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We consider a quantum system that is being continuously monitored, giving rise to a measurement
signal. From such a stream of data, information needs to be inferred about the underlying system’s
dynamics. Here we focus on hypothesis testing problems and put forward the usage of sequential
strategies where the signal is analyzed in real time, allowing the experiment to be concluded as
soon as the underlying hypothesis can be identified with a certified prescribed success probability.
We analyze the performance of sequential tests by studying the stopping-time behavior, showing a
considerable advantage over currently-used strategies based on a fixed predetermined measurement
time.

I. INTRODUCTION

Continuously monitored quantum systems such as op-
tomechanical sensors or atomic magnetometers are con-
sidered one of the most promising platforms for build-
ing quantum-enhanced and ultraprecise sensors [1–10].
Despite the remarkable progress in the development of
these devices and the substantial body of theoretical re-
search conducted in this field, there remains a vast area to
explore concerning effective strategies for leveraging the
gathered time-series data, particularly in the context of
protocols that necessitate real-time data assessment [11–
25].

Traditional statistical inference approaches rely on pro-
cessing measurement data only after the experiment,
or multiple repeated experiments, have been completed.
However, in the context of continuously monitored sen-
sors and for many real-life applications, it is highly per-
tinent to consider sequential strategies that process re-
sources on the fly and make decisions based on the single
stream of data accumulated so far.

The primary objective of this article is to shed light on
the application of sequential analysis methodologies in
continuously monitored quantum systems, with a spe-
cific focus on one of the most fundamental primitives
in statistical inference: binary hypothesis testing. By
leveraging the benefits of these methods, we aim to over-
come the limitations of traditional post-experiment anal-
ysis approaches and enable more efficient and accurate
extraction of information from continuously monitored
quantum systems.

In a broad sense, the aim of standard hypothesis test-
ing is to assess the minimum probability of error ϵ when
identifying the true hypothesis after using a fixed number
n of samples. One finds that for independent and iden-
tically distributed (IID) samples the error scales expo-
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nentially with the number of observations, ϵn
.
= e−nR 1,

where the error R rate depends on the precise setting
and the two probability distributions (p0(1)) underlying
each of the hypotheses. Instead, in sequential hypothesis
testing, data is sampled sequentially until the moment
when the true hypothesis can be identified with a pre-
scribed probability of error ϵ. Since different measure-
ment records convey different information, the number
of samples required n to reach an accurate enough guess,
the so-called stopping time, is itself a stochastic vari-
able. Wald [26] proved that, for IID sampling, the mean
stopping time scales as E0[n] ∼ − log ϵ

D(P0∥P1)
as ϵ → 0,

where D(p0∥p1) is the relative entropy and it satisfies
D(p0∥p1) > R. This finding highlights that sequential
strategies offer substantial resource savings in a classical
IID scenario.

The problem of sequential hypothesis testing has been
recently tackled in the quantum realm [27, 28], in a set-
ting where copies of a quantum system (either in ρ = ρ0
or in ρ = ρ1) are provided on demand. The ultimate
quantum bound on the mean stopping time (or the mean
number of sampled copies) has been shown to follow the
“quantized version” of Wald’s result: naively exchang-
ing probability distributions p0(1)(x) for quantum states
ρ0(1), i.e. E0[n] ∼ − log ϵ

D(ρ0||ρ1)
. Here, we study a very

different quantum setting where, instead of performing
a sequence of measurements on an increasing number
of copies, we perform a (continuous) sequence of mea-
surements on the very same quantum system; and the
question is to discriminate between two possible inter-
nal dynamics of the monitored system. We envision a
quantum sensor, in particular an optomechanical sensor,
whose dynamics is affected by, for example, the presence
of external mass or some other force, and our task is

1 In this work we give a number of asymptotic results. We will
adopt this notation from asymptotic analysis. Given to se-
quences an, bn: Equality to first order in the exponent: an

.
= bn

for limn→∞
1
n
log an

bn
= 0. Asymptotic equivalence: an ∼ bn for

limn→∞
an
bn

= 1; an = O(bn) for limn→∞
an
bn

= 0; an = O(bn)

for ∃ constants c,m s.t. |an| < c|bn| ∀n ≥ m.
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to be able to detect this presence by observing a single
(possibly long) measured signal.

As mentioned above the characteristic trait of sequen-
tial problems is that the horizon of observations is not
fixed in advance; it is a stochastic variable. Under
quite mild assumptions we will give an expression for the
mean stopping time and characterize the stopping-time
distribution for a wide class of continuously monitored
quantum systems, with special focus on those described
by Gaussian quantum states and Gaussian measurement
statistics.

This work is structured as follows. In Sec.II we revisit
the hypothesis testing scenario, and introduce both the
deterministic (fixed horizon) strategy and the sequential
probability ratio test (SPRT); which are illustrated in
Sec. II A by means of a simple Gaussian IID case. We
then move to continuously-monitored quantum systems,
described in Sec. III, and introduce the Gaussian model
under study in Sec. III A. Our results are presented in
Sec. IV. We begin by analyzing the stochastic evolution
of the relevant statistic for hypothesis testing, i.e. log-
likelihood ratio (LLR), and in Sec. IVA our analytical
results for general continuous-monitoring quantum sys-
tems are presented. We prove some general results on
the properties of the SPRT stopping times, under some
mild assumptions on the statistical properties of the LLR.
The case of Gaussian quantum systems is studied in de-
tail in Sec. IV A, first by providing analytical results for
the first moments of the LLR distribution, and secondly
by numerically studying its behavior in order to assess
its advantage of sequential strategies against determinis-
tic ones. Finally, an outlook is given in Sec. V

II. HYPOTHESIS TESTING

Let us now introduce the basic framework of standard
binary hypothesis testing. Here one counts with a se-
quence of observations n observations Yn = (y1, . . . , yn)
and the goal is to identify, with a minimum probabil-
ity of error, which of two given hypotheses —called the
null hypothesis (h0) and alternative (h1) hypothesis— is
responsible of generating this string of data. It is inher-
ent in this formulation that there exists a (known) model
that gives the probabilities P0(E) and P1(E) for an event
E to occur under hypothesis h0 or h1, respectively. An
inference strategy is determined by a decision function
d : Yτ → {0, 1} that assigns a guessed hypothesis to each
of the possible strings Yn.

It is customary to assess the performance of such
strategies by the so-called type-I error or false positive,
α1 = P0(d = 1), occurring when h0 is rejected de-
spite holding true, and type II error or false negative
α0 = P1(d = 0), occurring when h0 is accepted while the
data has been generated in accordance with h1. Since
there is a trade-off between these two types of error one
cannot minimize them independently. For this reason,
one defines a single figure of merit, i.e. an optimality cri-

terion for the different strategies, based on two standard
approaches:

• Symmetric hypothesis testing: follows a Bayesian
approach, where prior probabilities {π0, π1 = 1 −
π0} are assigned to each hypothesis so that the total
probability of error can be computed as

Perr = P0(d = 1)π0 + P1(d = 0)π1 (1)

≥
∑
Yn

min{P0(d(Yn) = 0)π0, P1(d(Yn) = 1)π1}

where the lower bound is attained by deciding
for the most likely hypothesis, i.e. d(Yn) = 0 if
p0(Yn)π0 ≥ p1(Yn)π1 and d(Yn) = 1 otherwise 2.

• Asymmetric hypothesis testing, where one is rather
interested in minimizing only one of the two types
of error whilst maintaining the other smaller than
a predefined constant.

A central quantity in binary hypothesis testing is the
log-likelihood ratio (LLR)

ℓ(Yt) := log
p1(Yn)

p0(Yn)
. (2)

Indeed, the Neyman-Pearson theorem [29] singles out the
LLR test as an optimal one in the following sense: For
a > 0 define the decision function (called likelihood test)

da(Yn) = 0 if ℓ(Yn) ≥ a

da(Yn) = 1 if ℓ(Yn) < a (3)

with error probabilities

α0 = P1(ℓ < a) =

∫ a

−∞
P1(ℓ = x)dx

α1 = P0(ℓ ≥ a) =

∫ ∞

a

P0(ℓ = x)dx. (4)

Given any other decision function d′ with error proba-
bilities α′

0 and α′
1, if α′

k ≤ αk then α′
k⊕1 ≥ αk⊕1. The

likelihood test with a suitable choice of threshold a is
also optimal for symmetric and asymmetric hypothesis
testing scenarios defined above. That is, the (log) like-
lihood function ℓ(Yn) is the relevant statistic to define
the acceptance (and rejection) region in the observation
space.

Equipped with these definitions one can study the
behavior of the probability of error ϵn as we increase
the number of observations n. For IID samplings, the
error can be seen to decay exponentially, and closed
expressions can be found for the error rate R :=

2 We use the lowercase notation pk(Yn) to denote the probability
density in the n-dimensional space calculated under the hypoth-
esis hk
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− limn→∞
1
n log ϵn in terms of the underlying PDF’s —

see the Chernoff bound and Stein lemma, e.g. in [29],
for the rates corresponding symmetric and asymmetric
setting respectively.

Let us now move to sequential hypothesis testing. Here
a general inference strategy is defined as the duple S =
{τ, d(Yτ )} of a stopping time and a decision function.
The stopping time shall be determined solely by the in-
formation available at each step of the process, or more
succinctly: τ is stopping time if, for any n, the occurrence
of the event τ ≤ n can be determined from Yn. The deci-
sion function takes as input the observed sequence until
the stopping time τ and produces a guess for the hypoth-
esis d(Yτ ) = {0, 1}.

Note that this set of strategies includes the traditional
deterministic strategies, i.e. those where the stopping
time is a fixed deterministic variable τ = n, where n is
a predetermined value. By relaxing this constraint and
enabling samples to be provided on demand, we can ex-
plore new scenarios and utilize resources more efficiently.
In contrast to the standard (deterministic) settings where
given a number of observations, one assesses the expected
probability of error, we will assess the mean number of
observations required in a sequential strategy to attain
given error bounds.

We start by considering, the strong error conditions
[30–32], a Bayesian scenario where both decisions (d =
0, 1) have a certified error below a given threshold, for
each possible measurement record. We will see that this
leads to the sequential probability ratio test (SPRT), a
test that turns out to be optimal also in other settings
(including non-Bayesian, asymmetric ones).

If hypothesis hk is given with prior probability πk, af-
ter observing a measurement sequence Yt, the posterior
probability is given by Bayes’ update rule,

p(hk|Yt) =
p(Yt|hk)πk

p(Yt|h0)π0 + p(Yt|h1)π1
(5)

where p(Yt|hk) = pk(Yt). Hence, the strong error condi-
tions mean that a decision can be taken only if either

p(h0|Yt) ≥ 1− ϵ0 or p(h1|Yt) ≥ 1− ϵ1 (6)

hold 3. We will denote by S(ϵ0, ϵ1) the class of inference
strategies S = {d, τ} which satisfy prescribed strong er-
ror bounds (6). The shortest permissible stopping time
is the earliest moment at which either of these conditions
is met. It is easy to see that the conditions in (6) can be

3 Note that the strong error conditions cannot be met for all possi-
ble outcomes of a deterministic test. Indeed within a fixed-length
scenario there is always a chance that the encountered sequence
is not informative enough to guarantee the conditional probabil-
ities.

expressed in terms of the log-likelihood ratio (2) as

ℓt ≤ −a0 := − log

(
1− ϵ0
ϵ0

π0

π1

)
,

ℓt ≥ a1 := log

(
1− ϵ1
ϵ1

π1

π0

)
. (7)

with ℓt := ℓ(Yt). Therefore the optimal strategy (i.e.
with the shortest stopping time) respecting the strong
error conditions is given by an SPRT with the threshold
values given in (7). an SPRT is defined as follows, by the
stopping time

τs = inf{t ≥ 0; ℓn /∈ (−a0, a1)} (8)

and the decision function

ds =

{
1 if ℓτs ≥ a1
0 if ℓτs ≤ −a0

(9)

for some threshold values ai > 0. In plain words a se-
quential probability test operates by following these rules

• if ℓ(Yt) ≥ a1, the test stops and h1 is accepted

• if ℓ(Yt) ≤ −a0, the test stops and h0 is accepted

• if a0 < ℓ(Yt) < a1, the test continues by asking for
new samples.

