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Abstract: Despite all the significant advances in pedestrian detection brought by computer vision
for driving assistance, it is still a challenging problem. One reason is the extremely varying lighting
conditions under which such a detector should operate, namely day and nighttime. Recent research
has shown that the combination of visible and non-visible imaging modalities may increase detection
accuracy, where the infrared spectrum plays a critical role. The goal of this paper is to assess the
accuracy gain of different pedestrian models (holistic, part-based, patch-based) when training with
images in the far infrared spectrum. Specifically, we want to compare detection accuracy on test
images recorded at day and nighttime if trained (and tested) using (a) plain color images; (b) just
infrared images; and (c) both of them. In order to obtain results for the last item, we propose an early
fusion approach to combine features from both modalities. We base the evaluation on a new dataset
that we have built for this purpose as well as on the publicly available KAIST multispectral dataset.
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1. Introduction

Visual pedestrian detection has received attention for more than a decade from computer vision
researchers due to its multiple applications in Advance Driver Assistance Systems (ADAS) [1–3],
autonomous vehicles [4] and video surveillance [5–7], being nowadays still a challenging problem. The
accuracy of pedestrian detection methods remains limited because of occlusions, cluttered backgrounds
and, foremost, bad visibility because of the varying lighting conditions under which they must operate.

Most efforts on building pedestrian detectors have focused on two directions, each being a
key component of the whole system. The first one is the design of the features on which the
statistical classifiers will work. Since the breakthrough of histograms of oriented gradients (HOG) by
Dalal et al. [8], many other features and combinations of features have been proposed in the last
decade, like HOG plus local binary patterns (LBP) [9], HOG plus color self similarity (CSS) [10], Haar
features plus histogram of edges [11], integral channels [12] or macrofeatures [13], just to name a
few. These features are arranged to form models: holistic [8,9], part-based (e.g., the DPM) [14–16], or
patch based [17,18] , many times taking into account also different views and resolutions [14,19,20].
Another recent trend has been to complement those appearance-based features, computed from single
frames, with additional motion and depth features such as in [21–25].

The second main direction has been the design of the classifier itself. Since the plain binary
max-margin discriminative classifiers were employed in the initial approaches, we now see a plethora
of classification architectures like cascades of classifiers [26,27], random forests of local experts [17],
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and even alternative approaches like generative classifiers [28], active learning [29], and domain
adaptation [30,31]. In the last three years, there has also been an explosion of end-to-end learning
of object models based on deep convolutional neural networks (deep CNNs) [32]. These models are
mainly operating in the visible spectrum to leverage object annotations from image classification
datasets given the large number of annotated object examples these deep CNNs need to converge to a
useful object model. The reason is the huge number of parameters to learn, on the order of millions.

In parallel to all these works, there is a relatively unexplored third direction, namely, image
acquisition. Recent works have started to supplement or even replace images provided by monochrome
and color cameras in the visible spectrum with images from other modalities, with the intent
of improving the performance of the whole system but still keeping the same types of features
and classifiers.

Near infrared cameras, sensing in the range 0.75–1.3 µm, have been used for pedestrian detection
in [33]. Far infrared cameras, instead, work in the range 7.5–13 µm. They have the distinctive
advantages of leveraging the fact that the human body emits radiation around 9.3 µm [34] and their
relative invariance to different illumination conditions (see Figures 1 and 2), which may improve the
detector robustness, as shown in [35–40].

(a) (b)

Figure 1. Camera setup for the CVC-14 dataset and registered sample frames showing the different
field of views. (a) Fields of view of the visible and far infrared cameras and (b) example images.

Visible FIR

Day

Night

Figure 2. Sample pedestrians from the CVC-14 dataset.

The goal of this paper is to assess the accuracy of a pedestrian detector with regard to (1) the
imaging modalities; (2) strong baselines in terms of features and pedestrian models proposed for this
task; and (3) the lighting conditions. Even though we expect to get better results on sequences recorded
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at night with a far infrared (FIR) camera than with a standard color or monochrome camera, there are
still relevant open questions in relation to the design of a practical and affordable pedestrian detector
system. For instance, how does an FIR camera perform at daytime? Is its performance similar to that of
a regular camera? Is it worth to combine features extracted from a color and an FIR camera operating
simultaneously? If so, what is then the gain in accuracy at day and nighttime?

