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Abstract
This paper defines an intelligent and interactive framework to classify multiple regions of interest from the original
data on demand, without requiring any preprocessing or previous segmentation. The proposed intelligent and
interactive approach is divided in three stages: visualize, training and testing. First, users visualize and label
some samples directly on slices of the volume. Training and testing are based on a framework of Error Correcting
Output Codes and Adaboost classifiers that learn to classify each region the user has painted. Later, at the testing
stage, each classifier is directly applied on the rest of samples and combined to perform multi-class labeling,
being used in the final rendering. We also parallelized the training stage using a GPU-based implementation for
obtaining a rapid interaction and classification.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Object hierarchies

1. Introduction

Gathering visual information often requires a high-level of
expertise from the final user, who has to mentally work out
with a large amount of data, to segment the input models.
It is important to alleviate this mental process by providing
an automatic and interactive method that allows the user to
classify different structures on demand in an intuitive way.

In volume rendering literature many papers address clas-
sification by editing transfer functions (TF) [PLB∗01] or
Multidimensional TFs [TM04, TLM05]. However, the de-
sign complexity and the memory requirements increase
with the TFs dimensionality. Moreover, to define the TFs
manually or with some friendly interfaces [KKH01], even
by skilled users, becomes a hard task. Nevertheless, to
recognize semantic structures requires more sophisticated
techniques, such as the user-guided volume segmenta-
tion [PRH10], where users refine and correct iteratively the
results of the probabilistic random walker approach. Previ-
ously, in [EPAS11], we proposed an approach that uses Ad-
aBoost and Error Correcting Output Codes (ECOC) frame-
work for labeling a subset of volume classes based on a
pre-defined learning step. In this paper we continue this re-
search by defining an iterative process, as the one introduced
by [PRH10], divided into three stages for assisting the user
in classifying multiple regions of interest on demand from

the original data, without requiring any preprocessing or pre-
vious segmentation. In particular, we provide the following
contributions addressing the challenge of classifying on de-
mand different structures of interest within an intuitive inter-
action process: (1) We present the whole iterative framework
divided into three main stages; (2) We design an intuitive in-
terface that allows the user to improve iteratively the final
classification; (3) We propose a new parallelization of the
ECOC and AdaBoost classifiers within the training stage,
which is integrated in the GPU volume rendering process.

2. Related Work

Volume labeling corresponds to the classification at pixel
level, also named segmentation. The special case of seg-
mentation we treat is the learning of different visual regions
which may have different visual attributes. In this sense, we
have to distinguish from classical unsupervised methods for
segmentation based on clustering. In the supervised segmen-
tation process, it is common to model pixel/voxel attributes
from user interactions as a prior knowledge to optimize pos-
terior segmentation/classification. In this field, GrabCut ap-
proach [RKB04] has become a standard technique to model
regional properties and optimize final segmentation in im-
ages using Graph Cuts theory [BK04] and an example of ap-
plication is provided in [HVPE11]. This framework has been
recently extended to segment volumes [PYA∗13]. How-
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ever, these works involve segmentation dependencies among
neighboring pixel/voxels and complex optimization proce-
dures, which make them no suitable for real-time applica-
tions.

Probabilistic segmentation of volume models using GPU
implementations have been recently proposed [SMH10,
PRH10]. However, thinned and complex structures are diffi-
cult to be classified with these methods, and their extension
to segment multiple structures is not straightforward. Lately,
some works have been published based on data-driven and
image-driven classification that provide users with higher-
level information about data distribution and about the final
visualization, respectively. Supervised methods such as neu-
ronal networks [TLM03], decision trees [FPT06] and non-
supervised methods [TM04] have been applied to different
user interfaces of volume analysis applications.

