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Abstract

Corners and junctions are landmarks characterized by the lack of differentiability in the unit tangent to the image level curve. Detec-
tors based on differential operators are not, by their own definition, the best posed as they require a higher degree of differentiability to
yield a reliable response. We argue that a corner detector should be based on the degree of continuity of the tangent vector to the image
level sets, work on the image domain and need no assumptions on neither the image local structure nor the particular geometry of the
corner/junction. An operator measuring the degree of differentiability of the projection matrix on the image gradient fulfills the above
requirements. Because using smoothing kernels leads to corner misplacement, we suggest an alternative fake response remover based on
the receptive field inhibition of spurious details. The combination of both orientation discontinuity detection and noise inhibition pro-
duce our inhibition orientation energy (IOE) landmark locator.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Corners; T-junctions; Wavelets
1. Introduction

The ability of our receptive system to detect sudden
changes in the surrounding environment has been often
used in computer vision to extract the key image features.
However the visual system perception inhibition principle
has been scarcely used in spite of being an efficient noise
remover. We suggest using inhibition of image discontinu-
ities to design a landmark detector based on corner/junc-
tion location. Current corner detectors (see Rohr (2001)
for an exhaustive review) split into those working on the
image (2D) domain and those ones that analyze the (1D)
geometry of some curves extracted from the image.

Most 2D operators, either explicitly or implicitly, search
for corners with a particular angulation, which makes them
unable to detect junctions and hinders their performance
in real images. Response of operators measuring image
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isotropy (Harris et al., 1988; Noble, 1988) drops at acute
angles and their performance substantially worsens with
noise or textured backgrounds. Parametric approaches
(Rohr, 1992; Rosin, 1999) fit an analytic model of a corner
to the particular image they handle. Besides being time
consuming, they are prone to poorly perform in real images
as they assume uniform grey level within regions. Wedge
filters need no assumptions on image intensity but, by their
own design, they only respond to a given set of corner
angulation and orientations (Robbins and Owens, 1997;
Simoncelli and Farid, 1996). Only curvature-based algo-
rithms and the simple SUSAN (Smith and Brady, 1997)
comparison of grey values need no assumptions on the cor-
ner geometry. The first ones, despite being better posed for
general corner detection, require of some degree of differen-
tiability of the image level sets to yield reliable responses
for the curvature operator. However corners are character-
ized by lack of continuity in level sets tangent direction, so
that curvature based detectors may lead to ambiguous
results. Although the SUSAN scheme works fine without
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any requirements on the image differentiability or local
structure, it sometimes confuses edges and corners on real
images.

On the other side, algorithms running on curves
extracted from the image mainly search for discontinuities
on the curve tangent vector. Wavelets (Lee et al., 1995;
Qudus and Gabbouj, 2002; Yeh, 2003) are a usual tool to
analyze such regularity because of their robust high
response near points of discontinuity (Mallat, 1999).
Although we agree with the former definition of corner,
working on image contours instead of working on the
image domain has several disadvantages. First, the com-
pulsory previous extraction of image edges, which might
occasionally lead to some sort of boundary tracking (Lee
et al., 1995; Mokhtarian and Suomela, 1998; Mokhtarian
and Bober, 2003) to fill-in edge gaps at corners. Second,
computation of tangent spaces of curves in parametric
form is a delicate step (Lee et al., 1995; Yeh, 2003) that
would be unnecessary in their implicit level set original
form.

In any case, all algorithms must reject the operator
response to texture and noise by working on a smoothed
version of the original image. This smoothing can be
achieved by either straight convolution of the image with
a gaussian kernel or, in the case of wavelets and scale-space
approaches, working at coarse scales/level of detail. A
major drawback of both strategies is that image prominent
features are blurred in the measure noise is reduced.
Although there are some criteria (Qudus and Gabbouj,
2002) to determine the proper resolution, corner misplace-
ment is difficult to avoid unless some sort of corner track-
ing (Lee et al., 1995; Mokhtarian and Suomela, 1998)
through all levels of detail is performed. Although corner
tracking can be efficiently done (Mokhtarian and Bober,
2003), it could be skipped (or at least reduced) if the corner
detector admitted a robust performance in the presence of
noise and, thus, work at the finer level of detail. The point
of the present article is to propose an alternative way of
removing fake responses that allows working at small
scales.

