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Abstract. Graph embeddings in vector spaces aim at assigning a pat-
tern vector to every graph so that the problems of graph classification
and clustering can be solved by using data processing algorithms origi-
nally developed for statistical feature vectors. An important requirement
graph features should fulfil is that they reproduce as much as possible the
properties among objects in the graph domain. In particular, it is usu-
ally desired that distances between pairs of graphs in the graph domain
closely resemble those between their corresponding vectorial represen-
tations. In this work, we analyse relations between the edit distance in
the graph domain and the L; distance of the attribute statistics based
embedding, for which good classification performance has been reported
on various datasets. We show that there is actually a high correlation
between the two kinds of distances provided that the corresponding pa-
rameter values that account for balancing the weight between node and
edge based features are properly selected.

1 Introduction

The comparison of relational structures has been widely studied over the past
years [3]. Graph edit distance constitutes a major paradigm due to its ability to
handle arbitrary graph structures [2,10]. It is defined as the minimum amount
of distortion that is needed to transform one graph into another. This distance
measure is very intuitive in nature since the edit path it looks for is based on
substituting, deleting and inserting nodes and edges such that the source and
the target graph become isomorphic.

Graph edit distance, however, has a high computational complexity. Modern
ways for graph matching try to avoid this high complexity. Extracting graph
features and building up pattern vectors for the analysis of graphs —known as
graph embedding— is a common way to reduce the computational complexity
and make efficient learning algorithms available for the domain of graphs. A
desired property of any generic graph embedding scheme is that it should be
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able to approximate the original distribution of patterns in the graph domain.
In other words, distances between objects in the graph domain should be similar
to their corresponding distances in the embedding space. For instance, for the
dissimilarity space embedding proposed in [9] it has been shown that the graph
edit distance between two graphs is an upper bound of the Euclidean distance
between the corresponding vectorial maps. Similarly, in [6], the Thara coefficients
have been experimentally shown to be a set of features with distances that
correlate linearly with the edit distance.

In this paper, we investigate how the edit distance is related to a discrete
version of the embedding methodology proposed in [5]. The features under this
embedding methodology account for the number of nodes with a certain label
that appear in a graph, and the number of edges with a given label that exist
between two nodes with certain labels. In other words, this kind of embedding
is based on occurrence and co-occurrence statistics of labels in the underly-
ing graph. Absolute differences between node-based features indicate how many
nodes with a certain label exist in one graph that are not present in the other
graph. This is, in fact, exactly the same situation that occurs when performing
the edit distance computation between graphs with discrete attributes under
a cost function that disregards substitution of nodes with different labels and
forces node deletions and insertions instead. This observation is one of the main
motivations of our work.

In particular, we express both ways of computing graph distances —the edit
distance and the L; distance for the embedding methodology— in terms of a
weighting parameter balancing the impact of nodes and edges in the resulting
distance values. We investigate how distances are correlated as a function of these
two parameters, and also how corresponding distance-based classifiers behave.

The rest of the article is organized as follows. Graph edit distance is reviewed
in the next section, and the edit cost function used for the case of discretely
attributed graphs is specified. Section 3 describes the embedding methodology
based on statistics of labelling information. Correlation experiments of both ways
of comparing graphs and a discussion of the results are presented in Section 4.
Finally, Section 5 draws conclusions from this work.

2 Graph Edit Distance

A graph g = (V, E, u,v) is a 4-tuple where V is the set of nodes, E CV x V
the set of edges, and p: V — Ly and v : E — L are the labelling functions of
nodes and edges, respectively. In this work, we use undirected graphs where the
labels come from finite discrete domains.

As already stated above, the main idea of graph edit distance is to define a
dissimilarity measure between graphs by the minimum amount of distortion that
is needed to transform one graph into the other [2,10]. Distortions are defined
in terms of edit operations between two graphs, such as node and edge deletion,
insertion and substitution. A sequence of edit operations transforming the source
graph into the target graph is called an edit path. Edit costs define whether a
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Table 1. Edit cost function.