Several studies have addressed the classification task
in image processing with different machine learning ap-
proaches. Most of the studies described so far have been
limited to binary classifications using GPGPU. Clustering
strategies and computation of k-nearest neighbour similar-
ity classifiers are presented in [GDB08], Geometrical Sup-
port Vector Machine classifiers [YGJ∗10, HWS10], or Neu-
ral Networks [YSMR10]. Recently we propose the use of
AdaBoost classifier [EPR10] , which is a strong binary clas-
sifier with a high generalization capability. Additionally, in
order to deal with multi-class labeling, we combine Ad-
aBoost in an ECOC framework [EPAS11].

3. Interactive Classification Framework

We define an interactive and intuitive framework of super-
vised statistical methods to classify multiple regions of inter-
est from the original data on demand, without requiring any
preprocessing or previous segmentation. The proposed sys-
tem is divided into three main stages shown in Fig. 1. First
of all, for each region to be learnt, users visualize the input
data and intuitively label some samples directly on slices of
the volume. Secondly, at the training stage, an ECOC design
trains the input samples using a set of Discrete AdaBoost bi-
nary classifiers. Finally, at the testing stage, each classifier is
independently applied on the rest of unlabeled samples and
combined within the ECOC design to perform multi-class
labeling in the final rendering. This classification process
iteratively improves as users label/unlabel samples, allow-
ing to refine training and testing stages. The advantages of
this approach are two-fold. First, it is quite general for be-
ing used efficiently to a great variety of data sets. Second,
the mental process that the user should perform to convey
relevant information is alleviated by the simple nature of the
iterative framework. The user only needs to paint some input
samples and the framework automatically classifies different
structures on demand. Once an iteration is performed, the
user may decide to improve the classification by proposing
new input samples -and a new iteration starts– or may finish

the process when he considers that the classification is good
enough.
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Figure 1: Overview of the proposed framework.

3.1. Visualize Stage: Interactive Sample Definition

Figure 2: Interface for interactive sample definition.

Figure 2 shows a snapshot of the interface. First of all,
the user opens a volume data set which is shown in 3D at
the top left side of the interface, see Fig. 2. In that side, the
user may rotate the volume as he desires. In the bottom of
the interface, multiple UI controls allow users to fine-tune
their preferences, will be displayed on the top right side in a
2D volume visualization. This top right side shows the user-
preferred inner plane of the volume. Moreover, users are able
to define new labels by choosing its name. To emphasize the
volume parts, distinct colors for each label are used as visual
cues, as shown in Fig. 2 in blue and green colors. As the
user moves over the 2D volume, he paints or removes voxels
that are associated to the selected label. The user finishes
the definition of the samples by selecting the training in the
menu. Then, the user may select the testing option in the
menu too, being able to define which labels he prefers to see
in the 3D volume. The result of this stage is shown in the top
left side of the interface. Once the user visualizes the result,
he may continue improving the results by painting/deleting
samples on the top right side.
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3.2. AdaBoost Classifier

We train the ECOC classifiers using Discrete AdaBoost clas-
sifier [FHT98, ETP∗08]. Let T be the set of k training sam-
ples, ρ, we define F(ρ) = ∑

M
1 c f fm(ρ) where each fm(ρ)

is a classifier producing values ±1 and c f are constants;
the corresponding prediction is sign(F(ρ)). The AdaBoost
procedure trains the classifiers fm(ρ) on weighed versions
of the training sample, and then the final classifier is de-
fined to be a linear combination of the classifiers from each
stage. The training stage is shown in Algorithm 1. Ew rep-
resents expectation over the training data with weights w =
(w1,w2, ..,wk), and 1(S) is the indicator of the set S. Finally,
Algorithm 2 shows the testing of the final decision function
F(ρ) = ∑

M
1 c f fm(ρ) using Decision Stump "weak classi-

fier". Each Decision Stump fm fits a threshold Tm and a po-
larity Pm over the selected m-th feature. In testing, ρ

m corre-
sponds to the value of the feature selected by fm(ρ) on a test
sample ρ. Finally decision on ρ is obtained by sign(F(ρ)).