In this paper we characterize corners and junctions in
terms of the lack of continuity of the projection matrix
onto the image unit gradient. Convolution with first deriv-
atives of oriented anisotropic gaussian kernels are used to
determine the matrix singular points. The integral over
all orientations of the determinant of the former wavelet
transform is an energy operator on the image domain that
is maximum at corners/junctions independently of their
particular geometric nature. We will refer to this orienta-
tion continuity energy as orientation energy, OE, for short.
The main differences with current corner characterizations
are the following. By working on the image domain our
operator does not require any of the preprocessing steps
(Lee et al., 1995) that most 1D wavelet based corner detec-
tors require. Because it does not rely on either the local
image structure or a particular model of corner/junction,
our operator characterizes both corners and junctions
without any possible confusion with other image salient
features (as it might happen with edges in the SUSAN
(Smith and Brady, 1997) scheme and ridges/valleys in the
case of maxima of curvature searchers). Besides OE
increases as the corner angle becomes more acute, in con-
trast to operators measuring isotropy of the image (Harris
et al., 1988; Noble, 1988), which response drops for angles
less than 90�. Finally, by scanning the image in all possible
orientations in the discrete domain, our operator is capable
of detecting corners without any sort of fitting (Rohr, 1992;
Rosin, 1999) or special filter design (Robbins and Owens,
1997; Simoncelli and Farid, 1996).

Still, in real images, fake responses at noisy or textured
backgrounds must be suppressed. Instead of running our
operator at different scales (Mokhtarian and Suomela,
1998; Lee et al., 1995), we propose using the same mecha-
nisms that serve our visual system to ignore noise and tex-
ture. Our sensitivity to abrupt changes differs depending on
the nature of the response in the surroundings: only iso-
lated or unique salient features are taken into account. In
(Marr, 1982) this biological mechanism is modelled by
means of an inhibition kernel, which convolved with the
image Gabor energy results in a robust edge detector (Gri-
gorescu et al., 2003). In our case, we will apply inhibition to
a representation of the image salient features obtained by
means of the energy of the image wavelet transform. This
map of the most significant image features is the input
for OE and its inhibition serves as a noise suppression fac-
tor for IOE. Because the former strategy does not hinge
upon any smoothing nor level of detail, our operator can
work at the finest scale, thus ensuring maximum location
accuracy.

Our landmark extractor is compared to the curvature
based corner detector of (Kitchen and Rosendfeld, 1982),
the Harris operator (Harris et al., 1988) and the SUSAN
scheme (Smith and Brady, 1997). Following current ways
of evaluating quality of corner extractions, we asses the
operator performance in terms of location accuracy for dif-
ferent corner angulation and trade-off between true detec-
tions and fake responses. Experiments on synthetic noisy
images prove IOE better performance and landmark
extraction in real images shows its higher applicability
and reliability.

We have structured the paper as follows. Section 2 is
devoted to the description of IOE, validation on synthetic
corners and landmark location in real images are presented
in Section 3 and conclusions are exposed in Section 4.