Clearly, if the strong error bounds (6) are the same for
both hypothesis, ϵ0 = ϵ1 = ϵ, then the unconditional
total error probability Perr (1) is also bounded by ϵ. In
the seminal works introducing the SPRT [26, 30], Wald
showed that for an SPRT with thresholds (−a0, a1) the
type I and type II errors (that are defined with no need
of Bayesian priors) satisfy

α1 = P0(ℓt ≥ a1) ≤ P1(ℓ ≥ a1)e
−a1 = (1− α0)e

−a1 ,

α0 = P1(ℓ ≤ −a0) ≤ P0(ℓ ≤ −a0)e
−a0 = (1− α1)e

−a0 .
(10)

In case of no (or negligible) overshooting, i.e. when the
sampling process exactly stops when the decision contour
is reached (ℓτ = a0 or ℓτ = a1), the inequalities are
saturated and the type I and II are given by

α0 =
1− e−a1

ea0 − e−a1
α1 =

1− e−a0

ea1 − e−a0
. (11)

Throughout this work, we will denote by C(α0, α1)
the class of inference strategies S which satisfy pre-
scribed bounds on type I and type II error probabili-
ties, P0(d = 1) ≤ α1 and P1(d = 0) ≤ α0. To distin-
guish those strategies, from those obeying the Bayesian
strong error conditions (single-trajectory), we will say
that strategies in C(α0, α1) obey the weak error condi-
tions. The Wald-Wolfowitz theorem [33] establishes the
optimality of the SPRT under IID, in the sense that it
minimizes the expected stopping time under both hy-
potheses, E0[τ ] and E1[τ ], among all tests in C(α0, α1)
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(sequential or not). In addition, for the IID setting the
mean stopping time Ek[τ ] can be computed, and can be
seen to be significantly shorter than the time (number of
samples) required for a deterministic bound to attain the
same error bounds.

In the next section, we give an explicit example that
demonstrates the advantage of sequential hypothesis test-
ing and showcases some features that will also be present
in continuously monitored quantum systems.

A. Gaussian Distribution IID

Here, we offer a straightforward illustrative example in
the IID case, where all computations can be performed
analytically, which will also serve to further introduce
some essential results in hypothesis testing.

Let us assume that our observations are described by
a random variable that, depending on the hypothesis,
obeys

h0 : y = m0 + ζ,

h1 : y = m1 + ζ

where ζ is a Gaussian stochastic variable with zero mean
and variance E[ζ2] = σ2.

Since the probability density function (PDF) of the ob-
servations obeys pk(Yt) =

∏t
i=1 pk(yi) where pk(yi) are

Gaussian for both hypothesis, k = 0, 1, it immediately
follows that the LLR is given by

ℓ(Yt) =

t∑
i=1

ℓ(yi) =
1

2σ2

t∑
i=1

(m1 − yi)
2 − (m0 − yi)

2

=
(m1 −m0)

σ2
Y − m2

1 −m2
0

2σ2
, (12)

where Yt =
∑t

i=1 yi, is Gaussian with mean Ek[Yt] = tmk

and variance Vark Yt = tσ2. That is, the LLR at a given
time t, ℓt = ℓ(Yt), is itself a Gaussian random variable
with mean and variance given by:

Ek[ℓt] =: (−1)k⊕1t µk with µk =
(m1 −m0)

2

2σ2
(13)

Vark[ℓt] =: t νk with νk =
(m1 −m0)

2

σ2
(14)

where, in order to present the results for both hypotheses
k ∈ {0, 1} in a unified manner, here, and throughout this
paper, we utilize the modulo 2 addition so that k ⊕ 1
represents the complementary hypothesis of k. We note
that both the mean and variance grow linearly with the
number of samples. More interestingly, note that all rates
depend on a single parameter: µ1 = µ0 = µ = (m1−m0)

2

2σ2

and ν0 = ν1 = 2µ. This relation is not accidental, but it
can be seen as a necessary condition for any setting with
a Gaussian LLR (see Theorem 5 below).

Having a full characterization of the distribution of the
LLR statistic ℓt, we can easily compute the type I and

FIG. 1. Attainable asymptotic error rates (ratio between log ϵ
and sampling time) for type I and type II error rates, for de-
terministic strategies (in green), and for sequential strategies
(in orange).

type II errors after a fixed number of samples n. From
(4) these errors can be obtained by integrating the tails
of a Gaussian:

α0 =
1

2
erfc

[
µ1t− a√

2ν1t

]
=

1

2
erfc

[
tµ− a

2
√
µt

]
α1 =

1

2
erfc

[
µ0t+ a√

2tν0

]
=

1

2
erfc

[
tµ+ a

2
√
µt

]
. (15)

By choosing a threshold value adapted to the number
of samples available a = ξt (with −µ < ξ < µ) we get
the asymptotic error rates

R
(ξ)
k := lim

t→∞
− logαk(t)

t
=

(µ+ (−1)kξ)2

4µ
, (16)

where we have used that for b > 0,
limt→∞

1
t log[erfc(b

√
t)] = −b2. Figure 1 shows,

shaded in green, the attainable asymptotic error rates
(R0, R1) for deterministic strategies. The optimal de-
terministic strategies are given by the curve (R

(ξ)
0 , R

(ξ)
1 )

given by (16), which describes the optimal trade-off
between the false positive and false negative error rates.

The point where both error rates coincide, R
(ξ∗)
0 =

R
(ξ∗)
1 = µ

4 corresponds to the symmetric (Bayesian) error
rate,

Rsym := lim
t→∞

− logPerr(t)

t
=

µ

4
(17)

i.e. Perr
.
= e−µt/4 —independently of the choice of priors.

Indeed, from (1) it follows that the optimal threshold in
this setting is a = log π0

π1
for all t, which means that

ξ = a/t → 0.
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For ξ → ±µ we get the optimal error rate for asymmet-
ric hypothesis testing in agreement with Stein’s lemma
[29]: if αϵ

0(t) = mind{α0(t) such that α1(t) < ϵ} for some
fixed ϵ > 0, then the corresponding error rate is given by
the relative entropy:

R∗
0 := − lim

t→∞

1

t
logαϵ

0(t)

= D (P0∥P1) :=

∫
dyp0(y) log

p0(y)
p1(y)

= (18)

= −E0(ℓ1) = µ. (19)

Similarly, if we bound the type II error, α0(t) < ϵ, the
optimal rate for the type I error will be R∗

1 = D (P1∥P0).
It is worth mentioning that the relative entropy gives the
fastest error decay rate one can attain, in the sense that
any strategy that detects hypothesis hk with a smaller
error, i.e. Rk > D(Pk∥Pk⊕1), will effectively always de-
cide for hk, i.e. αk⊕1(t) → 1 as t → ∞ —as can be also
seen from (15) by taking |ξ| > µ).

Let us now compute the average number of resources
needed to achieve the same error probability with the
SPRT. In the IID case, one can relate the average stop-
ping time to the average LLR (of a single symbol) by first
writing

Ek[ℓ(Yτ )] = Ek[

τ∑
i=1

ℓ(yi)] = Ek[ℓ(y)]Ek[τ ], (20)

where the Wald identity [26] is used to compute the ex-
pected value of a summation, where the range is deter-
mined by a stopping time (random variable).

In addition, if we neglect the overshooting, we can
assume that at the stopping time, the LLR will take
one of the two possible values at the decision boundary,
ℓτ = (−1)k⊕1ak. Under hypothesis hk hitting the bound-
ary (−1)kak⊕1 is associated to a wrong identification, i.e.
Pk(ℓτ = (−1)kak⊕1) = αk⊕1, while hitting the boundary
(−1)k⊕1ak is associated to a successful identification, i.e.
Pk(ℓτ = (−1)k⊕1ak) = 1− αk⊕1. Therefore the expecta-
tion value of ℓ at the stopping time is approximately (up
to the possible overshooting) given by:

Ek[ℓ(Yτ )] = (−)k⊕1(−ak⊕1αk⊕1 + ak(1− αk⊕1)). (21)

Combining the above expressions with Ek[ℓ1] =
(−1)k⊕1µ (see (19)) we find

Ek[τs] =
Ek[ℓ(Yτ )]

Ek[ℓ(y)]
=

ak(1− αk⊕1)− ak⊕1αk⊕1

µ
(22)

that, in the regime where the errors (either strong or
weak error conditions) are asymptotically small, i.e.
ak ≫ 1, reduces to:

Ek[τs] ∼
ak
µ

∼ − log ϵk
µ

(23)

for both weak and strong error conditions, i.e. for
S ∈ C(ϵ0, ϵ1)and S ∈ S(ϵ0, ϵ1). Here we used that the

SPRT thresholds ak required to meet the weak (strong)
conditions, given by equation (11) (equation (7)) scale as
ak ∼ − logαk (ak ∼ − log ϵk).

Now we are in a position to compare the performances
of sequential and deterministic strategies. The time re-
quired for a deterministic strategy to guarantee a small
error probability is given by the asymptotic error rates
studied above. For instance, if we need to impose a small
error for both hypotheses we have

Tdet ∼
log ϵ

min{R0, R1}
=

log ϵ

Rsym
= 4

log ϵ

µ
∼ 4Ek[τs]. (24)

That is the use of sequential strategies allows to save a
significant amount of resources: a deterministic strategy
would require 4 times longer sample times to attain the
same error bounds than the expected time for the SPRT.
The advantage is also clear in the asymmetric setting:
while deterministic strategies are inevitably bound by the
trade-off between type I and type II errors (green area
in Fig. 1) sequential strategies allow to minimize both
error rates simultaneously, up to the absolute non-trivial
optimal value given by Stein’s lemma (orange area in Fig.
1).

Having introduced the hypothesis testing framework
and analyzed the IID Gaussian example in detail, we
now shift our focus to the main subject of this work:
sequential hypothesis testing in continuously-monitoring
quantum systems. We start by defining the physical sys-
tems that we have in mind and derive the statistics that
will govern the observed signals.

