing. Moreover, 13 different atomic elements constitute the node label

alphabet, while again there are three different types of atomic bonds represented

by the edges labels.

Finally, the last molecule dataset is the Monoamine Oxidase dataset (MAO),

which includes molecules that are either active or inactive with respect to inhibiting

the monoamine oxidase32. Depending on their response, one can pharmacologically
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Table 1. Characteristics of the different datasets. Size of the training (tr), validation (va) and

test (te) sets, the number of classes for each dataset (#classes), the average number of nodes and
edges (±|V |/±|E|), the maximum number of nodes and edges (max|V |/max|E|) and the size of

the node (|LV |) and the edge (|LE |) label alphabets.

Size
Dataset (tr, va, te) #classes ±|V | max|V | ±|E| max|E| |LV | |LE |

COIL 2400, 500, 1000 100 29.0 68 64.8 171 11 3
ALOI 1200, 250, 500 50 22.9 78 49.6 204 11 3
ODBK 600, 300, 300 100 15.2 62 30.8 172 11 3

AIDS 250, 250, 1500 2 15.7 95 16.2 103 21 3
MUTAG 1500, 500, 2337 2 30.3 417 30.8 112 13 3
MAO 24, 22, 22 2 18.3 27 19.6 29 3 3

treat them as antidepressant drugs. This dataset is rather small when compared to

the previous ones and there is no natural training/test set separation of the data.

The dataset has 38 active and 30 inactive molecules. In order to be able to use the

same evaluation protocols as for all other datasets, we have created 20 splits in which

we create a training set of 24 molecules (14 active, 10 non-active) and a validation

and test sets of 22 molecules each (12 active, 10 non-active). The experimentation

will be carried on each of these 20 splits and we will provide average results over

them. Only three atomic elements (carbon, nitrogen and oxygen) appear as node

labels in molecules, and also three kinds of atomic bonds are represented as edge

labels.

As a summary, in Table 1 we show the main characteristics of each dataset that

is used in this work.

4.2. Experimental Setup and Validation of parameters

As already mentioned, we want to compare the two vectorial representations of

graphs that are proposed in Section 3. We will do so by measuring the recognition

rates of two different classifiers, a kNN and an SVM classifiers, both working on the

extracted feature vectors. We will compare the results with two reference systems

working directly on the original graph representations. In particular, a kNN and an

SVM classifers will be build upon graph edit distance and the random walk kernel.

Graph edit distance

The first reference system is a k-Nearest Neighbor (kNN) classifier on graph edit

distances. The graph edit distance is computed using the suboptimal approach

described in Ref. 43. Edit cost functions are defined as follows for the two different

types of datasets (objects and molecules). Node insertions and deletions have a fixed

cost c(ε→ u) = c(u→ ε) = τn. Edge insertions and deletions have also a fixed cost

c(ε → e) = c(e → ε) = τe. The parameters τn and τe are properly optimized using

the validation sets.

For node substitutions we define the cost equal to 0 when the involved nodes
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have the same label, and equal to 2 · τn when the involved nodes have different

labels:

c(u→ v) =

{
0, if µ(u) = µ(v),

2 · τn, otherwise.
(15)

For edge substitutions in the set of object datasets, we assume a cost that is

analogous to that of node substitutions, i.e. we define a cost of 2 · τe when labels

are different and a cost equal to 0 otherwise. In the case of the molecules datasets,

we assume that edge substitutions are free of cost (this is justified by the findings

reported in Ref. 44, which indicate that edge substitution costs have almost null

impact on the final edit distance).

There is a third parameter α ∈ (0, 1) governing the amount of weight that one

assigns to node and edge operations. Node costs are multiplied by α and edge costs

by 1− α.

Thus, for each dataset, we have to optimize the triplet of parameters (τn, τe, α),

plus the number of neighbours k in the kNN classifier. To do so, we initially compute

the distance of all graphs in the validation set to all graphs in the training set. We

run these computations using several values in the triplet of parameters to validate.

Out of all distance matrices that are obtained, we perform a kNN classification for

several values of the parameter k. Those four parameters (τn, τe, α) and k that give

the best recognition rate are eventually used on the test set. Distances of all graphs

in the test set are computed to all graphs in the training set using the optimal

triplet of parameter values and then kNN is applied using the optimal value of k.