2. From wavelets to corners

A usual way of describing corners is as points of maxi-
mal curvature of the image level sets. Not only is this def-
inition ambiguous but also incorrect. Ambiguity comes
from the fact that, in the case of corners of image level sets,
image valleys and ridges are also characterized by maxima
of curvature. Imprecision follows because, in fact, corners
are points where the level curve fails to be C1. This fact
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might hinder performance of any differential operator used
to detect corners or junctions since, at these points, neither
the curve curvature nor its derivatives are properly defined.
A curve fails to be C1 at points where its tangent space is
not properly defined, that is, points of discontinuity of
the curve unit tangent direction. Because the image gradi-
ent is perpendicular to its level sets, we conclude that cor-
ners and junctions are characterized as discontinuity points
of the image unit gradient direction, $u/j$uj = (ux/j$uj,uy/
j$uj), for jruj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
, the Euclidean norm. The image

partial derivatives, (ux,uy), are calculated by convolving the
image with the partial first derivatives of Gaussian deriva-
tives kernels:

ux ¼ Gx;r � u; uy ¼ Gy;r � u

where * denotes convolution, and Gx,r, Gy,r are the partial
derivatives (in x,y, respectively) of a Gaussian kernel of
variance r:

Gr ¼
1

2pr2
e�

x2þy2

2r2

For any unitary vector field, n(x,y) = (n1,n2), the matrix,
Pn, encoding the orthogonal projection onto its vector
space (Lang, 2004) is given by

P nðx; yÞ ¼
n1

n2

� �
ðn1n2Þ ¼

n2
1 n1n2

n1n2 n2
2

 !

has equal degree of differentiability than the vector direc-
tion. Thus, in a first approach we could consider that a
point is a corner/junction if and only if P$u/j$uj fails to be
continuous. However the projection matrix is discontinu-
ous at sharp straight ridges (the tangent direction orienta-
tion is not well defined), and might be sensitive to image
discretization. These artifacts are overcome by computing
the projection matrix over the eigenvector of maximum
eigenvalue of the structure tensor. This tensor is a descrip-
tor of the image local orientation (Jahne, 1993; Kthe et al.,
2003) and it is the weighted mean of the projection ma-
trixes given by the element-wise convolution:
RIDGE 

CORNER 

(a)

Fig. 1. Corners discontinuity in image gradient: regular
Gq � P ru
jruj
¼ Gq �

1

jruj2
u2

x uxuy

uxuy u2
y

 !" #
ð1Þ

for Gq a 2D isotropic gaussian kernel of variance q. Since it
is, indeed, the solution to the heat equation with initial con-
dition P$u/j$uj, the eigenvector of maximum eigenvalue, n,
is an infinitely differentiable approximation to the image
level sets normal space. It follows that it extends tangent
spaces to sharp ridges/valleys and regularizes the image
gradient. It follows that the definition:

Definition 2.1. A point p in an image u = u(x,y) is a
corner/junction if and only if the projection matrix onto
the regularized image unit gradient given by the eigen-
vector of maximum eigenvalue of (1), Pn(x,y), fails to be
continuous.

exclusively characterizes corners and T-junctions, as, at
ridges, the matrix Pn yields a continuous response. As
example let us consider the distance map to a rectangle
shown in Fig. 1(a). All level sets in its interior have four
corners with the exception of the rectangle skeleton, which
is a ridge of the distance map. The jump discontinuity in
the arrows (representing level sets unit tangent) direction
only occurs at the rectangles vertices.

Now, one of the best tools to detect discontinuities and
lack of differentiability are wavelets, both from a theoretic
(Mallat, 1999) and a practical point of view (Qudus and
Gabbouj, 2002; Yeh, 2003). Because we are looking for dis-
continuities of Pu and the domain is the two dimensional
image, we will use first derivatives of oriented anisotropic
Gaussian kernels, namely G. Let r = (r1,r2), with r1 <
r2, be the variance and ~x, ~y the coordinates given by the
rotation:

~x

~y

� �
¼

cosðhÞ sinðhÞ
� sinðhÞ cosðhÞ

� �
x

y

� �

Our mother wavelet will be G first derivative along its min-
or axis:
(b)

ized image gradient (a) and OE ideal response (b).
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MHh ¼ o~xðGÞ ¼ o~x
1

