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ABSTRACT

Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The
architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus,
their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV
remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy
requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean
statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most
approaches compute separate statistical models for external anatomy and fibers architecture.

In this work we propose a general mathematical framework based on differential geometry concepts for
computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous
approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the
computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete
anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external
geometry agrees with the segmental description of orientations reported in the literature.

1. INTRODUCTION
The most common approach for the modelling of shape variations in anatomical structures are Point Distribution
Models (PDM).1 PDM are discrete approaches which are based on the statistical modelling of a set of anatomical
landmarks describing the geometry of the anatomical structure. By its linear formulation, PDM complexity
and computational cost is very low which makes them useful in many computer vision applications (e.g. face
segmentation). However, in the case of anatomical structures, the ability of PDM to capture the variability of
finer details requires a massive selection of landmarks. This has lead to designing computational methods2 for
the automatic generation of huge sets of landmarks over anatomical structures. The maximum resolution in the
representation of shapes can be achieved by considering continuous models. Such models explore the variability
of shapes by performing statistics directly over the diffeomorphic mappings required to register anatomies to a
reference one.3, 4 A main inconvenience is that the space of diffeomorphic mappings is an infinite dimensional
space without vector space structure. This forces the development of special statistical models with a complex
formulation.

The modelling of the LV gross anatomy has been widely addressed. However, the inclusion of its internal
architecture is a relatively new issue. Although the approximate helical architecture of the heart has been known
for decades, a complete and consistent anatomical description of cardiac structure has not been achieved yet.
This issue is currently one of the most controversial aspects of the modern cardiology and, several conceptual
architectural models have been proposed5 so far. There is, however, a general consensus that cardiac architecture
plays a critical role in many functional aspects of the heart such as electrical propagation.6 In addition, it is
also accepted that myocardium may undergo architectural alterations in many heart diseases.7 It follows that
fiber architecture models should be taken into account in electrical and mechanical simulations applied to the
planning of patient-specific therapies.8
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Figure 1. Unfolding process of the LV that provides a parametrization, Ψ, between a rectangular domain and LV.

Recently, Diffusion Tensor Imaging (DTI), a technique for measuring the self-diffusion of protons in fibrous
tissue, has emerged as a powerful new tool for the rapid measurement of the whole cardiac architecture at a
reasonable spatial resolution (approximately 300× 300 × 1000 µm3). DTI directly provides a 3D description of
the fiber architecture as well as its external anatomy by means of data volumes. Architectural data is given by a
tensor (at each point) which diagonalizes in three orthogonal eigenvectors. Histological studies have demonstrated
that the primary eigenvector correlates well to myofiber direction.9 In contrast to traditional techniques such as
dissection and histology, a main advantage of DTI is that it provides digital data sets prone to be statistically
studied. This has motivated active research in the extraction of statistical models involving fiber architecture
aspects. For instance, scalar descriptors of their orientation.4, 10 Few researchers, however, have addressed the
creation of statistical models (atlases) of cardiac fiber architecture so far. This is mainly due to the fact that
diffusion tensors are symmetric positive definite matrices that do not belong to any vector space. Thus, classical
Euclidean multivariate statistics are not consistent. In,11 Riemmanian geometry, based on either affine-invariant
or Log-Euclidean metrics,12 have been used for the computation of first and second order statistics of the whole
diffusion tensors.

Following this trend, the goal of the present work is to create a complete statistical model of the LV including
both, the gross anatomy and the fibers distribution. In order to achieve this, we present a framework based on
Differential Geometry concepts (manifold parameterization), which is simple and computationally efficient. We
call this framework Normalzed Parametric Domain (NPD).

2. NPD FRAMEWORK

The keypoint of the NPD framework relies on a particluar parameterization of the LV volume in the sense of
differentiable manifolds.13 As suggested in,14 this parameterization must be done in such a way that equiv-
alent anatomical locations (in different subjects) are assigned the same tuple of normalized (between 0 and
1) circumferential, longitudinal and radial parameters. This leads to a mapping that relates the unitary cube
Ω3 = [0, 1] × [0, 1] × [0, 1] to the LV (which will be noted by LV). We call Ω3 Normalized Parametric Domain,
which gives the name to the whole framework.