III. CONTINUOUSLY-MONITORED
QUANTUM SYSTEMS

Continuously-monitored quantum systems are systems
from which a certain amount of information is extracted
at each instant of time. The act of extracting information
from the system, or in other words the act of measuring,
perturbs the system by an amount that increases with
the information extracted from it. At one extreme, un-
der a fully informative measurement, corresponding to
a sharp, or rank-1 POVM, at each given time, the sys-
tem collapses to the same measured state consistently,
preventing any evolution (known as the quantum Zeno
effect). At the other extreme, enforcing no perturba-
tion to the system dynamics will end up with a com-
pletely uninformative measurement. Hence, in a contin-
uously monitored system, a balance is sought between the
amount of information extracted at any one time and the
measurement-induced perturbation that can be tolerated
on the dynamics. This balance between perturbation and
informativeness may be controlled by tuning the coupling
of the system of interest with an external environment,
on which a sharp measurement is performed. A Marko-
vian approximation with respect to the system dynamics
is often assumed, i.e. the environment is assumed to ei-
ther reset on a very fast time scale or it is assumed to
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be large enough to guarantee that the information leaked
from the system does not kick back. If both the coupling
with the bath and measurements are weak, and the ob-
servational model is assumed to be Gaussian, then the
dynamics of a continuously monitored system is well de-
scribed by the Belavkin-Zakai equation [1, 11, 15, 34],
which here we review:

dρt = Lθ(ρt)dt

+
(
H√

ηĉ(ρt)dt− Tr(H√
ηĉ(ρt))ρt

)
· dwt (25)

where

Lθ(ρt) = −i[Ĥ, ρt] +Dĉ(ρt) (26)

is the generator of the unconditional dynamics —in which
no measurement is performed, or equivalently, no mea-
surement record is registered—, Ĥ is the free Hamil-
tonian and Dĉ(ρt) = ĉρtĉ

† − 1
2{ĉ

†ĉ, ρt} is a diffusive
term due to the presence of an external bath (where
ĉ = (ĉ1, . . . , ĉk)

T are generic operators defined by the
structure of the Markovian environment). The second
line of (25) represents the measurement back-action,
where

dwt = dyt − Tr[H√
ηĉ(ρt)]dt (27)

is the so-called innovation term, dyt is the measure-
ment outcome at the given time t, and H√

ηĉ(σt) =
√
ηĉσt + σt

√
ηĉ† with η a positive semi-definite matrix

representing the detection efficiency, which also controls
which modes are effectively monitored.

Plugging (27) into (25) allows us to write a stochas-
tic equation of motion for the current state of the sys-
tem conditional to a particular measurement record Yt =
(dy0, . . . dyt). The non-linear term appearing in the re-
sulting equation describes the re-normalization process
of the state after each measurement, i.e. it incorporates
the Born rule in the system state dynamics which can
be understood as the quantum counterpart of a Bayesian
update on the statistical operator.

The probability of having the measurement outcome
dyt at time t is described by the Gaussian observational
model:

P (dyt|Yt, θ) =
1√

2πkdt
e−

dwt·dwt
2dt

= e−
1
2 |Tr[H√

ηĉ(ρt))]|2dt+Tr[H√
ηĉ(ρt)]·dytPdw(dyt), (28)

where in the second equality we have used (27), and
Pdw(dyt) is the probability distribution of k independent
Wiener processes such that E[dwidwj ] = δijdt.

The probability distribution of the measurement
record Yt, conditioned on the system state —whose dy-
namics is governed by (25)— is readily obtained as the
product of the probabilities in (28) describing the prob-
ability measurement outcome dyt at a given time and

reads

P (Yt|θ) = eλ(Yt|θ)PW (Yt) (29)

where Wiener process PW (Yt) ≡
∏t

τ=0 Pdw(dyt) can be
understood as the noise process driving the system, and
is what mathematically defines the probability measure
in the space of the continuous measurement signals.

Here, λ(yt|θ) is the log-likelihood associated with the
sequence of measurement Yt and is described by the fol-
lowing master equation 4

dλ(Yt|θ) = Tr(H√
ηĉ(ρθ(t,Yt))·dyt

− 1

2
|Tr(H√

ηĉ(ρθ(Yt)|2dt (30)

where, for clarity, we have made the dependence of the
state on the parameters θ and the measurement record
Yt explicit.

The above equation allows us to easily keep track of
the likelihood of a particular trajectory Yt, as it can be
computed recursively, only knowing its current value, the
conditional state of the system, and the measurement
outcome at each given time.

Before moving further few remarks are in order.
First notice that (30) can also be understood as the

equation governing the evolution of trace of the un-
normalized state described by the linear Belavkin-Zakai
equation, i.e.

dρ̃t = Lθ(ρ̃t)dt+D ĉ(ρ̃t)dt+H√
ηĉ(ρ̃t)dyt, (31)

as shown in [14, 36] 5. This fact should not be surpris-
ing, since the linear Belavkin-Zakai equation can also be
understood as the quantum counterpart of the classical
Duncan-Mortensen-Zakai equation [37], i.e. the equation
describing the dynamics of the unnormalized conditional
probability density function for a classical non-linear fil-
tering problem [37, 38].

The above equations are usually hard to handle, es-
pecially in the case of continuous, infinite-dimensional
systems. Even conducting numerical simulations often
demands extensive allocation of computational resources.
However, there is a full class of experimentally-relevant
systems whose behavior can be approximated by the evo-
lution of a Gaussian state. Here, the system is described
by the first two statistical moments of the quadratures,
and its evolution is fully characterized by a system of

4 The attentive reader may notice the resemblance with the
Kallianpur-Striebel log-likelihood [35], describing a non-linear fil-
tering problem. However the term λ(Yt|θ) must be understood
as the log-likelihood of the unnormalized conditional probability
density function solving the Duncan-Mortensen-Zakai equation.

5 There is a discrepancy of a factor 1/2 in the second term of the
r.h.s. of (30) with respect to (26) in [36]. However, it is not
difficult to show that, starting from (26) in [18] and with the
help of the Itô calculus the correct eq. (30) is obtained.
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linear stochastic differential equations. Such Gaussian
models are employed to describe several real-world sce-
narios with great success [4, 39, 40]. They are not only
a useful tool to describe real experimental scenarios but
they can also be employed to have a more transparent
connection between continuously monitored systems dy-
namics and classical filtering theory [41, 42].

A. Gaussian systems

A quantum Gaussian system of n-modes is described
by the quadratures q and p with [qi, pj ] = iδij , whose
unitary part of the dynamics is described by a quadratic
Hamiltonian of the form Ĥ = 1

2 x̂
THx̂ + bTΩx̂, where

x = (q̂1, p̂1, q̂2, p̂2, ..., q̂n, p̂n)
T , H is a 2n×2n-matrix, b is

a 2n-dimensional vector accounting for a time-dependent
linear driving, and Ω is the n-mode symplectic ma-
trix [43, 44]. The effect of the environment is described
by Lindblad generators that are linear in the system’s
quadratures, as well as the noisy measurement which is
described by a linear function of the quadratures. So
that the dynamics will preserve the gaussianity of the
state [45]. This means that if also the initial state is
Gaussian the first moment r = ⟨r̂t⟩ and the Covariance
Matrix (CM) σ = ⟨{r̂t, r̂t}⟩/2 − ⟨r̂t⟩⟨r̂t⟩ are enough to
characterize the system at any time. The evolution for
the first two momenta is thus obtained through (25) and
reads

drt = Aθrtdt+ bθ,tdt+ χ(σt)(dyt − Crtdt)

σ̇t = Aθσt + σtA
T
θ +Dθ − χ(σt)χ(σt)

T , (32)

and the model describing the measured signal simplifies
to

dyt = Crtdt+ dwt. (33)

where Aθ is the drift matrix and takes into account
the unitary interaction between the system and environ-
ment, as well as the internal dynamics of the system,
bθ,t describes the effects of a (possibly time-dependent)
force on the system and Dθ the diffusive part of the dy-
namics due to the interaction with an environment, and
χ(σ) := σCT − Γ accounts for the measurement back-
action. The sub-index θ denotes the dependence on cer-
tain parameters that characterize the different hypothe-
ses.

Note that on one hand, the dynamics of the first mo-
ment is perturbed by the measurement back-action, of
an amount proportional to the innovation term, dwt,
and hence it explicitly depends on the measured signal.
While, on the other hand, the dynamics of variance —
while influenced by the measurement process— does not
depend on the particular measured signal but is reduced
by an amount proportional to the averaged fluctuation
of the first moment induced by the measured signal.

It is furthermore worth noticing that (32) are mathe-
matically equivalent to the Kalman-Bucy equations [41]

solving the classical filtering problem of estimating the
internal state in a linear dynamics system from a series
of noisy measurements [46]. The quantum formalism ef-
fectively includes both the Bayesian (state of knowledge
changes) and the quantum measurement back-action. In
turn, eqs. (32) can be understood as those governing the
evolution of the first two moments of the normalized
probability distribution obtained through the Bayesian
update of a classical linear system under the information
acquired through the sequence of linear noisy measure-
ments [47].

Having discussed the quantum continuously monitor-
ing systems, we now apply the statistical inference tools
discussed in Sec. II to this kind of systems.

IV. SEQUENTIAL HYPOTHESIS TESTING IN
CONTINUOUSLY-MONITORED SYSTEMS

Now that the basic notions and formalism have been
set, let us discuss hypothesis testing in a quantum system
that is being continuously monitored. Contrary to previ-
ous studies done on quantum systems, where one could
rely on several copies of the system state [32], here we
have a single system that evolves due to its own internal
dynamics and the effects of measurements. The measure-
ment record Yt cannot be described via a sequence of IID
but is instead generated by a specific hidden Quantum
Markov Model. In any case, what it is clear from the
previous section is the main object to be studied is the
LLR.

ℓ(Yt) = log
P1(Yt)

P0(Yt)
. (34)

Exploiting (30) it is not difficult to show that ℓ(Yt) is
characterized by the following differential equation:

dℓ(Yt) = Tr[H√
ηĉ(ρθ1(Yt)− ρθ0(Yt)] · dyt

− 1

2
(|Tr[H√

ηĉρθ1(Yt]|2 − |Tr[H√
ηĉρθ0(Yt]|2)dt, (35)

where ρθ0(ρθ1) is determined by solving (25) under the
null(alternative) hypothesis.

It is worth noticing that the above equation can be
further simplified assuming the sequence of outcomes Yt

is generated through the null/alternative hypothesis, de-
noted by k (i.e. one of the models correctly describes the
system’s dynamics). Indeed, under this assumption we
can express dyt as

dyt ≡ dyt|θk ≡ Tr[H√
ηĉρθk(Yt|θk)]dt+ dwt, (36)

and rewrite the LLR ℓ(Yt|θk) as a function of the Wiener
noise dwt,

dℓ(Yt|θk) = Tr[H√
ηĉ(ρθ1(Yt|θk)− ρθ0(Yt|θk))] · dwt

(−)k⊕1 1

2
|Tr[H√

ηĉ(ρθ1(Yt|θk)− ρθ0(Yt|θk))]|
2dt.

(37)
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In the Gaussian case, the equation for the LLR is:

dℓt = (C∆rt) · dyt −
1

2
(||Cr1(t)||2 − ||Cr0(t)||2)dt,

(38)

where rk(t) are the first moments of the Gaussian state
generated through the conditional dynamics of (32) fed
with Yt|θk , and ∆rt = r1(t)− r0(t).

Similarly, in terms of the innovations or Wiener noises:

dℓt =
(−1)k⊕1

2
||C∆rt||2dt+ (C∆rt) · dwt. (39)

The above expression shows that the likelihood ratio
has a positive or negative drift depending on whether
the measured signal Yt is generated by the alternative
or null hypothesis, showing the tendency to increase the
chances to correctly discriminate between the two hy-
potheses over time. Notice that the same conclusion can
be obtained, in full generality by means of the following
identity: P1(ℓt)

P0(ℓt)
= eℓt . Indeed Ek[e

(−)kℓt ] = 1 and with

the help of Jensen inequality, i.e. eEk[(−)kℓt] ≤ Ek[e
(−)kℓt ]

one readily obtains

(−)kEk[ℓ(Yt)] ≤ 0. (40)

We note that equation (35) allows for immediate imple-
mentation of an SPRT in a real experiment, while (37) is
more suited to theoretically study the performance of the
SPRT in the context of continuously monitored systems
as we will see next.