2pr1r2

e
� ~x2

2r2
1

� ~y2

2r2
2

 !
¼ �~xG=r2

1

Its convolution with an image u(x,y) yields the oriented
wavelet coefficient:

W huðx; yÞ ¼
Z

MHhð~x� x; ~y � yÞuð~x; ~yÞd~xd~y

And the integral over all possible orientations:

Eðx; yÞ ¼
Z
ðW huÞ2dh

is an energy that measures the image degree of continuity
at a given scale/level of detail. In the case of a matrix Pn,
its wavelet transform is another matrix, so that E must
be the integral (over all orientations) of the norm of Pn

as a linear transformation. In our particular case the
L2 norm of the transformed matrix is given by its determi-
nant (see Appendix A for the proof).

Proposition 2.1. The norm kWhPnk2 is given by the deter-

minant of the matrix

The orientation energy (OE) we suggest is

OEðx; yÞ ¼ OEðuÞ ¼
Z
ðdetðW hP uÞÞ2dh

with W hP u ¼
Z

MHhð~x� x; ~y � yÞP nð~x; ~yÞd~xd~y.

ð2Þ

Corners and T-junctions correspond to local maxima.
Fig. 1 shows the response of OE for an ideal square corner.
In Fig. 1(a) we show the eigenvector n and in Fig. 1(b) the
resulting energy (2) for h = (0,p/4,p/2,3p/4).

Still in real images we must suppress false detections
produced by textured and noisy backgrounds and a double
echo at edges caused by the structure tensor (see Section 3
for further details). To avoid such false corners we propose
using an inhibition kernel as in (Grigorescu et al., 2003).
The main idea is to emulate the human vision system that
inhibits its response at discontinuities located in areas pre-
senting a similar singularity at all points. To such purpose,
we will work with a representation of the image salient
features.
2.1. The continuity of discontinuities

What captures our eyesight are abrupt changes, either in
image intensity (edges, ridges) or in contours directions
(corners, junctions). The first singular features serve to
select those curves describing the essential shapes in an
image. The second ones correspond to a punctual/point
wise description of the latter, that is, landmarks. Because
wavelets model human vision response, we will use a family
of wavelets responding to edges and ridges to obtain a rep-
resentation of the image salient features (Mallat, 1999). As
in the previous section, we will consider directional deriva-
tives of anisotropic gaussian kernels in the direction, h, of
their minor axis. That is, our wavelet filters are given by
MH1
h ¼ o~xG ¼ �~xG=r2

1 and MH2
h ¼ o~x~xG ¼ ð~x2 � 1ÞG=r2

1

If W 1
h, W 2

h denote the wavelet coefficients, then the energy:

MHEðx; yÞ ¼
Z
ðW 1

huÞ2 þ ðW 2
huÞ2dh

yields an image close to the representation that human per-
ception yields. Because image edges and ridges are well out-
lined, this will be the input image for OE. By using MHE
instead of the original input image we reduce the impact
of small oscillations on level sets tangent spaces, so that
the structure tensor can operate at the minimum scale. Still
fake responses produced by textured backgrounds should
be suppressed. Let us minimize the impact of the latter false
responses by emulating the human receptive field inhibi-
tion. The human visual system rejects any salient feature
in a neighborhood presenting a similar discontinuity.
Roughly speaking we could say that humans check the
continuity of discontinuities before processing any infor-
mation. In (Marr, 1982; Grigorescu et al., 2003) this bio-
logical behavior is modelled by means of a ring-shaped
inhibition kernel, IK, defined as

IK ¼ 1

kHðDGrÞk2

HðDGrÞ; HðzÞ ¼
0 z < 0

z z P 0

�

where k Æ k2 denotes the L2 norm and DGr is the following
difference of gaussian functions:

DGr ¼
1

2pð4rÞ2
e
�x2þy2

2ð4rÞ2 � 1

2pr2
e�

x2þy2

2r2

for the variance r coinciding with the scale used for the
wavelets filters. The inhibition kernel IK is a function of
2 variables with a ring-shaped support centered at the ori-
gin. The factor 1/kH(DG(x,y))k2 is a normalization scaling
to have a function of unitary L2 norm.