Deletion / Insertion Substitution

0, if p(u)=p(v)
1 — p), otherwise

Nodes c(lu—e)=cle—>v)=1—p c(u—>v):{2'(

0, if v(e1) =v(e2)

Edges cler =€) =cle > e2) =p cler — e2) = {2 - p, otherwise

given operation constitutes a large deformation between the two involved graphs
or not. Between similar graphs there should exist an inexpensive edit path, while
dissimilar graphs are characterized by an edit path with high cost. The edit
distance between two graphs is thus defined as the cost of the edit path with the
minimum cost among all possible edit paths between two graphs.

The exact computation of the edit distance is a computationally hard task
and many approximations have been proposed in the literature. In this work,
we use the suboptimal approach of [8] where an approximate solution of graph
edit distance is provided by means of solving the assignment problem of nodes
of one graph to nodes of the other. A cost matrix regarding the substitution of
the local structure of every node of the source graph by the local structure of
every other node in the target graph is built. Then the optimal assignment is
extracted by the Munkres’ algorithm, and an edit path can be inferred from this
assignment.

As a prerequisite, we need to assign costs to every edit operation between
graph elements, i.e., nodes and edges. In particular, in this work we focus on
the same cost function used in [1], where substitutions of nodes and edges with
different labels are heavily penalized, forcing the (sub)optimal path to, first,
delete the source node (or edge) and then insert the target node (or edge).
Formally, deleting or inserting a given node (or edge) has a constant cost c,
while substituting it has at least twice that cost if the corresponding labels are
different. Without loss of generality, we set ¢ = 1. Furthermore, we assume
null cost of substituting two nodes (or edges) with the same label. In order to
weight the node operations against those on the edges we introduce a parameter
p € [0,1] and multiply the node costs by 1 — p and the edge costs by p. The
resulting cost function is summarized in Table 1.

3 Attribute Statistics based Embedding

Consider a set of graphs G = {¢1,...,9n}, with g; = (V;, E;, u;, v;) being the
ith graph in the set with labelling alphabet Ly; for the nodes and Lg, for the
edges. We assume that all graphs in G have the same labelling alphabets, this
is Ly, = Ly, and Lg, = Lg, for all i,j € {1,...,N}. We do not assume,
however, that each node and edge label necessarily occurs in each graph. Let
Ly = {a1,...,ap} and Lg = {w1,...,wy} be the discrete common labelling
alphabets.
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For each graph g = (V, E,u,v) € G, we define p unary features measuring
the number of times each label in Ly appears in the graph, this is

Ui = #(aing) = |{v € V ]y = u()} ], Vie{L....p}. (1)

We also define % -q-p-(p+1) binary features counting the frequency of an
edge with a specific label (wy) between two nodes with two given labels (a; and
;). Formally,

Bf; = # (Joi ¢ ], 9)
=[{e= (u,v) € E|a; = p(u) Ao = p(v) Awy, = v(e)}| (2)

where £ € {1,...,q} and 1 < i < j < p. These features describe the local
structure of every graph in terms of how frequently a simple substructure —an
edge with a given label between two given node labels— occurs in a given graph.

These two sets of features can be combined in order to give a more global
structural representation of the graphs by bringing together various pieces of
local information. Formally, we define the embedding of graphs in the following
way.

Definition 1 (Graph Embedding). Given a graph g € G, let v, (g) and p.(g)
be the vectors
en9) = ({Uhicisy) (3)

vele) = ({BE} 2ol (4)

where U; and ij are defined in Eqs. (1) and (2), respectively. The embedding
of graph g is defined as the concatenation of these two vectors,

©(9) = [en(g) ve(9)]- (5)

The above definition has been proved successful in our previous work [5].
In the current paper, we go one step further and assign a different weight to
the node related vector ¢, (g) and the edge related vector ¢e(g). This leads to
a generalized distance between the map of two graphs, where the information
included in the nodes can be weighted differently from the information included
in the edges. Given two graphs g1 and g2, we define the vectorial distance between
them by