The contributions of this paper are:

• An extensive evaluation of pedestrian detectors for a number of combinations of the former three
factors: visible/FIR modalities, pedestrian models and lighting conditions.

• We make available the new CVC-14 dataset in the Dataset section of http://adas.cvc.uab.es.
CVC-14 is a new dataset of multimodal (FIR plus visible) videosequences and the corresponding
detection groundtruth, comparable to the only other publicly available KAIST dataset [36].

• We assess the relevance of simultaneously using two cameras of different modality (FIR, Visible)
by applying early fusion, which is done on KAIST.

In the following, we will review the works most related to ours and point out the main differences
(Section 2). Section 3 presents our new dataset and compares it to KAIST. Based on both of them, we
have designed and run a number of experiments, and present the results in Section 5. Finally, Section 6
summarizes this work and draws the conclusions.

2. Related Works

Recently, a number of works have appeared that explore the application of FIR cameras to
pedestrian detection. This has probably been fostered by a drastic reduction of their price, which
may favor its adoption by the automotive industry in the future. We divide the approaches into two
categories.

The first one includes the approaches mainly focused on the introduction of new features,
specifically targeted to this imaging modality. In this group, we find works like Olmeda et al. [41],
which presents a new descriptor, the histograms of oriented phase energy (HOPE) and an adaptation of
the latent variable SVM approach to FIR images. HOPE is a contrast invariant descriptor that encodes
a grid of local oriented histograms extracted from the phase congruency of the images computed from
a joint of Gabor filters. Besbes et al. [39] propose a pipeline for pedestrian detection in FIR images
using a hierarchical codebook of SURF in the head region, taking advantage of the brightness of this
area inside the regions of interest (ROIs). Another nice work by Li et al. [38] employs sparse coding.
Overall, these works try to show that FIR cameras and specialized features improve over standard
cameras and “off-the-shelf” features previously employed in this and other domains. The problem is
that, given the absence of benchmark datasets, it becomes difficult to do a fair quantitative comparison.
For instance, the total number of pedestrians present in the sequences, number of occlusions, the
distribution of the pedestrian distance to the camera (size in pixels), the type of background present,
the frame resolution and the frame rate etc. are factors that clearly have an influence on the results.

In the second category, we consider those papers mainly addressing the evaluation and
comparison of modalities and features, as we intend to do in this work. We have found just a
few papers on this category, all of them published less than one year ago. Miron et al. [37] evaluate a
set of different descriptors over visible and FIR sequences. This evaluation is performed in on-board
sequences but recorded only in the daytime.

More interesting, Yuan et al. [36] are the first to perform a comprehensive study and make publicly
available their dataset. They take as baselines pedestrian detectors based on the aggregated channel
features (ACF) originally proposed by Dollar et al. [3], but adding several combinations of new gradient
orientation-related features computed from the FIR image intensity, resulting in the combination of
features of both modalities. However, differently from them, we perform an exhaustive experimental
analysis to demonstrate the advantages in detection using different modalities in isolation for different
state-of-the-art detectors during different time/illumination conditions. Then, these results are used to
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propose a multi-modal approach combining visible and FIR spectrum images. We are more interested
in the performance of state-of-the-art features and classifiers for pedestrian detection, not in the
introduction of new features. At most, we want to investigate the effect of combining in a simple
way features from different modalities, in the event of visible and FIR sequences simultaneously
recorded. Ultimately, we want to set a baseline for future research and also identify the source of
the improvements if any: e.g., a given set of features, image modality, specific lighting conditions,
etc., and for each case being able to perform a quantitative evaluation. Note that it is important to
have a quantitative evaluation on the use of two different types of cameras simultaneously, since car
manufacturers would like to use a single camera for ADAS to reduce overall cost and aesthetic impact.

3. Datasets

To build our new dataset we use both visible and FIR cameras to gather two long pairs of video
sequences of day and night activity, respectively (see Figure 1). One pair was recorded at daytime,
the other at night. We used an IDS UI-3240CP (IDS Imaging Development Systems GmbH, Obersulm,
Germany) and an FLIR Tau 2 camera (FLIR Systems, Nashua, NH, USA), with the specifications in
Table 1.