Algorithm 1: Discrete AdaBoost Training (T ,θ).
1: Start with weights wi = 1/k, i = 1, ..,k.
2: for m = 1,2, ..,M do
3: Fit the classifier fm(ρ) ∈ −1,1 using weights wi on the

training data.
4: Compute

errm = Ew[1(l(ρ)6= f m(ρ))
],cm = log((1− errm)/errm).

5: Set wi← wiexp[cm ·1(l(ρi)6= f m(ρi))], i = 1,2, ..,k, and
normalise so that ∑i wi = 1.

6: end for
7: Output the classifier sign[∑Mm=1 cm fm(ρ)].

Algorithm 2: Discrete AdaBoost Testing (ρ, hi).
1: Given a test sample ρ

2: F(ρ) = 0
3: for m = 1,2, ..,M do
4: F(ρ) = F(ρ)+ cm(Pm ·ρm < Pm ·Tm);
5: end for
6: Output sign(F(ρ))

4. Parallelization

For the training and testing stages we have considered the
general Error-Correcting Output Codes framework to deal
with multi-class classification, and as a case study, we used
AdaBoost to train the sets of binary classifiers, for details
about the algorithms see [EPAS11] where the testing stage
was parallelized but not the training as it was pre-defined.

In this paper we have proposed an interactive way to paint
samples and train the classifiers. Additionally, we propose
to parallelize the training stage using GPU for obtaining a
rapid interaction and real-time classification. For optimizing
the training stage, we use an equivalent LUT-based represen-
tation of AdaBoost classifier.

4.1. AdaBoost Parallelization

We define the matrix L = {P,T,c} of size 3× (|ρ| ×Wc),
where P = {P1, ..., Pm} defines the polarity of the m fea-
tures, T = {T1, ...,Tm} is a threshold for the m features,
and c = {c1, ...,cm} are the class problems. The |ρ| corre-
sponds to the dimensionality of the feature space and Wc to
the number of weak classifiers used in AdaBoost training
step that correspond in a one-versus-one coding design to
N(N−1)

2 where N are the different possible labels in a vol-
ume. Therefore, we have three rows of (|ρ|×Wc) size. First
row of L codifies the weight values of weak classifiers. In
this way, each position i of the first row of L contains the
weight value for the feature computed using the modulus as
mod(i, |ρ|). The next weight value for that feature is found
at position i+ |ρ|. The positions corresponding to features
not considered during training are set to zero. The second
and third rows of L for column i contains the values of po-
larity Pm and threshold Tm used in a Decision Stump weak
classifier during training.

In our proposal, each sample corresponds to a voxel. Let
V M be a voxel model dimx × dimy × dimz sized. For all
vxyz ∈ V M, we defined the feature vector ρ as: x, y, and z
coordinates, the respective gradients gx, gy, and gz, the gra-
dient magnitude |g|, and the density value d. The T train-
ing data set is the k training samples introduced by the pro-
posed user interface (see section 3). Each training sample,
(ρ, l(ρ)) corresponds to a feature vector ρ plus its associ-
ated user-defined label l(ρ) and it is defined as (ρ, l(ρ)) =
[x,y,z,d,gx,gy,gz, |g|, l(ρ)]. Then, in the first row of the pro-
posed AdaBoost Look Up Table L, we codify eight suc-
cessive values for ρ

s,s ∈ [1, ..,8] corresponding to the eight
sample features. For example, ρ

1 corresponds to the x coor-
dinate. Once trained each of the AdaBoost weak classifiers
(Decision Stumps in our case), in the second and third rows
of L we codify the values of polarity and threshold for their
corresponding feature positions, respectively. Therefore, the
Discrete Testing Algorithm (proposed in [EPAS11]) can be
reinterpreted using voxels as the test data set Te and codify-
ing the dichotomizers hi with the L Look Up Table. Given a
set of N classes (volume structures or regions with certain
properties) to be learnt in an ECOC framework, n differ-
ent bi-partitions (groups of classes) are formed, and n binary
problems (dichotomizers) over the partitions are trained (us-
ing AdaBoost in our case).