D(g1,92) = (1 — a) - dp, (pn(91): pn(92)) + - dr, (pe(g1): pe(g2)),  (6)

where a € [0,1] and dp, (-, -) is the Ly distance dr, (z,y) = > |x;—y;|. Clearly,
the case a = 0.5 is identical to the scenario in [5]. Now parameter a of Eq. (6)
can be related to parameter p of the edit distance introduced in Section 2.
As a matter of fact, Eq. (6) emulates the edit operations defined by the cost
function of the edit distance. As described above, the cost function maintains all
nodes and edges with identical labels, but deletes and subsequently inserts all
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nodes and edges with different labels. Concerning the features we have defined,
these operations translate into checking the absolute differences between vector
coordinates. Note that the distance of Eq. (6) can alternatively be obtained if
we would first weight both components of vector in Eq. (5) with 1 — « and «,
respectively, and then compute the L; distance between the weighted vectors.

The parameter o measures the strength we give to the components of ¢,,(g)
relative to ¢.(g). In this way, there is a clear resemblance with p which weights
the cost of operations on the nodes relative to the cost of operations on the edges.
In Section 4.2, we experimentally check for the correlation of these parameters.
From the definitions given above, it follows that the pair (p,a) = (0,0) will
result in a correlation coeflicient equal to 1.

4 Experiments

4.1 Databases

We work with four datasets of discretely attributed graphs. These datasets are
divided into two categories: object image datasets and molecule datasets. The
object images are subsets of the ALOI and ODBK collections [4,11]. Images are
segmented and a region adjacency graph is built, where nodes are labelled with
a color name of the color naming theory and edges are labelled according to
whether the common border of two adjacent regions is short, medium or long.

The molecule datasets are the AIDS and MUTAG collections from the TAM
repository [7]. Nodes correspond to atoms labelled with the corresponding chem-
ical element and edges represent chemical bonds with the corresponding covalent
number.

All four dataset are divided into a training, a validation and a test sets. In
the following, we will use the training and the validation sets for computing
pairwise distances. The test sets are not used.

4.2 Distance Correlation

Given a pair of values (p, @), we compute the sets of all pairwise graph distances
X, and Y,, between all graphs in the training set and all graphs in the validation
set, using parameter value p for the edit distance and parameter value « for
the embedding distance. For these two sets of distance values, X, and Y,, we
compute the correlation coefficient by

cov(X,,Y,)

prO'ya

Cipa) = (7)

where cov(X,,Y,) is the covariance between distributions X, and Y, and ox,
and oy, are the corresponding standard deviations. We compute such a coeffi-
cient for all pairs (p, ) € [0,1]? and plot the corresponding 3D functions and
correlation maps. Results can be seen in Fig. 1 (because of limited space we omit
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Fig. 1. Correlation values as a function of the weighting parameters.

the ALOI and MUTAG cases but their behavior is very similar to that of ODBK
and AIDS, and thus all discussions are valid for them as well).

First of all, we note how values close to (p, &) = (0,0) have, both in the object
and molecule datasets, a high correlation coefficient. This confirms that the
embedding features under the L; metric replicate the edit distances when node
information is considered as more relevant than edge information. If this is the
case in the underlying application, we suggest to use the attribute statistics based
graph embedding rather than working with graph edit distance because, first,
the relative graph distribution is well maintained and, second, the computation
efficiency is much higher.

In Fig. 1, we can also observe the biased effect of the correlation values with
respect to the ideal case, where a diagonal behavior should be observed. The
explanation for the biased relation is the fact that the edge-based embedding
features still keep quite some information of the node labels. In particular, the
co-occurrence of a certain pair of node labels at the end of an edge tells us that
these particular node labels do appear in the graph. Therefore, it is clear that
considering edge-based features only, the embedding representation still keeps
information about the node attributes. As a consequence of this phenomenon,
the correlation of the embedding distances for a = 1 is maximized by values
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p =~ 0.2, suggesting that 80% of the node information in the graph domain is
still included in the embedding representation when only edge-based features are
considered.

In Fig. 1, when both p and « tend to 1, low correlation values result. This
might be explained by the fact that the edit distance computation looks for an
edit path that completely disregards the information of the nodes. Thus, since
edge-based embedding features still keep some of this information, the behavior
of distances in both domains becomes different.