Table 1. FLIR Tau 2 and UI-3240CP camera specifications.

Specifications FLIR Tau 2 IDS UI-3240CP

Resolution 640 × 512 pixels 1280 × 1024 pixels
Pixel size 17 µm 5.3 µm

Focal length 13 mm Adjustable (fixed 4 mm)
Sensitive area 10.88 mm × 8.7 mm 6.784 mm × 5.427 mm

Frame rate 30/25 Hz (NTSC/PAL) 60 fps

Note that resolution and the field-of-view do not match. Hence, we needed to perform an
automatic spatial alignment and crop. Even though the cameras are not at the same position, the
baseline is small and, once registered, the disparity and occlusions of objects beyond a few meters
are negligible.

Table 2 shows the number of frames and annotated pedestrian for each of the four sequences in
the dataset (here called CVC-14): day/FIR, night/FIR, day/visible and night/visible. This dataset was
acquired at 10 FPS. We have defined a threshold for the minimum height of pedestrians that we will
take into account later in the experiments. That is, we have annotated all of them but, as it is usually
done [3], we will consider as mandatory the detection of those whose bounding box is higher than
50 pixels, about 10% of the registered frames height.

Table 2. New CVC-14 dataset summary of images and annotated pedestrians.

Set Variable FIR Visible

Day Night Day Night

Training

Positive Frames 2232 1386 2232 1386
Negative Frames 1463 2004 1463 2004

Annotated Pedestrians 2769 2222 2672 2007
Mandatory Pedestrians 1327 1787 1514 1420

Testing
Frames 706 727 706 727

Annotated Pedestrians 2433 1895 2302 1589
Mandatory Pedestrians 2184 1541 2079 1333

The KAIST multispectral pedestrian dataset [36] is a set of video sequences composed by 95 K
frame pairs. The images from each pair have been recorded by an on-board color and thermal cameras
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at 20 Hz, both at a resolution of 640 × 480 pixels. Hence, it is well suited for pedestrian detection
studies because the two underlying sequences, color and infrared, are synchronized. In addition,
a beamsplitter in the acquisition setup makes each pair spatially registered so that the computed
local features in both images correspond to the same region. Another important characteristic is the
groundtruth with 103,128 dense annotations featuring people, cyclists and 1182 unique pedestrians.

4. Features and Classifiers

In this study, we have selected a short list with the most used and top scoring features and
classifiers from the pedestrian detection literature. As for the features, they are HOG [8], LBP [9] and
their aggregation as a single feature, which we will denote as HOG+LBP. As for the classifiers, we
have selected three different types of models: holistic, learned by a linear SVM [42]; a patch-based
classifier learned by a Random Forest of local experts [17]; and the popular DPM) [14]. Whereas the
first one is probably well known for its wide application in many classification problems, we will
shortly introduce the two latter, which may be more specific. The Random Forest of local experts
(RF) [17] is a patch-based detector. RF is an ensemble of trees where each node is based on an SVM
classifier learned on a random patch. In this way, different parts (patches) are selected to create a
decision tree from which a classification score is computed on the basis of the probabilities of being
a target object at the leaf node. The DPM [14] is a successful part-based detector that defines a fixed
number of parts. Each of them are detected separately and a deformation cost is learned based on
the part positions in the training samples. All of the part descriptions plus the deformation costs
are concatenated to form a final descriptor, on which an SVM performs the final classification. The
learning process is based on Latent SVM since the object parts are not supposed to be annotated, just
the object as a whole is given.

We thus consider different combinations for the comparison: {HOG, LBP, HOG+LBP} × {Linear
SVM, RF, DPM}. For each of them, we will assess the performance of the detector at day and
night sequences separately. In addition, in each case, still, we will build a feature vector with the
corresponding type of feature computed just on the visible frame, infrared frame, and the aggregation
of both of these feature vectors.