The convolution of the energy MHE with IK corre-
sponds to a weighted average in a circular ring centered
at each point. It follows that if we compare this mean to
the value of MHE at the point, the difference will be
maximum at isolated or unique salient features and cancel
response due to noise or texture. Therefore the positive
response of the difference:

IAðMHEÞ ¼ HðMHE� IK �MHEÞ ð3Þ
defines an energy image defining the most representative
image features as sharp maximums. The inhibition term
given by (3) is added as a noise remover factor to the OE
energy (2) computed on MHE to yield our inhibition orient-
ation energy:

IOE ¼ OEðP MHEÞ � IAðMHEÞ ð4Þ

In Figs. 2 and 3 we illustrate the mechanisms and results of
the inhibition term on a regular area containing a well de-
fined contour (Fig. 2(a)) and on a granulated sand area
(Fig. 3(a)). The images in Figs. 2 and 3(b) and (c) are in-
verse (negative) energies for a better visualization (OE in
boxes labelled with (b) and IOE in boxes labelled with



Fig. 2. Inhibition of false landmarks: regular area (a), orientation energy (OE) (b), IOE (c), vector field (d), corners without (e) and with inhibition
term (f).

Fig. 3. Inhibition of false landmarks: regular area (a), orientation energy (OE) (b), IOE (c), vector field (d), corners without (e) and with inhibition
term (f).
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(c)), so that darker pixels correspond to higher energy
values. Corners in Figs. 2 and 3(e) and (f) correspond to
energy peaks above a given percentile for OE and IOE,
respectively. On one hand, the extension of the image gra-
dient yielded by the structure tensor (Fig. 2(b)) produces an
echo in the response of OE near clean image contours. This
yields fake detections in the corner map of Fig. 2(e) and
omits the pyramid vertex. On the other, random orienta-
tion of the vector field in the textured background
(Fig. 3(b)) produces sparse false corners. The inhibition
term (Figs. 2 and 3(c)) suppresses any response outside well
defined image objects. Therefore in the landmark map
extracted (Figs. 2 and 3(f)) from the IOE the number of
wrong detections significantly reduces, which improves
the detection of the pyramid main vertex and the sand
wavy shadows.

3. Experiments

We present two different experiments: assessment of per-
formance by comparison to existing techniques and land-
mark extraction in real images. In all experiments, we use
a scale {r = 0.5,q = 0.5} for the structure tensor and 6
orientations with r = 1 for the wavelet kernels used in
OE and MHE. We used two different criteria for landmark
extraction:



Fig. 4. Synthetic noisy corners: first row acute angle, second right and
third flat.
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(1) Local maxima above a given threshold of the energies
characterizing landmarks. This is the criterion used
for landmark extraction in synthetic images as it
enables the assessment of the trade-off between false
and true detections.

(2) The first N local maxima. For real images this is a
more fair criterion for a visual assessment of the qual-
ity of the extracted corners, especially if any compar-
ison to other extractors is to be made.

3.1. Synthetic corners

We have compared IOE to the curvature-based (CURV)
corner detector (Kitchen and Rosendfeld, 1982), Harris
(Harris et al., 1988) and SUSAN (Smith and Brady,
1997). We have applied them to a set of nine corners with
angles in the range (20�, 180�) in images corrupted with
gaussian noise of r = 0, 0.1, 0.25, 0.5. The thresholds used
for corner extraction have been set for each method by
selecting the value that yields the best performance results.
For CURV and Harris, this corresponds to the 99.5% per-
centile of the energy value for low noisy images (r = 0,0.1)
and to the 99.95% percentile for the most corrupted ones.
In the case of IOE we performed with a common percentile
of 99.99% for all noises. For the SUSAN algorithm this
percentile is given by a brightness threshold (t 2 (10, 255))
that determines the maximum difference in gray levels
between two pixels which allows them to be considered
part of the same ‘‘region’’ in the image. Thus, the lower
it is, the more corners the algorithm detects. We have set
t = 10 for low noise images and t = 90 for noises with
r = 0.25, 0.5.