We observe that integrating (39) would result in a
Gaussian distributed LLR (compare also with (12)) if ∆r
were a constant. Such a scenario would greatly simplify
our analysis. Unfortunately, this quantity is far from be-
ing constant as it is a stochastic variable itself, strongly
correlated with the noise process. The next section is
devoted to presenting the main formal results of this pa-
per, where under some mild assumptions on the statis-
tical properties of the LLR we derive the statistics of
the most relevant quantity in sequential methodologies,
namely the stopping time τ .

Before that, let us conclude this section with Figure 2
illustrating the SPRT strategy in continuously monitored
systems where we anticipate some of the general features
that we will formally prove in the next section.

A. General results on Discrimination in Quantum
Continuously Monitored Systems

We now present an analytical study of the performance
of the SPRT in hypothesis testing for continuously mon-
itored quantum systems. We give a general theorem pro-
viding a tool to upper bound the SPRT stopping time
and show the optimality of the test under some assump-
tions on the underlying stochastic process, and derive
some relevant statistical properties of the SPRT stopping

FIG. 2. We illustrate how the stopping time distribution arises
from the stochastic continuous trajectories of ℓt; here we show
some realizations of the ℓ process, along with some time-slices
at t0 and t1 shown in blue together with the corresponding
distributions p1(ℓt), which close to their peak value are well
approximated by a Gaussian. The horizontal line in red cor-
responds to the fixed threshold ℓτ = a, leading to an arrival
time distribution p1(τ). Such distribution appears as a conse-
quence of a difference in the arrival times for trajectories of
ℓt.

time. We further provide the optimal rate of error for the
asymmetric deterministic setting, i.e. the Stein lemma
for continuously monitored systems. All the details and
the proofs of the following theorems can be found in the
Supplemental Material.

Along with the asymptotic analysis notation intro-
duced in previous sections (see footnote 1) let us in-
troduce the notation for convergence in probability: Let
Xt, Yt be random sequences taking values in any normed
space, we use the compact notation Xt = Op(Yt) to de-
note

lim
t→∞

P (||Xt|| > ϵ||Yt||) = 0 ∀ϵ > 0.

Theorem 1. (SPRT optimality). Let S = (d, τ) de-
note a generic hypothesis test where τ is a stopping time,
d = d(Yτ ) is a terminal decision function with values in
the set {0, 1}, and Yτ the full samples acquired in the
time interval [0, τ ]. Let C(α0, α1) = {S : P0(d = 1) ≤
α0, P1(d = 0) ≤ α1} and ℓt ≡ log P1(Yt)

P0(Yt)
the LLR. The

SPRT is defined by the couple Ss = (ds, τs), where

τs = inf{t ≥ 0; ℓt /∈ (−a0, a1)} (41)

and

ds =

{
1 if ℓτs ≥ a1
0 if ℓτs ≤ −a0

(42)

with ak > 0 for k = 0, 1. Let T be a generic time and
α∗ = max{α0, α1} then

lim
α∗→0

Pk(τ ≥ T ) ≥ lim
α∗→0

Pk(τ
(δ)
s ≥ T ) (43)
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and

Pk(τ ≥ τ (ϵ)s ) = 1−O(αε
k⊕1), (44)

where τ and τ
(δ)
s respectively denote the stopping time

of a generic hypothesis test in the class S ∈ C(α0, α1)
and the stopping time of the SPRT in the class Sδ ∈
C(α1+δ

0 , α1+δ
1 ) with ϵ ∈ (0, 1), and ε = δ

1+δ .

This first theorem is fairly general and allows us
to asymptotically lower-bound the stopping time of a
generic test in the class C(α0, α1), by that associated
to an SPRT. A less abstract result and an asymptotic
optimality condition can be obtained if some reasonable
assumptions over the SPRT stopping time are made.

Corollary 1.1. If, under the hypothesis hk,

τs =
log(αk)

µk
+ Opk

(log(αk)) (45)

with τs the SPRT stopping time in the class C(α0, α1),
then the SPRT is asymptotically optimal in a weak sense,
i.e.

lim
α∗→0

Pk(τ ≥ (1− ϵ)τs) = 1 ∀ϵ > 0 (46)

where α∗ = max(α0, α1).

Corollary 1.2. If furthermore

Ek[τ
n
s ] =

(
log(αk)

µk

)n

+ O(log(αk)
n) (47)

the SPRT is not only asymptotically optimal in the weak
sense but also in momenta, i.e.

Ek[τ
n] ≥ Ek[τ

n
s ](1 + O(1)). (48)

On the other hand, the following theorem sets a bound
on the optimal error rate that the (asymmetric) deter-
ministic setting can achieve:

Theorem 2. (Continuously-monitoring Stein lemma).
Let Pk be the probability under the hypothesis hk with
k = 0, 1, d = d(YT ) a decision function in the set {0, 1},
and T a fixed time at which the decision is taken. Let α0

and α1 respectively be the type I and II errors,

αk(T )
∗ := min{αk(T ) : αk⊕1(T ) ≤ ϵ} (49)

with ϵ ∈ (0, 1), i.e. the minimum error achievable in the
asymmetric scenario and

R∗
k := lim

T→∞
− logα∗(T )

T

the corresponding error rate. If

ℓ(Yt) = (−)k⊕1µkt+ Opk
(t) (50)

with µk > 0, then the minimum error rate Rk that can be
attained by a deterministic test is given by the following
equation

R∗
k = µk. (51)

The proof of the theorem can be found in the sup-
plemental (Theorem 10). As shown in the Supplemen-
tal Material, this is indeed the faster error rate we can
achieve using a deterministic strategy, in the sense that
any fastest rate will lead with certainty to false positive
(negative), i.e. α0(1) → 1. Also notice that if ℓt con-
verges in mean, then µk assumes the role of the regular-
ized Kullback-Leibler information divergence, i.e.

µk = I(Pk∥Pk⊕1) ≡ lim
t→∞

1

t
Ek

[
log

Pk(Yt)

Pk⊕1(Yt)

]
.

Theorem 3. Let ℓ(Yt) be the LLR described by (35) and
τs be a stopping time associated to the SPRT with thresh-
olds ak. If

ℓ(Yt) = (−)k⊕1µkt+ Opk
(t) (52)

with µk > 0 then, on the one hand, limit of small error
bounds (i.e. ak ≫ 1) the stopping time

converges in probability to a constant:

τs =
ak
µk

+ Opk
(ak) (53)

where recall that ak ∼ − log(ϵk), as max(ϵ0, ϵ1) → 0 (or
similarly for the weak error conditions replacing ϵ by α).

On the other hand, under weak error conditions the
SPRT is asymptotically optimal in a weak sense, i.e.

lim
α∗→0

P (τ ≥ (1− ε)τs) = 1 ∀ ε ∈ (0, 1) (54)

with α∗ = max(α0, α1), and τ the stopping time of a
generic test in the class of C(α0, α1).

Corollary 3.1. If we further assume

Ek[ℓt] = (−)k⊕1µkt+ O(t) (55)

then the (asymptotic) mean stopping time is given by

Ek[τs] =
ak
µk

+ O(ak) (56)

while for weak error conditions the SPRT is asymptoti-
cally optimal in mean, i.e.

Ek[τ ] ≥ Ek[τs] + O(log(αk)) (57)

for τ and τs in the class C(α0, α1).

Theorem 4. Let ℓ(Yt) be the LLR described by (35) and
τs be the stopping time associated to the SPRT. If

ℓ(Yt) = (−)k⊕1µkt+ σkζt + Opk
(
√
t) (58)

with µk ∈ R+ and ζt a standard Wiener process, i.e.
E[ζt] = 0 and E[ζtζτ ] = min(t, τ), then the probability
distribution of the normalized stopping time τ̃ := τs

ak
can

be asymptotically approximated by the Inverse Gaussian
distribution:

pk(τ̃) ∼
ak

τ̃3/2
√

2πσ2
kak

e
− (1−µkτ̃)2

2σ2
k
akτ̃ (59)



10

and the SPRT is asymptotically optimal in momenta, i.e.

lim
α∗→0

E[τn] ≥ lim
α∗→0

E[τns ](1− O(1)), (60)

where α∗ = max(α0, α1) and τ is the stopping time of a
generic test in C(α0, α1).

The proof can be found in the supplemental (Theo-
rem 8 and subsequent corollaries).

Continuously-monitored gaussian systems

We recall that under the Gaussian assumption, the dy-
namics is fully characterized by the evolution of the first
two cumulants, and reads

drt = Aθrtdt+ bθ,t + χ(σt)(dyt − Crtdt)

σ̇t = Aθσt + σtA
T
θ +Dθ − χ(σt)χ(σt)

T . (61)

By picking the parameters θ corresponding to hypothesis
h0 and h1 respectively, we can write two decoupled sets
of equations describing the quantum state of the system
conditional on an arbitrary measurement signal Yt for
each of the candidate hypothesis. This suffices to keep
track of the LLR and implement the SPRT algorithm.

However, in order to assess its performance and com-
pute the statistical properties of the LLR and the stop-
ping time τs, it is important to take into consideration
the statistical properties of the true measurement signal,
which will be governed by (33) with rt corresponding
to the true hypothesis. Since this dependence is fed in
the stochastic equation for the other (false) hypothesis it
results in a coupled system of equations. To solve this
system of equations it is convenient to treat the problem
in an extended vector space where the state of the system
is defined as Xt = (r0(t), r1(t))

T and Σt = σ0(t)⊕ σ1(t)
whose evolution is given by

dXt = (A− χ(Σt)ΠkC)Xtdt+Btdt+ χ(Σ)dwt

Σ̇t = AΣt +ΣtA+D − χ(Σt)χ(Σt)
T (62)

with Bt = (b0,t,b1,t)
T , A = A0 ⊕ A1, C = C ⊕ C and

D = D0 ⊕D1, χ(Σt) := ΣtCT − Γ̃, Γ̃ = Γ0 ⊕ Γ1 and

Π0 =

(
0 0
−1 1

)
, Π1 =

(
−1 1

0 0

)
(63)

where k ∈ {0, 1} and denotes the hypothesis under which
the signal Yt is generated. In this notation, the LLR
reads:

dℓ(Yt|θk) =
(−)k⊕1

2
|∆TCXt|2dt+ (∆TCXt) · dwt (64)

with ∆T = (1,−1)T .