In order to check whether complementarity information is better for pedestrian detection, we
explore the integration of the two image modalities, visible and FIR. We thus propose to use an
approach similar to [25]: for each candidate window, we extract HOG and LBP features over each
modality and then combine them into a single feature vector to feed the classifier. We combine the
features using an early fusion approach whereby the resulting descriptor is the plain concatenation of
the features from each modality. It is worth mentioning also that, although for stereo-based systems it
is possible to use a scene-based generation of candidate windows to be classified [1,2], in this paper,
the visible and FIR modalities are treated as monocular systems regarding candidate generation. Thus,
we use the scanning approaches defined in their respective works, which basically are the pyramidal
sliding window [9,26] and the same for DPM but considering the detection of object parts at double
the resolution of the whole object [14].

5. Experiments

5.1. Evaluation Protocol

As evaluation methodology, we follow the de-facto Caltech standard for pedestrian detection [3],
i.e., we plot curves of false positives per image (FPPI) vs. miss rate. The average miss rate (AMR) in
the range of 10−2 to 100 FPPI is taken as indicative of each detector accuracy, i.e., the lower the better.

5.2. Experiments on the CVC-14 Dataset

Table 3 summarizes the results in terms of AMR for the seven combinations of features and
classifiers on the two lighting conditions and image modalities considered. For the holistic model
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(linear SVM), we test all of the features. For the patch-based one (RF of local experts), we keep HOG
as reference, but the next test consists in directly combining HOG and LBP, since, for this model, we
know from our previous work [17] (visible spectrum) that this combination works better than the
two features in isolation. On the other hand, the standard (publicly available) DPM is based only in
HOG, so following the same criterion as for RF, we have added LBP too, but it is not necessary to
consider LBP alone. Overall, Table 3 plots the experiments that make more sense. We can appreciate
that, as expected, all detectors perform quite badly on the images from the visible camera at night,
in comparison to FIR. What is worth highlighting is that FIR gets similar results at day and night
for two of the detectors (SVM and RF) for all of the features. However, perhaps the most interesting
observation is that FIR beats visible also in the daytime for all detectors. Figure 3 shows the evolution
of the miss rate as FPPI increases for the cases of using HOG and HOG+LBP.

Table 3. Average miss rate (AMR) in the CVC-14 dataset.

Detector Day Night

Visible FIR Visible FIR

SVM
HOG 42.9 22.7 71.8 25.4
LBP 40.6 21.6 87.6 32.1

HOG+LBP 37.6 21.5 76.9 22.8

DPM
HOG 28.6 18.9 73.6 24.1

HOG+LBP 25.2 18.3 76.4 31.6

RF
HOG 39.9 20.7 68.2 24.4

HOG+LBP 26.6 16.7 81.2 24.8
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Figure 3. Results using different detectors over CVC-14 dataset. First row plot results using detectors
based on (a) SVM/HOG, (b) SVM/HOG+LBP, (c) DPM/HOG, (d) DPM/HOG+LBP, (e) RF/HOG
and (f) RF/HOG+LBP.

5.3. Experiments on KAIST Dataset

For the CVC-14 dataset, each sequence consists of a pair of video streams, one per camera, which
are not perfectly synchronized. This means that, for each frame of one of the streams, say the visible
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one, we can always locate the closest frame in time in the other (FIR) stream, but they were not captured
at the same time so they contain slight differences because camera location and orientation were not
the same. Such differences are so small that the visible vs. FIR comparison presented here remains
fair according to our purposes. However, if we want to compare the accuracy with single modality
features versus multimodality (visible plus FIR), we need to make sure that those features correspond
exactly to the same region in the scene. Fortunately, the KAIST dataset [36] was recorded with this
goal in mind.

From now on, we assume the use of RF/HOG+LBP, since, for the CVC-14 dataset, it was the best
performing together with DPM/HOG+LBP in the daytime for visible and FIR, and it was better than
DPM/HOG+LBP at nighttime using FIR (using the visible spectrum all the detectors are performing
really bad). At this point, we introduce a new variation: concatenating the same features from visible
and FIR. In addition, and for the sake of comparison, we run all the experiments, not only for the set
of reasonable pedestrians but also to distinguish near from medium distance pedestrians.The near
subset includes pedestrians with height equal to or higher than 75 pixels. The medium subset includes
pedestrians between 50 and 75 pixel height. This is described in Table 4 while Figure 4 shows the
complete curves when varying the number of false positives per image.

Table 4. AMR (average miss rate) in the KAIST dataset. The three rows in each cell represent the AMR
for near, medium and reasonable pedestrians, as explained in the text.