As in (Rohr, 2001), performance is measured in terms of
location accuracy and trade-off between true and false
detections. We consider a positive response is correct if it
lies in a 7 · 7 window centered at the true corner, including
the flat case (180�). Plots in Fig. 5 show the total number
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Fig. 5. Statistics for s
(for all noises) of true/false detections for each angle
(abscissa axis). Images in Fig. 4 show the detections
(squares on noise free angles) for an acute corner, an angle
near 90� and the flat case, for r = 0.25.

Statistics (plots in Fig. 5) for the ideal detector should
yield 0 false detections, 4 good responses (1 for each noisy
case) for angles less than p and no response for flat angles.
Due to sensitivity to lack of differentiability, curvature-
based algorithms fail to detect the most acute angles (first
image in second column of Fig. 4) and produce false
responses as noise increases. Harris number of detections
drops as image anisotropy increases, which difficulties
detection of acute corners (first image in third column of
Fig. 4) and increases the number of false positives in the
presence of noise (it is the worst performer with up to 4
wrong responses). SUSAN numbers would match the ideal
case, if it were not for its response at flat angles (last image
in 4th column of Fig. 4) and random false detections due to
noise (see plot of fake detections in Fig. 5(b)). Finally, 4
right detections with 1 false one at most for angles between
(40�, 140�) and null response at 180�, select IOE as the
algorithm that best matches the ideal figures.
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ynthetic corners.
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3.2. Landmark extraction in real images

Choosing the best performers of Experiment 3.1, we
have applied IOE and SUSAN to landmark location on
real images. The set of test images include geometric
patterns (building in background of boat image in
Fig. 6(a) and strips in shirt of Fig. 7(a)), faces (portrait in
Fig. 7(a)) and natural scenes with texture (Fig. 9(a) and
(b)). Although for a better comparison we should set each
algorithm parameters to yield a given number of land-
marks, there is not an explicit control on the number of
landmarks extracted in the SUSAN scheme. This motivates
setting the threshold parameter in the SUSAN scheme and
extract as many landmarks as SUSAN detected in our case.
The threshold for landmark extraction was set to t = 40 for
the SUSAN scheme in all cases. This yields 315 points for
Fig. 6. Landmarks in real images I: ori

Fig. 7. Landmarks in real images II: or

Fig. 8. Landmarks closed-up: origin
the boat in Fig. 6, 154 for the man in stripe shirt in Fig. 7,
175 for the falcon in the first column of Fig. 9 and 186 for
the birds in the second column of Fig. 9.

In general terms the number of false landmarks at edges
and texture backgrounds is larger for the SUSAN scheme.
Points on the border of the wooden platform and at the
foreground building in Fig. 6(c) correspond to edges rather
than to landmarks. In a similar fashion, SUSAN yields an
over response at shirt stripes (like the line on the man
shoulder in Fig. 7(c)) and branches silhouette (Fig. 9(c)),
with the majority of points detected as landmarks. Textures
produce some erratic false positives in water waves (right
side of Fig. 6(c)), boys’ hair (Fig. 7(c)) and interior of
branches (Fig. 9(e)). In the case of the strong patterned nest
in (Fig. 9(f)) the number of fake detections includes almost
all points. Still, despite this sensitivity to corners not all
ginal (a), IOE (b) and SUSAN (c).

iginal (a), IOE (b) and SUSAN (c).

al (a), IOE (b) and SUSAN (c).