4.2. Training Parallelization

The parallelization of training stage of the ECOC framework
can be classified as a parallel irregular program [KBCP09],
and some parallelization patterns could be applied to opti-
mize the Discrete AdaBoost Training of one dichotomizer
hi. However, the computation of the weak classifiers, wi,
involves dependencies through the successive iterations of
the main loop of the training algorithm that exhibit read
and write memory conflicts that cannot be avoided easily.
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At each iteration a new wi is calculated in function of the
previously computed weak classifiers.

The total cost of the sequential training of one di-
chotomizer hi is O(|T | ×M), where |T | is the cardinal-
ity of the training data set T . Taking into account that |T |
is a small value, i.e, is the number of training samples in-
troduced by the user at each cycle of the process, we let
this process in its serial version. Nevertheless, we can eas-
ily compute in parallel the n dichotomizers associated to the
n binary independent problems. Then, each thread computes
the corresponding Li = {Pi,Ti,ci} from the same T train-
ing data set. This operation is data independent among di-
chotomizers, as each thread concurrently calculates the Ad-
aBoost Look Up Table without write-memory access con-
flicts. This parallelization is specially suitable when the user
deals with a high number of classes, but in the worst case,
the upper bound becomes the serial cost. Thus, the complete
process has a total cost of O(|T |×M).
5. Simulations and Results

This section describes the experimental setup and shows the
performance evaluation of the proposed framework.

5.1. Setup

Data: We used three data sets, Thorax data setof size 4003 repre-
sents a MRI phantom human body; Foot and Brain data sets of
sizes 1283 and 256×256×159 are CT scans of a human foot and
a human brain, respectively.

Methods: We use the one-versus-one ECOC design with Discrete
AdaBoost with 30 decision stumps as the base classifier. For each
voxel sample ρ, we considered eight features: x, y, z coordinates,
the respective gradients, gx, gy, gz, the gradient magnitude, |g|,
and the density value, v. The system is implemented in GPU.

Measurements: We measure the number of samples selected by the
user and the accuracy obtained by the testing stage at each iter-
ation. The accuracy acc ∈ [0, ..,1] is estimated as the number of
correctly classified voxels in relation to the number of voxels of
the data set, removing background voxels based on value. As a
proof of concept and without loss of generality three independent
users label, for each data set, a set of voxels that belongs to a
predefined set of structures using five iterations. Each data set is
the input data of the training stage. The number of voxels con-
sidered at iteration t + 1 also include the selected at iteration t.
As a reference measure we estimate the performance when the
training used all the volume samples, named as Reference in the
tables. Moreover, to measure the maximum accuracy of our clas-
sifier, we use data sets that have been previously segmented by an
expert (Ground Truth). Tables show the average of the three users.

5.2. Analysis

We implemented the system in the GPU, using OpenCL in
both training and testing stages. In general, the number of
selected voxels is between 1880 in the first iteration to 14200
at the last one. Time performance for training is interactive,
being 5 seconds in the worst case. On the other hand, testing
runs in real time for all datasets.

Tables 1, 2 and 3 depict the results for the Brain, Foot

and Thorax data sets, respectively. For each data set we have
defined different structures (labels) denoted as L1, L2, and
so on. Specifically, they are in the Brain (the right hemi-
sphere, cerebellum, and left hemisphere), in the Foot (ankle-
muscle, palm-muscle, toes-muscle, ankle-bone, palm-bone,
and toes-bone), and in the Thorax (column, bones, heart, and
soft tissue, respectively). Some of them are not shown due
to space limitations. First row of each table show the render-
ings obtained for the whole volume (ALL) and for each one
of the structures along the five iterations. Each column rep-
resents one iteration. Additionally, in the last two columns,
we introduced the result of the Reference and the Ground
Truth data sets. Note that below each color plate we show
the corresponding accuracy acc.