The second reference system is a Support Vector Machine (SVM) classifier in

conjunction with the graph kernel defined in Section 2.4. In this case, we do not

validate the costs of the edit distance again but we use those parameter values

that give an optimal performance for the kNN classifier. As we train an SVM

model, besides the γ parameter in the kernel function, we need to validate the cost

parameter C of the SVM. Several values of the couple (γ,C) are used to train SVM

models. Those parameter values that give the best performance on the validation

set are eventually used on the test set.

Random walk kernel

For the case of the random walk kernel, also a kNN and an SVM classifiers will be

built. SVMs are trained by computing all pairwise kernel values using Eq. (12). In

particular, the λk parameters are set to be γk for γ ∈ (0, 1). This way short walks

in the graphs are given more impact than longer ones. In this case, the infinite sum

that defines the kernel can be computed14,15 by

lim
k→∞

k∑
i=0

γkAk× = (I − γA×)−1. (16)

Parameter γ, as well as the cost parameter C in the SVM procedure are validated
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by using several values of the pair (γ,C), and check for those that obtain a best

recognition rates in the validation set. Such a pair will be eventually used in the

test sets.

Let φ(g1) and φ(g2) be the infinite dimensional feature vectors that the ran-

dom walk kernel implicitly builds for graphs g1 and g2, respectively. We have the

following relation

d2×(g1, g2) = ||φ(g1)− φ(g2)||2 = 〈φ(g1), φ(g1)〉+ 〈φ(g2), φ(g2)〉 − 2〈φ(g1), φ(g2)〉
= κ×(g1, g1) + κ×(g2, g2)− 2κ×(g1, g2). (17)

This is, the Euclidean distance between the implicitly computed vectors can be

computed in terms of the kernel values. We use this relation in order to compute

distance values between pairs of graphs. A kNN classifier can thus be applicable.

Parameter γ in the random walk kernel computation and parameter k in the kNN

procedure are validated as in the previous cases.

Embedding approaches

To evaluate the performance of the systems proposed in this work, we also use

the kNN and SVM classifiers. This way, we can directly assess the impact of the

proposed graph embedding regardless of the classification strategy. With respect to

the kNN classifier, we use it in conjunction with two different distances, namely,

the Euclidean distance and the χ2 distance. The Euclidean distance is used so a

more comprehensive analysis of the behaviour of the methods can be made since

the random walk kernel is also evaluated using an Euclidean measure between the

corresponding feature vectors. We recall here that

dL2
(x, y) =

√√√√ n∑
i=1

(xi − yi)2. (18)

for two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn. Being our embedding

representations histogram-based we also use the χ2 distance since it is a commonly

used metric for this type of feature vectors55. It is defined by

dχ2(x, y) =
1

2

n∑
i=1

(xi − yi)2

(xi + yi)
. (19)

Distances between the vectors in the validation set to those in the training set are

computed using Eqs. (18) and (19). The only parameter that needs to be validated

is the k parameter in the kNN classifier.

With respect to the SVM classifier, we use the standard linear kernel 〈·, ·〉 and

a χ2 kernel for the training step. The linear kernel —or dot product— is used since

it is the one that is actually used between the corresponding feature vectors in

the random walk approach. Since we explicitly have the features, we may compute
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more appropriate kernel functions as the χ2 kernel. It is defined analogously to the

similarity kernel (Section 2.4) and also to the radial basis function kernelc:

κχ2(x, y) = exp(−γ · dχ2(x, y)), (20)

for two vectors x, y ∈ Rn and γ > 0. For the linear kernel only the cost parameter

in the SVM model is validated. For the χ2 one, this parameter is validated together

with the γ one.

We recall here that the evaluation of the reference and the proposed systems

on the MAO dataset is done using exactly the same protocol as describe above but

repeating the experiments on 20 different splits of the data. We will report average

results on the test set.

4.3. Results on the Test Set

In this section we report the results on all datasets using the protocols explained

in the previous section. In particular, we will first discuss the runtime of all the

algorithms compared, and then present the classification results.