Under the assumption that the covariance Σt, admits
an asymptotic steady state6 Σst = σ0 ⊕ σ1, ℜ[A −
χ(Σst)ΠkC] < 0 and Bt = B, i.e. the affine term of the
equation is constant, then the probability distribution of
Xt admits an asymptotic solution of the form [48]:

P∞,k(X) =
1

(2π)n/2det[ω]1/2
e−

1
2 (X−d)Tω−1(X−d) (65)

where d = [A − χ(Σ∞ΠkC)]−1B and ω is the solution
of the Lyapunov equation (A − χ(Σt)ΠkC)ω + ω(A −
χ(Σt)ΠkC)T = 2Σ∞. From this it is easy to see that:

lim
t→∞

Ek[dℓ(Yt)]

dt
=

(−)k⊕1

2
E[|∆TCX|2]

=
(−)k⊕1

2
Tr[CT ∆∆TCω̃] =: µk (66)

with ω = (ω+ddT ). Now, following a similar procedure
than in the proof of Wald’s identity [26] we have that in
the limit of large ak’s (i.e. large stopping times)

Ek

[∫ τ

0

dℓt

]
= Ek

[∫ ∞

0

It<τdℓt

]
=

∫ ∞

0

Ek[It<τ ]Ek[dℓt]

= µk

∫ ∞

0

Ek[It<τ ]dt+

∫ ∞

0

Ek[It<τ ](Ek[dℓt]− µkdt) =

= µkEk

[∫ ∞

0

It<τdt

]
+O(1) = µkEk

[∫ τ

0

dt

]
+O(1) =

= µkEk[τ ] +O(1), (67)

where we have defined the indicator function IC = 1 if
condition C is fulfilled and IC = 0 otherwise. In the
third equality, we have used that It<τ = Iℓt /∈(−a0,a1) and
dℓt are independent stochastic variables. Finally, in the
fourth equality, we have used that Ek[dℓt] is bounded
and becomes constant µk at a fast enough rate, so as to
guarantee that the integral

∫∞
0

(Ek[dℓt]−µkdt) converges
to a constant.

Finally, as in the IID case, we can use the fact that ℓτ =
{−a0, a1} is a binary random variable (continuity of ℓt
guarantees that there’s no overshooting) and proceeding
along the same lines as in (22) we obtain an asymptotic
expression for the average stopping time:

Ek[τs] =
ak

Tr[CT ∆∆TCω̃]
(1 + o(1)), (68)

where recall that ak ∼ logα−1
k (ak ∼ log ϵ−1

k ) for the
strong (weak) error conditions.

If, furthermore the variance of the LLR E[ℓ2t ]−E[ℓt]2 =
µkt + o(t), with µk < ∞, then the SPRT is also asymp-
totically optimal in mean, i.e.

E[τ ] ≥ E[τs] +O(1) (69)

6 Notice that the dynamics of Σt is described by a Riccati equation
that we know admits asymptotic steady states in certain regimes.
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FIG. 3. Damping-rate discrimination. We show the evolution
of the mean-value of the LLR, obtained by sampling Yt un-
der hypothesis h1(0) in red(blue), along with different realiza-
tions of the stochastic process. We observe the corresponding
tendency towards positive(negative) values according to the
underlying true hypothesis h1(0).

where τ is the stopping time of a generic test in the class
C(α0, α1), in accordance to Theorem (4).

To conclude this work in the next section we will nu-
merically investigate the behavior of the LLR and tests’
performances in a specific model, and explain the results
in light of the theoretical results obtained so far.

B. Optomechanical Sensors

In this section, we study the performance of sequen-
tial hypothesis testing on an optomechanical system un-
der homodyne measurement that operates in the linear
regime. We also assume that the system operates in
the unresolved sideband regime, which enforces a sep-
aration of the time scales of the optical and mechanical
modes, allowing the cavity mode to be eliminated adi-
abatically [41]. In this regime, the fluctuations evolve
according to a quadratic Hamiltonian, ensuing a Gaus-
sian evolution described by (32), where the number of
modes is reduced to one, i.e. the mechanical mode.

As a first case study, we make use of the SPRT to dis-
criminate two different values of the decoherence rate γ,
via a demodulated homodyne signal in the rotating frame
of the mechanical frequency [49, 50]. This setting is ex-
perimentally achievable [51], and analytically treatable.

Within the rotating wave approximation, the coeffi-
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FIG. 4. Damping-rate discrimination. We show the ratio
between theoretical and numerically-computed values of the
mean value (variance) in the first (second) column, as a func-
tion of time, when sampling from hypothesis h1(0) in the first
(second) row; these results were computed over 2 · 104 quan-
tum trajectories. As observed, after a transient time, the first
and second moments converge to the predicted analytical val-
ues.

cient matrices in (32) reduce to

A = −γ

2
12, C = −

√
4ηκ12, D = γσuc12, Γ = 0,

where σuc = n̄th+
1
2 +

κ
γ is the covariance of the uncondi-

tional dynamics steady state, n̄th is the average number
of photons in the thermal environment, γ is a dissipative
term due to the presence of an environment in thermal
equilibrium interacting with the system, η describes the
measurement efficiency, and κ is a decoherence rate in-
duced by the measurement.

In Fig. 3 we show the evolution of the mean value of
the LLR, along with several realizations of the stochastic
process, for this particular system under study. For this
case study, we have considered discriminating between
damping rates γ1 = 440 Hz and γ0 = 100 Hz, and fixed
the remaining parameters to be n = 1, κ = 10 Hz and
η = 1 for both hypotheses.

As discussed in Sec. II, the LLR is the main object to
study in testing scenarios. As we show in the Supple-
mental Material, for this system we can prove that

lim
t→∞

Ek[ℓ(Yt)]

t
= (−)k⊕1µk

lim
t→∞

Ek[ℓ(Yt)
2]− Ek[ℓ(Yt)]

2

t
= νk (70)
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FIG. 5. Damping discrimination. We show the histogram of
the LLR for time t = 2s (t = 8s) in the upper (lower) panel,
under hypothesis h1(0) in red(blue). We compare this with
the theoretically predicted Gaussian distributions

.

where closed expressions for µk and νk can be found. This
is corroborated by Fig. 4, which shows good agreement
between theoretical predictions and our numerics.

With the help of Chebyshev inequality and (70), we
can readily show that conditions of theorems 3 and 2
are satisfied, guaranteeing both weak and mean asymp-
totic optimality of the SPRT. This is again confirmed in
Figure 5 that shows how the LLR histogram under each
hypothesis approaches a Gaussian distribution with the
predicted drift and variance.

In order to illustrate how to implement the SPRT, and
prove the advantage of sequential against deterministic
tests, we have carried out a numerical experiment [52] by
simulating a large number N of stochastic trajectories —
integrating (61)— and used (38) to keep track of the LLR
for each of the measurement records as one would do in
a real experiment. We consider a symmetric hypothesis
testing scenario with equal priors, therefore we generate
N/2 trajectories under h0 and the other half under h1.

To implement the optimal deterministic strategy, at
every time t we check whether the LLR is above or below
the threshold value: ℓt ≥ a = 0 (decide in favour of h1)
or ℓt < 0 (decide in favour of h1). We keep a record of
the number of incorrect guesses NF and estimate Perr ≈
Pe := NF

N . In Fig. 6 we show the so obtained values
(− logPe, t) for various times.

To implement the optimal sequential strategies, we ap-
ply the SPRT by fixing the equal upper and lower thresh-
olds a0 = a1 = 1−ϵ

ϵ and for each trajectory i we keep
a record of the times τi when the LLR first hits the
boundary, and of the wrong guesses (cases where the
upper threshold is hit but the true hypothesis was h0

or vice versa). The mean stopping time is estimated as
E(τs) ≈ τ̄ = 1

N

∑
i τi, and in Fig. 6 we plot the points

with coordinates (− log ϵ, t = τ̄) for a range of values of
ϵ.

Before discussing the theoretical curves shown in
Fig. 6, we can already highlight the distinct advantage
of the sequential strategy over the deterministic one: the

1 2 3 4 5 6
log Pe

0

1

2

3

4

t

[ s]
det
G
det

FIG. 6. Damping-rate discrimination. We compare the time
required for the optimal deterministic and sequential tests to
reach a certain symmetric error-probability threshold. The
performance is computed by averaging stopping times (se-
quential) and estimating the error made for each fixed time
(deterministic) over N = 4 · 104 trajectories, averaged over
both hypotheses. Moreover, we compare the numerics with
the theoretical predictions (solid lines) using eqs. (71) and
(72) for the sequential test, and the Gaussian model for the
deterministic one, here denoted by τG

det, using eqs. (73) and
eqs. (74). The later model is clearly seen to be invalid (see
main text).

duration of the experiment required to identify the true
hypothesis with a given error probability is about three
times longer for the deterministic strategy than the (av-
erage) elapsed time in the sequential strategy. In addi-
tion, we also note the sequential strategy is able to certify
the error probability for each single trajectory, while the
deterministic protocol only guarantees the error bound
when averaging over many trajectories. An important
caveat of sequential strategies is that the exact duration
of the experiment is unpredictable. The mean stopping
time is bounded (and may be known beforehand). How-
ever, as shown in Fig. 7 the stopping time distribution
has quite long tails, so a particular experiment may take
substantially longer than expected. The figure also shows
an excellent fit with the theoretical curve given in (59).

We now proceed to discuss the theoretical curves dis-
played in Fig.6. Since the mean stopping time depends
on the underlying hypothesis and we have assumed an
equally likely hypothesis, the average stopping time is
written as

E[τs] =
1

2
(E0[τs] + E1[τs]) (71)
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FIG. 7. Damping-rate discrimination. We compute the his-
togram of the stopping times for the sequential test and com-
pare it with the Inverse Gaussian probability distribution of
theorem 4, showing a good agreement. Results are shown
when h1 holds true (similar results are obtained when swap-
ping the underlying hypothesis).

with

Ek[τs] ≈
−ak⊕1αk⊕1 + ak(1− αk⊕1)

µk
=

=
a(1− 2(1 + ea)−1)

µk
=

log( 1−ϵ
ϵ )(1− 2ϵ)

µk
, (72)

where we have used (11) to obtain αk = (1 + ea)−1 =
ϵ. This is an asymptotic result, however, it is already
an excellent approximation when required stopping times
are large compared to the relaxation time of dE[ℓt]

dt to its
stationary value µk —see section (IVA).

A naive interpretation of our previous results and the
histograms shown in Fig. 5 might lead to the conclusion
that for all practical purposes, one can assume that the
LLR is a Gaussian distribution with mean µkt and vari-
ance νkt. Under these assumptions we can easily com-
pute the probability of error of the deterministic strategy
using the results in Sec. IIA. Indeed, since

Perr =
1

2
(α0 + α2), (73)

using first equalities in (15) with a = 0,

α0 =
1

2
erfc

[
µ1

√
t√

2ν1

]
and α1 =

1

2
erfc

[
µ0

√
t√

2ν0

]
. (74)

However, this result is bluntly wrong as it is apparent
from the mismatch with the numerical results shown in

Fig. 5. The fact that the type I and type II errors are
not equal in this symmetric setting is also a bad sign.
The following simple theorem highlights the reason for
this discrepancy.

Theorem 5. If the log-likelihood ratio ℓ(x) := log p1(x)
p0(x)

is Gaussian distributed random variable under one of the
hypotheses, then it will be Gaussian distributed under
both hypothesis and their means and the variances must
fulfill the following relation

Ek[ℓ] = (−)k⊕1µ

Var0[ℓ] = Var1[ℓ] = 2µ (75)

with µ > 0. i.e. PDF for ℓ is given by

p1(ℓ) = p0(−ℓ) =
1√
4πµ

e
−

(ℓ−µ)2

4µ . (76)

Proof. Take p1(ℓ) to be the Gaussian probability distribu-
tion, with mean µ > 0 and variance σ2 . From the defini-
tion of ℓ(X) it immediately follows that p0(ℓ) = e−ℓp1(ℓ),
which means that the distribution of p1(ℓ) has also
quadratic exponent. Imposing the normalization condi-
tion on e−ℓp1(ℓ) we readily obtain condition σ2 = 2µ,
and the rest of the claims follow. More succinctly, the
following relation between the moment-generating func-
tions holds true:

χ0(q) := E0[e
qℓ] = E1[e

−ℓeqℓ] = E1[e
(q−1)ℓ] =: χ1(q − 1).