One can see at Tables 1, 2 and 3 that the percentage of cor-
rectly classified samples increases with the number of user
iterations, achieving almost the same accuracy as the refer-
ence value at the fifth iteration. As it has been seen, even for
different complexity of volume structures, most of the cate-
gories yield high classification rates with few user iterations.
In all data sets the achieved mean accuracy at fifth iteration is
upon 90%. In the case of the Foot data set, accuracy achieves
above 99% from the second to the last iteration. Moreover,
our proposal is able to accurately segment thinned and com-
plex structures, such as toes’ bones.

Our analysis states that the proposed iterative framework
requires few voxels to obtain high accuracies, achieving
close or equal results to those obtained by learning a whole
labeled volume, see Figure 3(a) and 3(b). As shown in
Fig. 3(c), the users almost achieved the same performance
than training the whole data just selecting between 0,1% in
the Thorax data set to less than 4% of the voxels of the Foot
volume in the last iteration. This augment is largely pro-
duced by the increment of the labels to be learnt, although
the difficulty of learning some of the structures (e.g., L6)
may affect it moderately. The most difficult label to be learnt
in the Foot is L6, which corresponds to the toes-bone struc-
ture. In particular, this structure only uses a 14% of the vox-
els of the toes for training. Note that at the first iteration it
lacks one of the fingers whereas at the last one the image
delineates almost a perfect segmentation in relation to the
ground truth data.

6. Conclusions

We proposed an interactive and iterative process for assist-
ing the user in classifying multiple regions of interest on de-
mand. An intuitive interface has been designed to help the
user in the process of defining relevant volume structures.
From the set of user selected voxels a training stage is per-
formed based on voxel characteristics. The system uses the
Error-Correcting Output Codes framework and AdaBoost
base classifier to learn the selected properties and classify the
data set. To obtain a rapid interaction and classification, we
implemented the training and testing stages using the GPU.
The empirical results on different data sets show high classi-
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Reference Ground Truth

ALL
acc 0,868 0,908 0,952 0,959 0,960 0,968

L1
acc 0,899 0,913 0,953 0,958 0,958 0,975

L2
acc 0,878 0,926 0,950 0,954 0,954 0,958

L3
acc 0,834 0,898 0,951 0,962 0,964 0,964

Table 1: Visualization of the Brain data set along user iterations for different volume structures.
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Reference Ground Truth

ALL
acc 0,983 0,990 0,992 0,992 0,989 1,000

L4
acc 0,999 0,999 0,999 0,999 0,998 1,000

L5
acc 0,887 0,887 0,948 0,948 0,949 1,000

L6
acc 0,781 0,781 0,854 0,855 0,967 1,000

Table 2: Visualization of the Foot data set along user iterations for different volume structures.

fication accuracy and fast computation of the system, being
a reliable tool for semi-automatic volume segmentation.

ACKNOWLEDGMENTS

Work partially funded by TIN2011-24220 and MICINN
Grant TIN2009-14404-C02 Spanish research projects.

References
[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental com-

parison of min-cut/max-flow algorithms for energy minimization
in vision. PAMI 26, 9 (2004), 1124–1137. 1

[EPAS11] ESCALERA S., PUIG A., AMOROS O., SALAMÓ M.:
Intelligent gpgpu classification in volume visualization: A frame-
work based on error-correcting output codes. Computer Graphics
Forum 30, 7 (2011), 2107–2115. 1, 2, 3

[EPR10] ESCALERA S., PUJOL O., RADEVA P.: On the decoding

process in ternary error-correcting output codes. PAMI 32 (2010),
120–134. 2

[ETP∗08] ESCALERA S., TAX D., PUJOL O., RADEVA P., DUIN
R.: Subclass problem-dependent design of error-correcting out-
put codes. In PAMI (2008), vol. 30, pp. 1–14. 3

[FHT98] FRIEDMAN J., HASTIE T., TIBSHIRANI R.: Additive
logistic regression: a statistical view of boosting. Annals of
Statistics 28 (1998). 3

[FPT06] FERRÉ M., PUIG A., TOST D.: Decision trees for accel-
erating unimodal, hybrid and multimodal rendering models. The
Visual Computer 3 (2006), 158–167. 2