Also worth noting is the shape of the correlation regions, which is more
ellipse-like in the molecule datasets than in the object datasets. This obser-
vation has an interpretation in terms of how important the actual structural
configuration of graphs is in each dataset. In the molecule datasets edge infor-
mation is more salient than in the object datasets. The more weight we put on
the edge-based features (o« — 1) the faster the correlation values for p ~ 0.2
descend, which means that edge-based features are less correlated with the node
information in the graph domain and thus we should put more attention on the
edges.

4.3 Classifier Correlation

Another way to check how well the edit distances are reproduced in the embed-
ding space is to see how a distance based classifier performs. In this paper, we
use a kNN classifier with both ways of computing the distances between graphs
and look for the difference in performance. In particular, we compare the perfor-
mance of the classifier based on the distances in the vector space for all values
of a with the performance of the classifier using the edit distances in the graph
domain for those values of p that maximize the correlation for every value of «.
We indicate by
Do = argmax C(, o) (8)
p€[0,1]
the p value that maximizes the correlation coefficient for a given « value. In Fig. 2
we show the corresponding classification curves on the validation sets. The z-
axis shows the range of parameter o and the y-axis the classification rates. In
particular, the results’ curves for the embedding distances are stretched in such a
way that the value a = 1 coincides with the p values maximizing its correlation,
and the corresponding intermediate values of a are maximally correlated with
the respective p values in the curve. This is, for each value of «, the corresponding
result of the edit distance curve is that of p,. We also show the corresponding
scatter plots of the accuracies of both classifiers, for all pairs (a,p,) and give
the correlation coefficient for these scatter plots on top of Figs. 2(b) and 2(d).
With regards to the correlation of the classifiers, we observe a great degree
of similarity of both curves, supporting the hypothesis of a high correlation.
We notice that the classifiers’ correlation is higher for the object datasets than
for the molecule ones. This result is explained by the same reason we have
been discussing before. The fact that the embedding features correlate with edit
distance whenever the node information of graphs is actually relevant makes the
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Fig. 2. Classifiers performance: L; embedding as a function of «, edit distance
as a function of 7, and scatter plots of the accuracies of all pairs («, p,).

classifiers perform in similar ways. On the other hand, the molecules need some
more attention on the edge structure and therefore the edit distance and the
embedding based distance differ more.

With respect to the performance of the classifier on the molecules dataset, we
observe how the embedding curve obtains its highest result for an intermediate
value of the parameter, thus confirming that here edges have higher importance
than in the objects case, where the highest result is obtained by a value of the
parameter closer to 0. Another point supporting this idea is the fact that for the
object datasets the case a = 0 gives a better result than that of @« = 1, and for
the molecule datasets this is the other way around.

As a final comment, we note how in most of the cases the performance of
the embedding classifier for a given a outperforms that of the edit distance
classifier for p,,. This suggests that whenever both ways of computing distances
are regarding the same type of information, the embedding distances are more
capable to distinguish among graph categories. Because of this observation and
because of its much higher efficiency, the use of the embedding methodology for
graph comparison is recommended.
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5 Conclusions

In this work we have established a relation between graph edit distance and the
Ly vectorial distance in the attribute statistics embedding space. It has been
shown that under a special class of cost functions, where node and edge label
insertions and deletions are favored over substitutions, there is a close relation
between the graph edit distance and the L; distance of the corresponding vectors
obtained through graph embedding. Our formal analysis has been confirmed in
a series of experiments. We have experimentally shown that there exists a high
correlation between both types of graph distances and between the correspond-
ing classifiers, provided that corresponding parameter values are chosen for both
distances. The analysis provided in this paper may help in developing a better
understanding of label statistics based embedding [5], which has been demon-
strated to perform very well in practice but has been lacking, until now, a more
rigorous formal investigation of its properties.

The current paper is limited to graphs with discrete labels. However, in fu-
ture, a similar study for the case of continuous attributed graphs is planned.
In addition, it would be interesting to exploit the embedding features to de-
rive necessary conditions for subgraph isomorphism in terms of component-wise
relations between the corresponding vectorial representations of graphs.
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