Recalling the moment-generating function for a Gaus-
sian distribution to be χ(q) = exp(qµ+ q2

2 σ
2) we obtain

−qµ0+
q2

2 V0 = (q−1)µ1+
(q−1)2

2 V1. Taking, e.g., q = 0, 1
(i.e. the normalization conditions) together with q = 1/2
leads to desired results.

It is easy to verify that these conditions do not hold in
general —in the current case under study it is sufficient to
check that µ0 ̸= µ1 as shown in (S5) of the Supplemen-
tal Material. Therefore, it is clear that the underlying
assumption that led to (74) does not hold. It is impor-
tant to emphasize that this fact does not contradict the
results presented in this paper, nor does it undermine
the content of the theorems stated in the previous sec-
tion. This is because convergence in the probability of
a specific stochastic variable does not necessarily imply
convergence in moments. While the theorems address
the concentration properties (i.e., the bulk) of the LLR
distribution, that contribute for instance to the mean
stopping time, the calculation of the deterministic error
rates involves large deviation properties of the PDF (i.e.,
the tails), which are not expected to follow a Gaussian
distribution. We note that in the seminal paper on (de-
terministic) hypothesis testing in continuously monitored
system [14] (concretely in its Supplementary Material),
Tsang gives integral expressions for the Chernoff bound
(see also [42]), which provides upper-bounds to the prob-
ability of error. However, at this stage, we have not been
able to corroborate and apply these results to our setting.
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FIG. 8. Frequency discrimination. We compare the average
time required for the sequential test to reach a predefined
error threshold Perr, with the time for which a deterministic
strategy would need to attain such error threshold. These
quantities are estimated over 2 · 104 quantum trajectories for
each hypothesis, and averaged out over both hypotheses.

As a second case study, we consider the discrimination
between two different values of the oscillation frequency
ωm of the mechanical mode. Within the rotating wave
approximation, the system is described by the set of dif-
ferential equations in (32), with coefficient matrices given
by

A =
( −γ

2 −ω
ω −γ

2

)
, C =

√
4ηκ

(
1 0
0 0

)
, (77)

D =γσuc12, Γ = 0, (78)

where ω is the mechanical-mode frequency and the re-
maining parameters are defined above. The frequency
values have been set to ω1 = 1.02 ω0 and ω0 = 105 Hz,
while the values of the remaining parameters are γ =
500 Hz, κ = 103, n = 1 and η = 1 for both hypothe-
sis. In this case, we are not able to find an analytical
expression for the variance σk — already the solution of
Riccati equation has a transcendental solution. However,
numerical results show that the variances σk,t admit an
asymptotic stationary state, similar to eqs. 70.

Similarly to the damping-rate discrimination, we have
carried out a comparison between deterministic and se-
quential tests, as shown in Fig. 8. A clear advantage in
favor of the latter strategy is also observed.

Force discrimination. As a final example, we con-
sider how well can a test do when it comes to detect

the presence of an external force. This enters as a lin-
ear term in the first-moment dynamics, as described by
bθ,t = (0, bθ)

T in 32. Here, we have considered a con-
stant force, with values b1 = 40Hz and b0 = 0; the re-
maining parameters were set to γ = 500 Hz, κ = 10 Hz,
ω = 103 Hz, n = 1 and η = 0.1. Figure 9 shows the
corresponding numerical simulations in a error vs time
plot, where sequential gives a similar advantage as the
other cases.

V. DISCUSSION AND OUTLOOK

This study represents a primary exploration of sequen-
tial hypothesis testing in open and continuously moni-
tored quantum systems. We have introduced the sequen-
tial framework and methodologies, deriving general re-
sults on statistical properties of the stopping times, a key
figure of merit in sequential hypothesis testing. More-
over, we have established the optimality of the SPRT
(Sequential Probability Ratio Test) for hypothesis testing
under weak error conditions. Explicit closed-form expres-
sions for the (asymptotic) mean stopping time have been
provided for the ubiquitous Gaussian systems, under sta-
tionarity conditions on the dynamics. Additionally, we
have conducted case studies in optomechanical systems
to supplement our analysis, demonstrating a clear advan-
tage of sequential strategies over deterministic ones, with
a reduction in the required measuring time by a factor
between 3 and 4.

Current research efforts are focused on various exten-
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FIG. 9. Force discrimination. We compare the sequential and
deterministic test, over 4 · 104 trajectories.
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sions of this work. In particular, studying the perfor-
mance of the SPRT for other detection schemes, such as
performing photon-counting measurements on the leaked
cavity modes, instead of dyning measurements consid-
ered in this work. A dynamical equation for the log-
likelihood ratio in such scenarios has already been derived
in [14]. Furthermore, we aim to determine the ultimate
quantum limits for general measurement schemes, in the
spirit of the recent works on sequential hypothesis test-
ing for IID quantum states [28, 32], or [16] in the context
of deterministic hypothesis testing strategies for contin-
uously monitored quantum systems.

Incorporating physically sound feedback schemes into
sequential methodologies is another area of interest, as
it has the potential to enhance the power of the tests.
Lastly, we would like to highlight the utility of sequen-
tial analysis tools in other relevant primitives or appli-

cations, such as quickest change point detection [53] or
anomaly detection. These tasks can be considered as gen-
uine sequential problems, as they cannot be adequately
addressed with fixed-horizon strategies.

Finally, a compelling avenue for future investigation
lies in exploring model-free schemes, such as machine-
learning approaches, to infer the Log-Likelihood Ratio
(LLR) value without relying on a perfect model [54].
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SUPPLEMENTARY MATERIAL

Appendix A: Asymptotic behavior of the log-likelihood ratio in the Gaussian regime

The results presented in sec. IVA of the main text exploit the standard treatment for an Osrtein-Uhlenbech process

to obtain, under some easy-to-verify conditions, an asymptotic expression for log-likelihood’s drift and consequently

of the Sequential Probability Ratio Test (SPRT) stopping time mean value.

However, having knowledge solely about the asymptotic behavior of the log-likelihood drift is insufficient to guaran-

tee the optimality of the test in the C(α0, α1) class or to determine the probability distribution of the SPRT stopping

time in the asymptotic regime.

To achieve this goal, it is necessary to possess at least some understanding of the asymptotic behavior of the variance

of the Log-Likelihood Ratio (LLR). This information is crucial in bounding the speed of convergence of the LLR by

a deterministic function of time.

An expression for the mean and the variance of the LLR that can be numerically (and in some cases analytically)

computes, can be obtained from the formal integral solution to the stochastic differential equation for Xt, i.e.

∆TCXt = ∆TCT e
∫ t
t0

ds(A−χ(Σs)ΠkC)Xt0 + ∆TC
∫ t

0

T e
∫ t ds(A−χ(Σs)ΠkC)bsds

+

∫ t

t0

∆TCT e
∫ τ
t0

ds(A−χ(Σs)ΠkC)χ(Στ )dwτ . (S1)

Under the assumption that Σt admits an asymptotic steady state 7 Σst and ℜ[A−χ(Σst)ΠkC] < 0 then the asymptotic

mean and variance of the log-likelihood can be written as:

Ek[ℓt] = lim
t0→−∞

(−)k⊕1

2

{(∫ t

t0

g(τ − t0)dτ

)2

−
∫ t

t0

dτ

∫ τ

t0

f(τ − s)2ds

}

Ek[ℓ
2
t ]− Ek[ℓt]

2 = lim
t0→−∞

∫ t

t0

dτ

∫ τ

t0

f(τ − s)2ds− 2

∫ t

t0

dτ1

∫ τ1

t0

dτ2f(τ1 − τ2)

∫ τ2

t0

dsf(τ1 − s)f(τ2 − s)

+

∫ t

t0

dτ1

∫ τ1

t0

dτ2

(∫ τ2

t0

f(τ1 − s)f(τ2 − s)ds

)2

, (S2)

where

g(t− t0) = ∆TCe(A−χ(Σst)ΠkC)(t−t0)Xt0 , f(t− s) = ∆TC e(A−χ(Σst)ΠkC)(t−s)χ(Σst)Q (S3)

with Q = (1,1)T . As one can see from the above expression, the variance of the LLR does not, in general, fulfill

the condition in (75) that any LLR with Gaussian statistics must obey. The complexity of the equations makes it

challenging to derive sufficient conditions for the conditions in (75) to hold. So we move to study the specific cases

analyzed in the main text.

7 Notice that the dynamical equation of Σ is a Riccati equation
that we know admits asymptotic solutions in specific regimes.

See main text.
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a. Case study in section IVB

For the first case study it is not difficult to check the stability condition ℜ[A−χ(Σst)ΠkC] < 0 is satisfied. Hence, the

Riccati equation describing the evolution of the covariance matrix under each of the hypotheses, admits a stationary

solution, which is given by the diagonal matrix:

σk =
γk

8ηκk

(√
1 +

16ηκk

γk
σ2
uc,k − 1

)
12, (S4)

where σuc,k = n̄th,k+1/2+κk/γk is the covariance of the steady state of unconditional dynamics. This fact guarantees

that Σt will tend to the steady state Σst = σ0 ⊕ σ1. With this in hand and after some calculations one arrives to the

following solutions for the mean

µ1 =
c2(γ2

1χ
2
0 + 2cγ0(χ0 − χ1)

2 + γ2
0χ

2
1 + γ0γ1(χ

2
0 − 4χ0χ1 + χ2

1)

γ0(γ1 + 2cχ1)(γ0 + γ1 + 2cχ1)
, (S5)

where χk = cσk, with σk and a similar expression for the variance, can be obtained (see Ref. [52]), showing that

conditions in (70) are satisfied.

Appendix B: Stopping time probability for a 1-D bounded stochastic process

Let Yt be a 1-D stochastic process described by the stochastic differential equation in the Itô form:

dYt = µt(Yt, t)dt+ σ(Yt, t)dwt. (S1)

where µ(y, t) and σ(y, t) are real valued continuous functions and dwt is the Wiener increment characterized by zero

mean and covariance E[dwtdws] = δ(t− s)dt.

Let τ be a stopping time defined by τ = inf{t ≥ 0|Yt /∈ (a0, a1)}, i.e. the process stops when one of the two

boundaries is reached. The stopping time probability P (t) = E[δ(τ − t)] can be obtained as the time derivative of the

stopping time cumulative distribution, i.e.

P (t) = − d

dt
P (τ > t). (S2)

The cumulative distribution gives the probability of the process to be in the interval (a0, a1), i.e. P (τ > t) =∫ a1

a0
P(y, t)dy where P(y, t) ≡ E[δ(Ymin(t,τ) − y)] is the probability distribution of the stopped process Ymin(t,τ). From

this one obtains:

P (t) = − d

dt

(∫ b

a

dyP(y, t)

)
. (S3)

The evolution of the probability (P(y, t)) associated with the stopped process Ymin(t,τ) is described by the Fokker

Planck equation associated to the stochastic process Yt plus absorbing boundary conditions, i.e. by:

1. ∂tP(y, t) = ∂yµ(y, t)P(y, t) + 1
2∂

2
yσ(y, t)

2P(y, t), i.e. the Fokker Planck equation associated to the stochastic

process described by (S1).
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2. P0(y) = P0(y), s.t.
∫ b

a
dyP0(y) = 1.