Notice that in order to handle both, the gross anatomy and the fibers architecture, this formulation is very
useful. On one hand, the image of the mapping, Ψ(Ω3), provides the gross geometry of the LV. On the other
hand, since equivalent locations (across different subjects) have been labelled with the same parametric tuple,
any quantity measured over the LV (in these subjects) can be mapped back to the same location in Ω3 for
comparison purposes.15 In this case we say that both LVs are implicitly registered in the Normalized Parametric
Domain. Figure 2 shows two LVs (LVi and LVj) implicitly registered. Vectorial quantities defined on equivalent
locations are moved to the same parametric location in Ω3 where comparison becomes feasible.

The Jacobian of the parametric map:



(a) (b)
Figure 2. a) Two LVs (LVi and LVj) implicitly registered in Ω3. That is, equivalent anatomical locations (blue dots in
LVi and LVj) have the same parameter configuration (red dot in Ω3). b) The differential DΨ, defines a local reference,
at each point of LV, describing its anatomy.
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defines at each point p ∈ LV a non orthogonal reference of unitary vectors {eu(p), ew(p), ew(p)}:

eu =
∇uΨ

‖∇uΨ‖2
, ev =

∇vΨ
‖∇vΨ‖2

, ew =
∇wΨ

‖∇wΨ‖2
(2)

describing the local geometry of the LV volume. Figure 2 (a) shows the description of LV local geometry given
by DΨ(u, v, w). We observe that the reference vectors (2) are tangent to LV parametric curves, so that in
the NPD they correspond to the axis defined by the parametric coordinates (u, v, w). Notice that Ψ can be
regarded as a change of coordinates tailored for the geometry of each subject. Intuitively, this parameterization
unfolds (”straightens”) the geometry of LV as shown in Figure 1. Unlike standard changes of coordinates
(either spheroidal16 or cylindrical10) in the cartesian image volume, our local reference is able to capture the
subject-specific LV geometry (given by the parametrization of the volumetric manifold13).

Besides being a convinient representation for jointly handling gross anatomy and fiber architecture, the NPD
framework enjoys several advantages over approaches registering volumes to a reference LV domain in cartesian
coordinates. For instance, the NPD framework allows a straightforward definition of neighborhoods adapted to
LV subject-specific anatomy since parametric curves are completely addapted to the LV geometry.15 It follows
that local operations such as interpolation or smoothing can be done taking into account the underlying geometry
of the LV.

2.1 Gross Anatomy Modelling
In order to define the parametric map we use a B-Spline formulation:

Ψ(u, v, w) =
Mu∑

i=1

Mv∑

j=1

Mw∑

k=1

Ri(u)Sj(v)Tk(w)Pijk (3)



Figure 3. Sketch of the definition of the exponential map onto S2.

This representation enables our NPD framework to continuously describe the geometry of the LV with a finite
number of parameters: the control points. It follows that the set of parametric maps has a vectorial structure.
Taking advantage of this fact, we use the control points to model LV shape variations as in PDM.

A main requirement for the PDM to be statistically meaningful, is that the selected landmarks must be
consistent. That is, they must represent the same anatomical location for any subject. Since in our case control
points play the role of anatomical landmarks, they should influence equivalent anatomical areas for any subject.
Since equivalent anatomical point share the same parameters, this consistency condition is fulfilled.