[GDB08] GARCIA V., DEBREUVE E., BARLAUD M.: Fast k
nearest neighbor search using gpu. In In Proceedings of the
CVPR Workshop on Computer Vision on GPU (2008). 2

[HVPE11] HERNÁNDEZ-VELA A., PRIMO C., ESCALERA S.:
Automatic user interaction correction via multi-label graph cuts.
HICV, ICCV (2011). 1

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



S. Grau & A. Puig & S. Escalera & M. Salamó / Intelligent Interactive Volume Classification

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Reference Ground Truth

ALL
acc 0,879 0,896 0,906 0,922 0,922 0,922

L1
acc 0,944 0,950 0,921 0,917 0,934 0,985

L3
acc 0,890 0,867 0,866 0,854 0,844 0,940

L4
acc 0,890 0,911 0,908 0,931 0,929 0,929

Table 3: Visualization of the Thorax data set along user iterations for different volume structures.

(a) (b) (c)

Figure 3: (a) Mean accuracy results of volume data sets based on user interactions. (b)-(c) Mean absolute and relative number
of voxels selected by the user at each iteration in relation to the size of each data set.

[HWS10] HERRERO S., WILLIAMS J., SANCHEZ A.: Parallel
multiclass classification using svms on gpus. In ACM General-
Purpose Computation on Graphics Processing Units (2010),
vol. 425, pp. 2–11. 2

[KBCP09] KULKARNI M., BURTSCHER M., CASCAVAL C.,
PINGALI K.: Lonestar: A suite of parallel irregular programs.
In ISPASS (2009), pp. 65 –76. 3

[KKH01] KNISS J., KINDLMANN G., HANSEN C.: Interactive
volume rendering using multi-dimensional transfer functions and
direct manipulation widgets. In Visualization (2001), pp. 255–
262. 1

[PLB∗01] PFISTER H., LORENSEN B., BAJA C., KINDLMANN
G., SHROEDER W., AVILA L., RAGHU K., MACHIRAJU R.,
LEE J.: The transfer function bake-off. IEEE Computer Graphics
& Applications 21, 3 (2001), 16–22. 1

[PRH10] PRASSNI J., ROPINSKI T., HINRICHS K.: Uncertainty-
aware guided volume segmentation. Visualization and Computer
Graphics 16, 6 (2010), 1358–1365. 1, 2

[PYA∗13] PUNITHAKUMAR K., YUAN J., AYED I. B., LI S.,
BOYKOV Y.: A convex max-flow approach to distribution based
figure-ground separation. SIAM Imag. Sciences (2013). 1

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: "grabcut":

interactive foreground extraction using iterated graph cuts. ACM
Trans. Graph. 23, 3 (2004), 309–314. 1

[SMH10] SAAD A., MÖLLER T., HAMARNEH G.: Probexplorer:
uncertainty-guided exploration and editing of probabilistic med-
ical image segmentation. In Eurographics-VGTC Visualization
(2010), pp. 1113–1122. 2

[TLM03] TZENG F. Y., LUM E., MA K. L.: A novel interface for
higher dimensional classification of volume data. In Visualization
2003 (2003), IEEE Computer Society Press, pp. 16–23. 2

[TLM05] TZENG F., LUM E., MA K.: An intelligent system ap-
proach to higher-dimensional classification of volume data. Vi-
sualization and Computer Graphics 11 (2005), 273–284. 1

[TM04] TZENG F.-Y., MA K.-L.: A cluster-space visual inter-
face for arbitrary dimensional classification of volume data. In
Eurographics-IEEE TVCG Visualization (2004). 1, 2

[YGJ∗10] YANG D., GETAO L., JENKINS D., PETERSON G., LI
H.: High performance relevance vector machine on gpus. In App.
Accelerators in High Perf. Computing (2010). 2

[YSMR10] YUDANOV D., SHAABAN M., MELTON R., REZNIK
L.: Gpu-based simulation of spiking neural networks with real-
time performance and high accuracy. In WCCI (2010). 2

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.