3. P(y /∈ (a0, a1), t) = 0, i.e. the trajectories that reach the boundary are removed from the ensemble.

It is worth noticing that conditions 1 and 3 can be used together with (S3) to obtain the following expression for the

stopping time probability distribution

P (t) =
1

2
σ(y, t)2∂yP(y, t)|a1

x=a0
+

∫ a1(t)

a0(t)

(ȧ0(t)∂a0(t) + ȧ1(t)∂a1(t))P(y, t). (S4)

1. Stopping time for a Stochastic process with deterministic drift and diffusion.

In this section, we restrict to study the case where drift and diffusion term in (S1) are continuous real deterministic

functions of time, i.e. µ(y, t) = µ(t) and σ(y, t) = σ(t). In this case, the problem of finding the stopping time

probability of the stochastic process Yt bounded in the region Ω = (a0, b1), can be mapped to the equivalent problem

of finding the stopping time probability of the stochastic process Xt = Yt −
∫ t

0
µsds confined in the moving region

[a0(t), a1(t)] where ai(t) = ai +
∫ t

0
µsds. The Fokker-Planck equation associated with the process Xt is symmetric

under reflection operations of the form x → 2β − x with β ∈ R, allowing for the use of the image charge method to

find an explicit solution in the form of an infinite series for the survival probability P(x, t), i.e.

P(x, t) = P (x, t) +

∞∑
n=1

{
P (2n(a1(t)− a0(t)) + x, t)− P (2na0(t)− 2(n− 1)a1(t)− x, t)

+ P (2n(a0(t)− a1(t)) + x, t)− P (2na1(t)− 2(n− 1)a0(t)− x, t)
}
, (S5)

where

P (x, t) =
1√

2π
∫ t

0
σ2
τdτ

e
−x2

2
∫ t
0 σ2

τ dτ (S6)

is the solution of the differential problem ∂tP (x, t) = 1
2σ

2
t ∂

2
xP (x, t) with initial condition P (x, 0) = δ(x). Substituting

(S5) in (S4) and after some manipulations, one may obtain the following expression for the stopping time probability

distribution

P (t) =

∞∑
n=0

(σ2
t ∂x + 2µt)P (x, t)|a1(t)+2n(a1−a0)

x=a0(t)−2n(a1−a0)
+

∞∑
n=0

(σ2
t ∂x − 2µt)P (x, t)|a1(t)−2(n+1)(a0−a1)

x=a0(t)+2(n+1)(a1−a0)
. (S7)

In the case where the diffusion and drift are constant functions of time, i.e. µt = µ and σt = σ, the eq. (S7) further

simplifies as

P (t) =

∞∑
n=0

x

t3/2
√
2πσ2

e
−(x−µt)2

2σ2t

∣∣∣∣a1+2n(a1−a0)

x=a0−2n(a1−a0)

+

∞∑
n=0

x− 2µt

t3/2
√
2πσ2

e
−(x−µt)2

2σ2t

∣∣∣∣a1−2(n+1)(a1−a0)

x=a1+2(n+1)(a1−a0)

. (S8)

Let us now define a∗ = min(a0, a1) and take the limit a∗ → ∞. Under the assumption that µ > 0, the asymptotic

behavior of the stopping time probability is described by the inverse Gaussian distribution (also known as Wald
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distribution)

P (t) ∼ a1

t3/2
√
2πσ2

e−
(a1−µt)2

2σ2t . (S9)

Assuming instead µ < 0, the asymptotic behavior of the stopping time probability distribution is described by the

same inverse Gaussian distribution where a1 has been replaced with a0, i.e.

P (t) ∼ a0

t3/2
√
2πσ2

e−
(a0−µt)2

2σ2t , (S10)

Appendix C: Theorems and Proofs

Theorem 6. Let Pi,and Ei denote the probability and the expectation under the hypothesis hi, S = (d, τ) denote a

generic hypothesis test where τ is a Markov stopping time, d = d(X τ
0 ) is a terminal decision function with values in the

set {0, 1}, and Xt the sample of length t. Let C(α0, α1) = {S : P0(d = 1) ≤ α0, P1(d = 0) ≤ α1} and ℓτ ≡ log
P1(X t

0 )
P0(Xt)

the LLR. The SPRT is defined by the test Ss = (ds, τs), with

τs = inf{t ≥ 0; ℓt /∈ (−a0, a1)} (S1)

and

ds =

{
1 if ℓτs ≥ a1
0 if ℓτs ≤ −a0

(S2)

then

lim
α∗→0

Pk(τ ≥ T ) ≥ lim
α∗→0

Pk(τ
ϵ
s ≥ T ) (S3)

where T ∈ [0,∞) is a generic time, α∗ = max{α0, α1} and τ ϵs denote the SPRT stopping time in the class Sϵ ∈

C(α1−ϵ
0 , α1−ϵ

1 ) with ϵ ∈ (0, 1) and ε = ϵ
1+ϵ .

In addition

Pk(τ ≥ τ ϵs ) = 1−O(αε
1−k). (S4)

Proof. Let Ω = (−b0, b1)

P0(d = 1) = E1[e
−ℓτI(d=1)] ≥ E1[e

−ℓτI(τ<T )∩(d=1)∩(ℓτ∈Ω)] ≥ e−b1P1((τ < T ) ∩ (d = 1) ∩ (ℓτ ∈ Ω))

≥ e−b1 (P1((τ < T ) ∩ (d = 1))− P1((τ < T ) ∩ (ℓτ /∈ Ω)))

≥ e−b1 (P1(d = 1)− P1(τ ≥ T )− P1((τ < T ) ∩ (ℓτ /∈ Ω))) (S5)

where to move from the first to the second line we have used the following set of inequalities P (A ∩ B ∩ C) =

P (A ∩B)− P (A ∩B ∩ C̄) ≥ P (A ∩B)− P (A ∩ C̄).
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Exploiting the inequalities in (S5), and recalling that αi ≥ Pi(d = j) with j ̸= i one obtains the following bound

for the stopping time of a generic test in the class C(α0, α1):

P1(τ ≥ T ) ≥ 1− α1 − eb1α0 − P1((τ < T ) ∩ (ℓτ /∈ Ω)). (S6)

What is left to do is to show that the r.h.s term can be bounded by the stopping time cumulative distribution of the

SPRT. We recall that in the SPRT:

a0 ≤ log

(
1− α0

α1

)
, a1 ≤ log

(
1− α1

α0

)
(S7)

and that the cumulative distribution of the SPRT stopping time (τs) is described by:

Pk(τs ≥ T ) = P

 ⋃
t∈[T,∞)

ℓt ∈ (−a0, a0)

 , Pk(τs < T ) = P

 ⋂
t∈(0,T ]

ℓt /∈ (−a0, a0)

 (S8)

The term P1(τ < T ∩ (ℓτ /∈ Ω)) resembles the above expression for P (τs ≤ T ), suggesting to use the inequalities in

(S7) to characterize b0 and b1, however making them equal to the r.h.s. of that inequality will make the term eb1α0

converge to one in the asymptotic regime producing a trivial result. To guarantee that limα∗→∞ eb1α0 = 0 we choose

b0 = (1− ε) log

(
1− α0

α1

)
, b1 = (1− ε) log

(
1− α1

α0

)
(S9)

with ε ∈ (0, 1). Under this choice for b0 and b1, the following inequality holds

P1(τ < T ∩ (ℓτ /∈ Ω)) ≤ P1(τ
ϵ
s ≤ T ) (S10)

and one obtains

P1(τ ≥ T )− P1(τ
ϵ
s ≥ T ) ≥ −α1 − αε

0(1− α1)
1−ε, (S11)

where ϵ = ε
1−ε . Under the further assumption T = τ ϵs the inequality simplifies as follows

P1(τ ≥ τ ϵs ) ≥ 1− α1 − αε
0(1− α1)

1−ε ≥ 1−O(αε
0) (S12)

that proves the theorem for h1 once the limit α∗ → 0 is taken. The case for h0 is similarly proved.

Corollary 6.1. If furthermore

τs =
log(αk)

µk
+ Op(log(αk)) (S13)

then the SPRT is asymptotically optimal in a weak sense, i.e.

lim
α∗→0

P (τ ≥ (1− ϵ)τs) = 1 (S14)

where α∗ = max(α0, α1) and ϵ ∈ (0, 1)
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Proof. Replacing T = (1− 3ϵ)τs in the inequality (S3) one obtains

lim
α∗→0

P (τ ≥ (1− 3ϵ)τs) lim
α∗→0

≥ P (τ ϵs ≥ (1− 3ϵ)τs) (S15)

the r.h.s. of the inequality can be lower bounded via the following chain of inequalities

P (τ ϵs ≥ (1− 3)τs) = P

(
τ ϵs − (1− 2ϵ)Ik ≥ (1− 3ϵ)

(
τs −

1 + 2ϵ

1− 3ϵ
Ik

))
≥ P (τ ϵs − (1− ϵ)Ik ≥ 0)− P (τs − (1− 2ϵ)Ik ≥ 0)

≥ P (|τ ϵs − I| ≥ ϵIk)− P (|τs − (1 + ϵ)Ik| ≥ ϵIk). (S16)

Fixing Ik ≡ log(αk)
µk

, and under the assumption in (S13), one has that limα∗→0 P (|τ ϵs−I| ≥ ϵIk) = 1 and limα∗→0 P (|τs−

(1 + ϵ)Ik| ≥ ϵIk) = 0 concluding the proof.

Corollary 6.2. If furthermore,

Ek[τ
n
s ] =

(
log(αk)

µk

)n

(S17)

the SPRT is asymptotically optimal in momenta, i.e.

Ek[τ
n] ≥ Ek[τ

n
s ](1 + O(1)) (S18)

Proof. From theorem (1) one has that:

lim
α∗→0

P (τ ≥ T ) = lim
α∗→0

P (τs ≥ T ) (S19)

Replacing T = (1− ϵ)2 log(αk) in the above equation and exploiting (S13) it is not difficult to show that

P (τ ≥ (1− 2ϵ) log(α)) = 1. (S20)

Now one only needs to use Markov inequality to obtain:

Ek[τ
n] ≥ (1− 2nϵ)

(
log(αk)

µk

)n

(S21)

which concludes the proof.

Lemma 7. Let Pi denote the probability under the hypothesis hi, ℓt be a sample continuous stochastic process s.t.

ℓt=0 = 0. Let τ be the stopping time defined as τs := inf{t ≥ 0|ℓt /∈ Ω} with Ω = {ℓt = x|x ∈ (−a0, a1); a1, a0 > 0}.

Let furthermore a∗ = min(a0, a1), and tk,± = ak

µk(1∓δ) with δ ∈ (0, 1) and k={0,1}. If:

ℓt = (−)k⊕1µkt+ Op(t). (S22)

with µk ∈ R+, then

lim
a∗→∞

P
( ⋂
s∈[t1,+,∞)

ℓs ∈ Ω

)
= 1, (S23)

lim
a∗→∞

P
( ⋂
s∈[t1,+,∞)

ℓs ∈ Ω

)
= 0 (S24)
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Proof. We only prove the case k = 1, and analogous proof for the case k = 0 follows. Let us start by noting that

P1(ℓt1,− ≤ a1) = P1(ℓt1,− ≤ µk(1 + δ)t1,−), P1(ℓt1,− ≥ −a0) = P1(ℓt1,− ≥ −µk(1− δ)t0,+), (S25)

condition (S22) guarantees that the r.h.s. of both of the equations goes to one when a∗ → ∞, proving that

lim
a∗→∞

P1(ℓt1,− ∈ Ω) = 1. (S26)

Since the stochastic process ℓt is continuous in t and ℓt=0 < a1, the following is also true

lim
a∗→∞

P1(ℓs ∈ Ω) = 1 ∀ s ∈ [0,∞) (S27)

proving (S23).