Detector Day Night

Visible FIR Visible + FIR Visible FIR Visible + FIR

RF HOG + LBP
39.7 31.5 28.7 76.0 25.3 29.4
74.5 72.5 66.4 93.2 60.0 61.7
72.7 70.5 65.7 91.4 53.5 56.7

10
−2

10
−1

10
0

20

30

40

50

60

70
80
90

100

false positives per image

m
is

s 
ra

te
 (

%
)

FIR, Day/Night, RF, HOGLBP, Reasonable

 

 

HOGLBP RF − Day − RGB (72.66)
HOGLBP RF − Day − FIR (70.52)
HOGLBP RF − Day − Multimodal (65.75)

(a)

10
−2

10
−1

10
0

10

20

30

40
50
60
70
80

false positives per image

m
is

s 
ra

te
 (

%
)

FIR, Day/Night, RF, HOGLBP, Near

 

 

HOGLBP RF − Day − RGB (39.75)
HOGLBP RF − Day − FIR (31.52)
HOGLBP RF − Day − Multimodal (28.75)

(b)

10
−2

10
−1

10
0

20

30

40

50

60

70
80
90

100

false positives per image

m
is

s 
ra

te
 (

%
)

FIR, Day/Night, RF, HOGLBP, Medium

 

 

HOGLBP RF − Day − RGB (74.52)
HOGLBP RF − Day − FIR (72.53)
HOGLBP RF − Day − Multimodal (66.44)

(c)

Figure 4. Results using different test subsets over KAIST multispectral dataset during daytime. Results
obtained with RF/HOG+LBP for (a) reasonable (b) near and (c) medium pedestrian subsets.

The same detector consistently gets the minimum AMR for all the cases. More significant is
the fact that the best feature descriptor in the daytime results in the combination of visible and FIR
features, whereas at night, FIR features achieve the maximum performance by themselves, closely
followed by the combination of FIR and visible features (just about 3% more AMR on average). In this
evaluation, we obtain competitive detectors in KAIST benchmark where state-of-the-art is, for daytime
and reasonable pedestrians, AMR of 64.17% in the Caltech evaluation protocol, while we obtain for the
same subset 65.75%.

In fact, the combination of visible + FIR at daytime is just scarcely better than using only FIR
(see RF/HOG+LBP), specially for near pedestrians. Thus, from the viewpoint of the cost, it seems
more reasonable to focus on improving FIR alone if the only purpose of the system is pedestrian
detection. Of course, if other functionalities are required, such as traffic sign recognition in ADAS,
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then combining both systems is a good option as long as the synchronization of the cameras and the
alignment of the images are cost effective.

As for the CVC-14 case, visible spectrum provides very poor results at nighttime (Qualitative
results in Figure 5). Our dataset has been obtained using halogen headlights and the camera is
not operating at high dynamic range. Thus, it seems that, to improve nighttime results, a more
sophisticated illumination system and a very well set high dynamic range scheme must be designed if
we want to use such types of camera for on-board pedestrian detection.

Day Night

Figure 5. Qualitative Results comparing HOG/LinSVM detectors in different time/sensor conditions.
The top row shows results over visible spectrum images, the bottom row over far infrared images.
Blue boxes represent correct detections (True Positive), while red boxes represent misdetections
(False Negative).

6. Conclusions

In this paper, we have presented a study of pedestrian detection using commercial visible and
FIR sensors operating during daytime and nighttime. This evaluation is based on well known
features HOG and LBP and holistic (SVM), patch-based (RF), and part-based models (DPM), to
train state-of-the-art classifiers.

The main conclusion is that the combination of features from FIR and visible images produces the
best detector in the daytime by a notorious margin (about 5% less AMR) from just visible or just FIR
features. This was originally unexpected since one would guess that the poor details observed in FIR
images do not add discriminative power to features from visible images in the daytime. In fact, the FIR
modality is as discriminative as the visible one, even not too far from the combined use of these sensors.
At nighttime, FIR features get the best result and concatenating the two features’ vectors produces just
a slight increase in AMR. Overall, we hope our results help to encourage the development of cheaper
FIR cameras well integrated with those of the visible spectrum for developing more reliable ADAS
and autonomous vehicles.
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