Computational times

Before comparing the quantitative results, we want to put special emphasis on the

computational time that all of the involved systems need at the testing phase. We

do not consider the time required for applying the corresponding classifiers as it is

the same in all representations. We just consider the time required for the distance

and kernel computations and the construction of the embedding representations of

the graphs. For a test graph to be evaluated under the first reference system, we

need to compute the graph edit distance to all graphs in the training set. Using

these distances kNN can be applied. For SVM using the similarity kernel on graphs

(Eq. (2)), in addition to the computation of edit distances, we have to exponentiate

them to obtain the kernel values (Eq. (2)). In the case of the random walk kernel, for

the SVM classifier we first need to compute each kernel value between a test graph

and all train graphs (Eqs. (12) and (16)). For the kNN classifier, distances between

the same graphs are computed using Eq. (17). Regarding the embedding methods,

the first step is always to construct the vector representation. Afterwards, in order

to apply the kNN classifier, the Euclidean and χ2 distances of a test element to all

training elements have to be computed. In the case of the SVM classifiers, there is

a final step in which kernel values are computed. For both the reference systems

and the proposed ones, the SVM classifiers actually only need the kernel values of

each test element to the support vectors. Nevertheless, we show all computations

for a more consistent comparison with kNN.

cA more consistent choice for the χ2 kernel with respect to the underlying metric would be
κχ2 (x, y) = dχ2 (x, z) + dχ2 (y, z)− dχ2 (x, y), for any z ∈ Rn. However, the described formulation

provides more favorable results since the γ parameter allows to adapt to each specific problem.
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Fig. 6. ODBK dataset. Average times in milliseconds (vertical axis, logarithmic scale) of the test
stage of both the reference and the proposed systems. The length of the ticks on the top of the

bars show the variance around the mean values.

In Fig. 6, we show results on the ODBK dataset. In particular, for the embed-

ding representations we only show the results for the χ2-based classifiers, since the

runtimes of the Euclidean distance and the linear kernel are comparable. ODBK is

the dataset with the smallest average number of nodes per graph, and so it is the

most favorable case for edit distance and random walk kernel computations. In any

case, results have shown that the relative behavior of the graph-based versus the

embedded vector representations is basically the same independently of the dataset

and the size of the graphs.

One can observe that the proposed systems are several orders of magnitude

faster when compared to the reference systems. Even in the most favorable case

for the reference systems, the proposed embedding systems are about 103 times

faster with respect to edit distance and 10 times with respect to the random walk

approaches. In all other datasets, we observe a similar behavior. Apart from that,

validating the parameters of the reference systems is indeed a hard task. Several

parameters are there such as node and edge costs and the weighting factor in the

edit distance or the variable balancing the effect of the length of walks in the random

walk approach. In the proposed embedding methodology, one has no parameters

to tune at the training stage and so the validation is done much more efficiently.

Regarding a comparison between the two proposed representations, ϕ1 clearly shows
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Table 2. kNN results on the test set. Accuracy rates are given in %.

Reference Systems Embedding Systems

Graph Edit Random walk Euclidean distance χ2 distance
Dataset Distance distance d× ϕ1 Emb. ϕ2 Emb. ϕ1 Emb. ϕ2 Emb.

COIL 77.0 74.9 79.9 74.0 88.1 83.1
ALOI 85.8 84.2 87.8 85.4 92.2 90.0
ODBK 70.0 68.3 69.6 66.6 76.6 73.6

AIDS 94.9 86.4 99.2 99.2 98.4 98.4
MUTAG 66.9 — 71.4 71.3 73.6 74.9
MAO 82.2 80.6 89.7 86.3 84.3 82.2

— Results not available due to memory requirements.

Table 3. SVM results on the test set. Accuracy rates are given in %.

Reference Systems Embedding Systems

Dissimilarity Random walk Linear kernel χ2 kernel
Dataset kernel κG kernel κ× ϕ1 Emb. ϕ2 Emb. ϕ1 Emb. ϕ2 Emb.

COIL 85.7 82.8 85.2 84.5 90.7 89.7
ALOI 91.0 87.6 92.8 92.2 95.2 93.2
ODBK 80.0 76.0 74.6 77.0 79.6 78.0

AIDS 97.0 90.8 99.6 99.5 99.4 99.4
MUTAG 68.6 — 71.9 73.4 74.9 76.5
MAO 84.7 82.3 75.2 72.7 90.6 87.7

— Results not available due to memory requirements.

faster results than ϕ2 due to its lower dimensionality.