We now prove (S24).

P
( ⋂
s∈[t1,+,∞)

ℓs ∈ Ω

)
≤ P (ℓt1,+ ≤ a1) = P (ℓt1,+ ≤ (µ− δ)t1,+) (S28)

and condition (S29) guarantees that

lim
a∗→∞

P (ℓt1,+ ≤ µ(1− δ)t+,1) = 0,

concluding the proof.

Theorem 8. Let Pi be the probability under the hypothesis hi, ℓt, a sample continuous stochastic process under the

probability measure Pi and, such that ℓt=0 = 0. Let τs be a stopping time defined as τs := inf{t ≥ 0|ℓt /∈ Ω} with

Ω = {ℓt = x|x ∈ (−a0, a1), a1, a0 > 0}, if:

ℓt = (−)k⊕1µkt+ Opk
(t). (S29)

Then

τs =
ak
µk

+ opk
(ak). (S30)

Proof. Let us define tk,± = ak

µk(1∓δ) with δ ∈ (0, 1), then

Pk(|τs
µk

ak
− 1| ≥ δ) ≤ P (τs ≤ tk,−) + P (τs ≥ tk,+)

(S31)

The definition of the stopping time τs allows for the following identities:

Pk(τs ≥ tk,+) = P (∀s < tk,+, ℓs ∈ Ω)

Pk(τs ≤ tk,−) = 1− Pk(τs > tk,−) = 1− Pk(∀s ≤ tk,−, ℓs ∈ Ω).
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Lemma 7 shows that the r.h.s. of the above equation tends to zero when a∗ → ∞ with a∗ = min(a0, a1) proving that

lim
a∗→∞

Pk(|τ
µk

ak
− 1| ≥ δ) = 0 (S32)

concluding the proof of (S30).

Corollary 8.1. If ℓt describes the LLR then τs represents the SPRT stopping time, and the test is weakly asymptot-

ically optimal.

Proof. one only need to notice that for the SPRT ak ∼ log(αk), then corollary (1.1) guarantees the optimality.

Corollary 8.2. If furthermore

Ek[ℓt] = (−)k⊕1µkt+ O(t) (S33)

then the mean stopping time for the SPRT has the following asymptotic value

Ek[τs] =
ak
µk

+ O(ak) (S34)

and the SPRT is asymptotically optimal in the mean,i.e.

Ek[τ ] ≥ Ek[τs] + O(logαk) (S35)

Proof. Let us write ℓt in its integral form and make use of the (S33) to obtain the following identity set of

Ek[ℓτ ] = Ek

[∫ ∞

0

dℓt
dt
1(τs≥t)dt

]
=

∫ ∞

0

Ek

[
dℓs
ds

]
P (τs ≥ s)ds = (−)k⊕1µkEk[τs] + ζ (S36)

with

ζ =
1

µk

∫ ∞

0

(
Ek

[
dℓt
dt

]
− (−)k⊕1µk

)
P (τs ≥ t)dt. (S37)

From the above expression, one obtains:

Ek[τs] =
Ek[ℓt]

µk
+ ζ. (S38)

what is left to do to prove is to show that ζ
ak

goes to zero in the limit of a∗ → ∞. Let us study ζ
ak

and rewrite the

integral of dt as the sum of the following integrals

lim
a∗→∞

ζ

ak
= lim

a∗→∞

∫ t−,k

0

(
Ek

[
dℓt
dt

]
− (−)k⊕1µk

ak

)
P (τs ≥ t)dt+

∫ t+,k

t−,k

(
Ek

[
dℓt
dt

]
− (−)k⊕1µk

)
P (τs ≥ t)dt

+

∫ ∞

t+,k

(
Ek

[
dℓt
dt

]
− (−)k⊕1µk

)
P (τs ≥ t)dt (S39)

where t±,k = ak

µk(1∓δ) with δ ∈ (0, 1). Since P (τs) is a bounded positive function one is allowed to replace P (τs ≥ t)

with its limit on a∗ → ∞ in the integral, and making use of lemma 7 obtain

lim
a∗→∞

∣∣∣∣ ζak
∣∣∣∣ = lim

a∗→∞
|
∫ t+,k

t−,k

(
Ek

[
dℓt
dt

]
(−)k⊕1µk

)
P (τs ≥ t) ≤ C(tk,+ − tk,−)| =

δ

µk
(S40)
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where for the last inequality we have used the fact that the averaged increment of the log-likelihood is a bounded

function, i.e. Ek[dℓt/dt] < C with C < ∞.

Then with the help of (S40), it is not difficult to show that

lim
a∗→∞

∣∣∣∣Ek[τ ]

ak
− 1

µk

∣∣∣∣ ≤ δ (S41)

concluding the proof.

Theorem 9. Let Pi the probability distribution under the hypothesis hi, ℓt, the LLR, to be described by a continuous

stochastic function under the probability measure Pi. Let τs be a stopping time defined as τ(Yt) = inf{t ≥ 0|ℓt(Yt) /∈ Ω}

with Ω = (−a0, a1),i.e. the SPRT stopping time.

If

ℓt = ℓ̃t + Opk
(
√
t) (S42)

where ℓ̃t ≡ (−)k⊕1µkt + σkζt, µk ∈ R+ and ζt a standard Wiener process, i.e. E[ζt] = 0 and E[ζtζτ ] = min(t, τ),

then the probability distribution of the rescaled stopping time τ̃s := τs
ak

is asymptotically approximated by the Inverse

Gaussian distribution:

Pk(τ̃s = t) ∼ 1

t3/2
√

2πσ2
kak

e
− (1−µkt)2

2σ2
k
akt . (S43)

and the SPRT is asymptotically optimal in momenta, i.e.

Ek[τ
n] ≥ Ek[τ

n
s ](1 + o(1)) (S44)

where τ represents the stopping time of a generic test in the class C(α0, α1).

Proof. We first prove eq. (S43). Let a∗ = min(a0, a1), lemma 7 shows that lima∗→∞ Pk(ℓt ∈ Ω|t ≤ tk,−) = 1, from

which immediately follows that for t < tk,−

lim
a∗→0

P (|ℓmin(t,τs) − ℓt| ≥ ϵ) = 0 ∀t < tk,−

ℓmin(t,τ)
P−−−−→

a∗→∞
ℓt ∀t < tk,−, (S45)

Let now g(a∗) be a continuous positive increasing function s.t. lima∗→∞ g(a∗) = ∞ and g(a∗) < tk,−, from the

hypothesis in (S42) one has that

ℓmin(t,τ)
P−−−−→

a∗→∞
ℓt

P−−−−→
a∗→∞

ℓ̃t ∀g(a∗) ≤ t ≤ tk,−. (S46)

This fact together with the existence and unicity of the solution of the Fokker-Plak differential equation with absorbing

boundaries Ω and initial condition ℓ0 = 0, allows the following identification

ℓmin(t,τ) = ℓ̃min(t,τ) + Opk
(
√
t) (S47)
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Since the stopping time probability distribution is described by (S3) and Pk(ai = 0), Portmanteau lemma guarantees

that

lim
a∗→∞

Pk(τ̃s) = P̃ (τ̃s) (S48)

where P̃ (τ̃s) is the normalized stopping time probability distribution associated to ℓ̃t and reduces to the inverse

Gaussian distribution in eq. (S43) once the limit of a∗ → ∞ is taken (see section (B 1) for further details), concluding

the proof.

Weak asymptotic optimality of the SPRT is guaranteed by theorem 8, to prove optimality in momenta we notice

the probability distribution (S43) allows for the following asymptotic result

Ek[τ
n
s ] =

(
log ak
µk

)n

(1 + O(1)). (S49)

and that log(ak) ∼ log(αk) for a∗ → ∞, that is a sufficient condition of asymptotic optimality as stated in the

corollary(6.2).

Theorem 10 (Optimal Asymmetric weak error.). Let Pi the probability distribution under the hypothesis hi, ℓ(Yt)

the LLR and α0 = P0(ℓt ≥ a), α1 = P1(ℓt ≤ a) the type I and II error associated to the deterministic log-likelihood

ratio test (also known as Neyman-Pearson test), let furthermore

αk(t)
∗ := min{αk(t) : αk⊕1(t) ≤ ϵ} (S50)

with ϵ ∈ [0, 1). If

ℓt(Yt) = (−)k⊕1µkt+ Opk
(t) (S51)

with µk ∈ R+ then

− logα∗
k(t)

t
= µk⊕1(1 + o(1)). (S52)

where µk can be understood as the regularized Kullback-Leibler information divergence, i.e.

I(Pk|Pk−1) = lim
t→∞

1

t
Ek

[
log

Pk(Yt)

Pk⊕1(Yt)

]
(S53)

and also represents the minimum achievable error for a deterministic test in the asymmetric case scenario.

Proof. We will prove it only for k=0, analogous proof follows for k=0. From condition (S51) one has that

lim
t→∞

P1((ℓt ≤ (µ− δ)t) = 0 (S54)

lim
t→∞

P1((ℓt < (µ+ δ)t) = 1 (S55)

lim
t→∞

P1((ℓt ≥ a) ∩ (t ≥ a/(µ1 + δ))) = 1 (S56)

lim
t→∞

P1((ℓt ≥ a) ∩ (t ≤ a/(µ1 − δ))) = 0. (S57)



27

The above conditions forces, a = (µ− δ)t+ O(t) to guarantee that α0(t) = P1(ℓt ≥ a(t)) ≤ ϵ.

Let us rewrite the error probability α1 as follows,

α1 = P0(ℓt ≥ a) = P0(a ≤ ℓt ≤ a+ 2δt) + P0(ℓt ≥ a+ 2δt) = E1[e
−ℓt1(a≤ℓt≤a+2δt)] + P0(ℓt ≥ a+ 2δt) (S58)

where we used the identity E0[1ℓt∈Ω] = E1[e
−ℓt1ℓt∈Ω], where 1ℓt∈Ω denotes the indicator function of having ℓt in the

set Ω.

With the above chain of identities is not difficult to obtain the following

e−(a+2δt)P1(a ≤ ℓt ≤ a+ 2δt) ≤ α0(t) ≤ e−a [(P1(a ≤ ℓt ≤ a+ 2δt) + (P1(ℓt ≥ a+ 2δt)] , (S59)

and thanks to the monotonicity of the logarithm get:

a

t
+ logP1(ℓt ≥ a+ 2δt) ≤ −1

t
log

(
α0

P1(a ≤ ℓt ≤ a+ 2δt)

)
≤ (a+ 2δt)

t
. (S60)

Dividing now the above expression by t and assuming a = (µ1 − δ)t one gets∣∣∣∣1t log
(

α0

P1(|ℓt − µ1| ≤ δt)

)
+ µ1

∣∣∣∣ ≤ δ − logP1(ℓt ≥ (µ1 + δ)t) (S61)

Since hypothesis (S51) guarantees that

lim
t→∞

P0(ℓt ≥ µ1 + δt) = 0

lim
t→∞

P1(|ℓt − µ1| ≤ δt) = 1 (S62)

The limit of (S61) reduces to:

lim
t→∞

∣∣∣∣1t log(α∗
0(t)) + µ1

∣∣∣∣ ≤ δ (S63)

that is the thesis. Since the Neyman-Pearson lemma guarantees the log-likelihood test to be the deterministic test

with the smallest weak error, one can also conclude that µk is a lower bound for the deterministic case scenario.
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