Given the geometry (codified by the parametric maps) of N subjects:

Ψn(u, v, w) =
Mu∑

i=1

Mv∑

j=1

Mw∑

k=1

Ri,n(u)Sj,n(v)Tk,n(w)Pijk,n, n = 1, · · · , N (4)

we gather the control points of each of them in a sigle vector called observation:

Pn = (P x
100,n, P y

100,n, P z
100,n, · · · , P x

MuMvMw,n, P y
MuMvMw,n, P z

MuMvMw,n) (5)

Next, all the observations are aligned using Procrustes Analysis17 and the mean and covariance matrices are
computed in order to obtain the PDM.1

2.2 Fiber Modelling
The tangent application DΨ maps vectors, V , expressed in cartesian image volume coordinates into the NPD.13
By linearity of the tangent application, the mapping is given by the decomposition of V in the local reference
(2). Such components can be mapped to the NPD for statistical analysis. Therefore, we use DΨ to map the
unitary eigenvectors obtained from parameterized DTI volumes, to Ω3. Since we are only interested in fiber
directions, we normalize and reorient the components (in the local references) in order them to belong to the
upper (positive) semi sphere (S2+). The DTI vectors normalized and reoriented in Ω3 will be noted by ξ.

(S2+) is a manifold and, computing statistics, on manifolds is, by no means, a trivial issue.12, 18, 19 This
is due to the fact that the formulation of descriptive statistics (mean and standard deviation) in an Euclidean
(vector) space, relies on the fact that the addition is a well defined operation. In contrast, manifolds do not
present vector space structure and the addition is not well defined. In order to compute statistics on manifolds,
the concept of mean and variance should be generalized.11, 20–22 The key point for their extension relies on the
fact that the mean is, indeed, the value that minimizes the function of the square distances
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where ‖ !‖2
2 is the Euclidean distance, and the minimum of such function is the variance. Therefore, the concepts

can be extended to manifolds, provided that they do have a distance. In such case, the average is the point on
the manifold minimizing

minξ̄∈M
1
N

N∑
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d(ξn, ξ̄)2 (7)

for d the distance in the manifold M. The extension of the arithmetic mean to manifolds is called the Frechet
mean.22 The Frechet mean can be obtained using the exponential map which, in the case of (S2+) is given in
terms of angular differences.

Let ξ̄ be the point we want to compute the exponential map and ξ̄n = ξ̄/‖ξ̄‖ the associated unitary vector.
The inverse of the exponential map12 projects maximum circles through ξ̄ to its perpendicular vector, ξ̄⊥n , on
the tangent plane (see Fig.3). By general theory of Lie groups the exponential map is a local isometry. In the
particular case of spheres,12 it is an isometry between the circle and the vector space generated by ξ̄⊥n given by
the angle, θ, between ξ̄n and any point ξ in the maximum circle (see Fig.3):

exp−1 : ξ &−→ θξ̄⊥n ξ̄⊥n =
ξ − 〈ξ, ξ̄n〉

‖ξ − 〈ξ, ξ̄n〉‖
θ = arctan

(
〈ξ, ξ̄⊥n 〉
〈ξ, ξ̄n〉

)
(8)

Descriptive statistics are computed following.12 Regarding the modes of variation, since exp−1(ξ) are on a plane,
the covariance matrix always has a zero eigenvalue corresponding to the direction perpendicular to the plane ξ̄n.
The remaining modes are in terms of the local reference (2) and can be anatomically interpreted.

3. RESULTS
We have used the NPD framework for the creation of an anatomic atlas jointly modelling the gross anatomy and
the fiber architecture of the LV using the 8 normal canine hearts. DTI volumes used in this work were acquired and
processed by Drs. Patrick A. Helm and Raimond L. Winslow at the Center for Cardiovascular Bioinformatics and
Modeling and Dr. Elliot McVeigh at the National Institute of Health (available at http://www.ccbm.jhu.edu/).

The gross anatomy has been obtained parameterizing the LV volume of each canine. B-Spline based para-
metric maps have been computed using 8 × 8 × 4 control points. Using these control points a PDM has been
built. In order to properly describe the variability observed in the 8 canine hearts, the 6 first modes of variation
(which explain a 99.25% of the total shape variability) have been taken into account. Figure 4 shows the first
6 modes of variation for the gross anatomy. Each mode (shown in rows) is sampled in the range ±2 standard
deviations from the average anatomy, shown in the central column.