Fig. 9. Landmarks in natural scenes: original (a) and (b), IOE (c) and (d) and SUSAN (e) and (f).
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stripe corners (see closed up in Fig. 8(c)) and birds beaks
have been properly located by SUSAN.

On the other hand, IOE detects most geometric corners
yielding optimal responses at windows and boat corners
(Fig. 6(b)) and shirt stripes (Fig. 7(b)). Close-ups of the
man shirt in Fig. 8 show IOE higher accuracy (Fig. 8
(b)) compared to SUSAN (Fig. 8(c)). On the other hand,
IOE performance for natural scene corners and T-junc-
tions is also competitive: branches junctions and knots
in Fig. 9(c) and birds’ beaks in Fig. 9(d) have been per-
fectly extracted. The impact of the inhibition term is deter-
minant for IOE to yield a minimum number of fake
landmarks. It lacks of response at the slightly texture
induced by water waves and curly hairs and at the birds
nest it gives a substantially less number of fake positives
than SUSAN.

4. Conclusions

In the present paper, we define an operator that mea-
sures the continuity of the image unit gradient direction.
The norm of the wavelet transform of the projection matrix
onto the latter is an energy that increases with corner
acuteness. In order to ensure maximum location accuracy,
we propose a scale independent noise response suppressor.
Basing on the ability of the visual receptive cells to inhibit
their response at homogeneous noisy areas, fake responses
are removed by means of the convolution of the image
wavelet energy with an inhibition kernel.

Our combination of inhibition of uniform disconti-
nuities yields a corner detector reliable enough as to
robustly extract landmarks in real images. Statistics on
synthetic corners and results on natural scenes prove
the higher efficiency of our operator compared to usual
techniques. Results on natural scenes with textured back-
grounds prone to produce false responses show its
applicability.

Appendix A

Proposition A.1. The norm kWhPk2 is given by the deter-

minant of the matrix
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Proof. Given a vector space with norm k Æ k, the norm of a
linear transformation (Tom, 1974), M, is given by the max-
imum of the transformed unitary vectors:

kMk ¼ max
kek¼1
kMek

We will prove that kW hPk2
2 and the determinant jdet(WhP)j

are equivalent measures, so that we can use them indis-
tinctly. In order to show that, it suffices (Tom, 1974) two
find two positive constants m < 1 < M such that

mj detðW hP Þj 6 kW hPk2
2 6 M j detðW hP Þj

We recall that if h is the angle between the image unit gra-
dient and a fix axis, then P can be expressed as

P ¼ cosðhÞ2 cosðhÞ sinðhÞ
cosðhÞ sinðhÞ sinðhÞ2

 !
ðA:1Þ

We will first prove that WhP is a symmetric matrix with
null trace. This follows by commutativity between convolu-
tions and derivatives:

W hP ¼MHh � P ¼ o~xG � P ¼ G � ðoTxP Þ

¼ G � h~x
� cosðhÞ sinðhÞ cosðhÞ2 � sinðhÞ2

cosðhÞ2 � sinðhÞ2 cosðhÞ sinðhÞ

 !" #

¼ G � h~xP 0ð Þ

for h~x the partial derivative with respect to the axis ~x and
the last equality obtained by differentiating the expression
(A.1). The matrixes P 0 are all symmetric and have null
trace. Since both symmetry and the null trace property
are linear operations, they commute with the convolution.
It follows that WhP is also symmetric with null trace. By its
symmetry, we have that WhP diagonalizes in a basis of
orthonormal eigenvectors, v, w, so it can be written as

W hP ¼
v1 w1

v2 w2

� �
k1 0

0 k2

� �
v1 v2

w1 w2

� �

The null trace property implies opposite eigenvalues
k1 = �k2. Since the matrix norm for square matrices is
actually the maximal absolute eigenvalue (Tom, 1974), it
follows that kMk2 = jkj2 = jk1 * k2j = jdet(M)j. h
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