Classification performances

Next, we consider the recognition performance of all systems. In Tables 2 and 3

the recognition rates of the kNN and the SVM classifiers are shown, respectively.

We shall first discuss our embedding representations. We notice that SVM results

outperform those for the kNN classifiers in all cases (also for the reference systems)

except for the linear SVMs of the MAO dataset. This result is most likely due to

the strength of the SVM classifier with respect to the kNN. We also observe that

the χ2 distance and the χ2 kernel usually provide more successful results than the

Euclidean distance and the linear kernel in the corresponding classifiers. In fact, the

χ2 measure (Eqs. 19 and 20) disregards small differences on those features with large

values. This seems a convenient way to proceed with our vector representations of

graphs. In particular, we should understand that, between two graphs, a difference

of 10 nodes with a specific label ought to be more meaningful whenever one graph

has none of these nodes than when it has a large number of them.

Another interesting observation is that, except for very few cases, the perfor-

mance of the embedding representation in which edge labels are not taken into

account (ϕ1) is equal to, or outperforms, that of the representation in which this

particular information is taken into account (ϕ2). Theoretically, one would expect
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it the other way around since more information is being included in the feature

vector representation when edge labels are taken into account. However, by con-

sidering such features, the structural information of the graphs falls apart, and the

relevant information is divided into many isolated pieces that eventually may lead

to a lower performance. This behaviour may also be explained by the larger di-

mensionality of the ϕ2 representation with respect to ϕ1 because larger vectors are

more prone to overfitting. In any case, the fact that edge labels are not helping in

the classification task under this methodology is in compliance with the observa-

tion already mentioned regarding the null impact of edge costs in the graph edit

distance computation for molecules44. Anyway, this situation is beneficial for the

proposed methodology in the sense that the resulting feature vectors of the embed-

ding systems have less components (less features are taken into account) and thus

the complexity of the classifiers that are eventually used is drastically reduced.

Regarding a comparison of the proposed embedding methodology with the ref-

erence systems, we see how the proposed graph embedding procedures, when using

the Euclidean measures, are at the same levels of classification performance as the

random walk. Such a behavior is expected since, as we have discussed, our features

are a subset of the features the random walk kernel implicitly computes. In any

case, whenever the χ2 metrics are used, the proposed embedding methodologies

provide more successful results, suggesting that the explicit manipulation of the

features is indeed an interesting approach to tackle this problem. Regarding a com-

parison with graph edit distance, in almost all cases, we also observe we obtain an

improvement with respect to it.

Even in case no significant improvement over the reference systems is achieved,

the proposed approach still seems to be a better option since the computational

complexity is significantly lower than that of the reference systems. Computing the

suboptimal solution of the edit distance43 between two input graphs is a procedure

that requires a cubic number of operations in the number of nodes of the involved

graphs. Computing the random walk kernel requires the inversion of a matrix which

in the worst case has dimension n2 × n2, where n is the number of nodes of the

involved graphs. In particular, for the MUTAG dataset whose average number of

nodes is the highest, memory requirements would not let compute such kernels. In

order to classify any graph in the test set, these computational procedures have to be

done against all elements in the training set, and this certainly requires much more

operations than just arranging the graphs in the vectorial form that is proposed in

this work and then computing the distances among them.

The proposed embedding systems are based on counting appearances of node

labels in the input graph and appearances of specific edges between them. It seems

that their simplicity, both conceptually and computationally, and their good per-

formance on classification problems involving datasets of graphs with discrete at-

tributes on nodes and edges make them an attractive new tool for graph-based

pattern recognition problems.
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5. Conclusions

Graph representations are an elegant and powerful tool for pattern representation.

They offer the possibility of representing not only numerical features of the un-

derlying patterns, but also structural relations among parts of these patterns. The

complexity of this representational paradigm is, however, responsible for making

the treatment and processing of graphs a hard problem.