In order to model the fiber architecture, DTI volumes containing the components of the first eigenvector were
considered. Using the differential of the parametric map, the components of the eigenvectors were moved to Ω3.
Next, they were normalized and reoriented. At each point in Ω3, statistical analysis, using the Frechet mean was
applied to the 8 vectors (lying on S2+). In order to compensate for the low number of DTI studies, we increased
the number of samples by considering vectors in a 4-connected neighborhood defined in the circumferential-
longitudinal plane (of Ω3). This strategy allowed to increase up to 5 times the number of samples for computing
the statistics, while avoiding to mix fiber orientations between different radial layers (where gradients of fiber
variations are higher). The average model of the myocardial fibers is shown in Figure 5 where their orientation
is visualized in Ω3 considering different slices for fixed radial parameters, w = {0, 0.21, 0.35, 0.64, 0.78, 1} (for
w = 0 the endocardium and w = 1 the epicardium). Images are given in the circumferential and longitudinal
directions of Ω3. The yellow lines represent the junction between right and left ventricles at anterior (continuous
line) and posterior (dashed line) walls. Apical area is labelled ’A’, basal ’B’ and septal ’S’. We can observe



Figure 4. By rows, the 6 principal modes of variation obtained moving the model parameters up to ±2 standard deviations
from the mean, shown in the central column.

that endocardial and epicardial cuts present an approximate uniform fiber orientation with opposite sign with
respect to the circumferential direction (each orientation is colored by cyan and magenta). We observe that as
the radial parameter evolves from 0 to 1 (endocardium to epicardium), the orientation of fibers suffer from an
abrupt change in orientation. Notice that this change starts at septal area and gradually propagates to rest of
the tissue.

The joined model of the gross anatomy and the fiber architecture is obtained by mapping the fiber average
model to the average geometry. This is achieved by applying the Differential of the average parametrization to
the mean fibers computed in Ω3. Figure 6 shows the average fibers over the average gross anatomy. The colors
(cyan and magenta) are in concordance with those in Fig. 5 and the yellow curves stand for the RV-LV junctions
at anterior wall (continuous) and inferior wall (discontinuous).

4. CONCLUSIONS

Up to our knowledge, current models just focus on one of the following anatomical aspects of the LV: the gross
anatomy or the fiber architecture. We have used a Differential Geometry approach to define a mathematical
framework (NPD) allowing to gather two different concepts, namely geometry and registration. This framework
is well suited for modelling both, the gross anatomy and the fiber architecture. The first is modelled in the
continuous domain by statistical analysis of manifold parametrizations using B-Spline formulation. This allows
to linearize statistics (PDM) in the infinite dimensional space of differentiable functions. Fiber architecture is
modelled using Riemmanian metrics given by angular differences.

As in23 we have found evidence of two populations presenting opposite orientations, although we have not
observed a concentric sheet disposition on the whole volume of the LV. Epicardium and endocardium might be
considered as two layers oriented in opposite directions. As we approach the mid-wall, this uniformity in fiber



Figure 5. Average fiber distribution in Ω3 for 6 slices of constant radial parameter w = {0, 0.21, 0.35, 0.64, 0.78, 1}, for
w = 0 the endocardium and w = 1 the epicardium. The yellow lines represent the junction between right and left
ventricles at anterior (continuous line) and posterior (dashed line) walls. Apical area is labelled ’A’, basal ’B’ and septal
’S’.

Figure 6. verage fiber architecture over the average gross anatomy of the LV. The colors (cyan and magenta) are in
concordance with those in Fig. 5.

orientations turns into two clusters of opposite oriented fibers. This suggests that at mid-wall bundles of fibers
with opposite directions entangle.

This non-laminar behavior might be an evidence of a complex structure (maybe helicoidal as suggested by24)
of fibers in space.
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