A solution to this problem is provided by graph embedding in vector spaces. By

mapping every graph in a given dataset to a feature vector, all machine learning

algorithms that were originally designed for vector-based representations happen

to become applicable to graph input patterns. In this work we have presented a

way of embedding a set of graphs with discrete attributes into vector spaces by

counting the appearance of the node and edge labels. We have distinguished among

two different representations of graphs depending on whether we take care of edge

labels or not. These methodologies are conceptually straightforward and can be

regarded as a redistribution of the information inherent to the nodes and edges

of a graph into a vectorial form. They are, thus, computationally very efficient.

In particular, we have discussed the connections of the embedding methodology

we propose with the fingerprint characterization of molecular structures and the

random walk family of graph kernels. It turns out that ours are particular cases of

these methodologies but are defined in such a way that we are able to represent

graphs with feature vectors in a more efficient way.

The proposed embedding systems are specifically suitable for graphs with dis-

crete labelling alphabets. We have tested the proposed methodology using several

datasets of graphs representing object images and molecular compounds. In the case

of the object images, segmented regions are labelled with a color name and edges

with discretized lengths of the border of adjacent regions. Molecules are easily rep-

resented by nodes with atomic elements as labels and edges with the corresponding

covalent bond. The experimental part of this work compares the embedding rep-

resentation of graphs with two classifiers in the graph domain, namely, a the edit

distance of graphs and the classical formulation of the random walk kernel. The re-

sults indicate that this methodology is a valuable approach to enrich the repertoire

of processing tools for graph-based pattern recognition.

This work is part of a more general study in which not only graphs with discrete

attributes are considered. In Refs. 18 and 19, the same authors propose a related

methodology for embedding a set of graphs with continuous attributes by counting

appearances of a set of node label representatives. While the work reported in

Refs. 18 and 19 is of rather preliminary nature, and deals with a different class

of graphs, the current paper provides a much more comprehensive and in-depth

treatment, and features a significantly extended set of experiments. Future work

will focus on extending the methodology and experiments reported in Refs. 18 and

19 in a similar fashion.



March 15, 2013 13:21 WSPC/INSTRUCTION FILE jgibert˙IJPRAI

24 J. Gibert, E. Valveny and H. Bunke

References

1. R. Benavente, M. Vanrell, R. Baldrich, Parametric fuzzy sets for automatic color
naming, J. Optical Society of America A, 25(10) (2008) 2582-2593.

2. C. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, 1995).
3. M.C. Boeres, C.C. Ribeiro, I. Bloch, A randomized heuristic for scene recognition by

graph matching, Proc. 3rd Workshop on Efficient and Experimental Algorithms, eds.
C.C. Ribeiro, S.L. Martins, LNCS 3059 (Springer, 2004), pp. 100-113.

4. K. Borgwardt, C. Ong, S. Schönauer, S. Vishwanathan, A. Smola, H.P. Kriegel, Pro-
tein function prediction via graph kernels, Bioinformatics 21(1) (2005) 47-56.

5. H. Bunke, G. Allermann, Inexact graph matching for structural pattern recognition,
Patt. Recogn. Lett. 1 (1983) 245-253.

6. H. Bunke, K. Riesen, Towards the unification of structural and statistical pattern
recognition, Patt. Recogn. Lett., 33(7) (2012) 811-825.

7. H. Bunke, K. Shearer, A graph distance metric based on the maximal common sub-
graph, Patt. Recogn. Lett. 19(3) (1998) 255-259.

8. D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in pattern
recognition, Int. J. Patt. Recogn. Artif. Intell. 18(3) (2004) 265-298.

9. F.C. Curriero, On the Use of Non-Euclidean Distance Measures in Geostatistics, Math.
Geo. 38(8) (2006) 907-926.

10. R. Duda, P. Hart, D. Stork, Pattern Classification (Wiley-Interscience, 2nd edition,
2000).

11. Development Therapeutics Program DTP, AIDS antiviral screen (2004),
http://dtp.nci.nih.gov/docs/aids/aids data.html

12. P.F. Felzenszwalb, D.P. Huttenlocher, Efficient graph-based image segmentation, Int.
J. Comp. Vision 59(2) (2004) 167-181.

13. M.L. Fernandez, G. Valiente, A graph distance metric combining maximum common
subgraph and minimum common supergraph, Patt. Recogn. Lett. 22(6-7) (2001) 753-
758.
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