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Abstract Purpose: Personalized computational simulations of the heart could
open up new improved approaches to diagnosis and surgery assistance systems.
While it is fully recognized that myocardial fiber orientation is central for the
construction of realistic computational models of cardiac electro-mechanics,
the role of its overall architecture and connectivity remains unclear. Morpho-
logical studies show that the distribution of cardiac muscular fibers at the basal
ring connects epicardium and endocardium. However, computational models
simplify their distribution and disregard the basal loop. This work explores the
influence in computational simulations of fiber distribution at different short
axis (SA) cuts.

Methods: We have used a highly parallelized computational solver to test
different fiber models of ventricular muscular connectivity. We have considered
two rule-based mathematical models and an own-designed method preserving
basal connectivity as observed in experimental data. Simulated cardiac func-
tional scores (rotation, torsion and longitudinal shortening) were compared to
experimental healthy ranges using generalized models (rotation) and Maha-
lanobis distances (shortening, torsion).
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Results: The probability of rotation was significantly lower for ruled-based
models (95% CI (0.13,0.20)) in comparison to experimental data (95% CI
(0.23,0.31)). The Mahalanobis distance for experimental data was in the edge
of the region enclosing 99% of the healthy population.

Conclusions: Cardiac electromechanical simulations of the heart with fibers
extracted from experimental data produce functional scores closer to healthy
ranges than rule-based models disregarding architecture connectivity.

Keywords Cardiac Electromechanical Simulations · Fiber Connectivity ·
Diffusion Tensor Imaging

1 Introduction

The fiber field that represents the orientation of cardiomyocytes is one of the
most important factors to prescribe both electrical and mechanical properties
of the myocardium. Therefore deep knowledge of its structure at the whole
heart scale is a must for realistic computational modelling.

Diffusion Tensor Imaging (DTI) [20] is the reference imaging modality for
the measurement of cardiac architecture [23]. To obtain fibers with the minimal
accuracy required for their reconstruction, DTI should be performed on ex-vivo
hearts. Since the experimental fiber field is not always available, mathemati-
cal models based on histological data are frequently used [22,19,16]. Among
existing methods, the one described in [22] is the preferred for biomechanical
simulations because it allows defining fiber orientations in both ventricles. A
main advantage of mathematical models is that they can be consistently com-
puted on any myocardial geometry. A main shortcoming is the validity of the
mathematical assumptions for fully describing the complexity of cardiac fiber
connectivity.

Novel studies [5,25] show that, in the near future, in-vivo DTI might be ac-
curate enough for cardiac simulation of the human heart. Furthermore, fiber in-
formation could be even complemented with microstructure using synchrotron-
based micro computed tomography [8]. To make the most of such multiscale
data, the mesh used in simulations should accurately describe the whole my-
ocardial geometry of each patient.

Due to its complex geometry, most simulations are run on meshes with a
sub-optimal description of the heart basal region. Some models rely on a too
simplified geometry obtained using a flat ”top” that completely discards the
basal ring. Other approaches [9] use a semi-automatic segmentation [4] man-
ually guided by a set of key-points to locate the heart valves on the Magnetic
Resonance (MR) image stack that conform the atrioventricular border. Our
main concern is the uncertainty of cutting the connectivity of fibers at the
basal ring. It has been reported [17] that it helps defining cardiac muscular ar-
chitecture and previous works [7,2] indicate the importance of fiber orientation
in electromechanical models. Since simulations were run on meshes truncated
at basal level, the role cardiac architecture was not specifically explored.
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This study compares the canine DTI fiber model of the John Hopkins Uni-
versity, JHU, public data base 1 with two synthetic models that have been
generated using linear and cubic rule-based interpolation of the fibers. Our
study relies on Alya [26], a computational modelling solver that allows testing
many scenarios including state-of-the art multiscale models of cardiac elec-
trophysiology and mechanics, as well as, different cardiac fiber architectures
[26]. To preserve biventricular muscular architecture, we present a method for
separating atria and ventricles based on the tractography of DTI data that
ensures basal connectivity. Simulations are compared to experimental Tagged-
MRI (TMRI) data in terms of rotation in SA planes, torsion and long axis
shortening. The statistical analysis indicates that, unlike DTI-based fibers,
rule-based models produce scores significantly different from healthy ranges.

2 Computational Simulation of Cardiac Biomechanics

2.1 Modelling of Cardiac Electromechanics

Governing Equations

Simulation of cardiac electromechanical propagation requires the solution of
three components: electrical propagation driven by a multiscale electrophysi-
ology model; mechanical deformation producing heart contraction; excitation-
contraction coupling to link both problems together. Each component is a
partial differential equation solved inside the heart volume, noted ΩH , during
a cardiac cycle. Solutions are functions of time, noted t, and volumetric coor-
dinates, noted X = (x1, x2, x3). Formulations for differential equations will be
given using compact tensor notation. Vectors and tensors will be indicated in
bold face to differentiate them from scalar quantities.

In this work, the ventricular action potential, V, is described by a reaction-
diffusion equation:

∇(D∇V) = Cm
∂V

∂t
+ Iion (1)

for
∂

∂t
time derivative and ∇ the divergence of a vector with respect X. The

diffusion tensor (D) eigenvalues define the axial and crosswise fiber diffusion.
The reactive term Iion is non-linear and ruled by a set of ordinary differen-
tial equations, conforming the wave shape. In our work, we use O’Hara-Rudy
cellular model [15], which reproduces protein concentrations and cellular ion
channels. Finally, the constant Cm is the membrane capacitance.

The activation of the electrical stimuli is triggered by Purkinje-myocardial
junctions (PMJs), which are terminal sites of the specialized cardiac conduc-
tion system distributed throughout the subendocardial layer. In this paper,

1 http://gforge.icm.jhu.edu
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the Purkinje network was built by a rule-based growing algorithm [21] encod-
ing physiological constraints. This model creates the branching structure and
PMJs, that connect to the tissue model at the endocardium, and included 318
PMJs in the Left Ventricle, LV, and 270 PMJs in the Right Ventricle, RV (see
fig.1). The sequence of activations follows reports in the literature [14] and it
starts at the lower septum, propagates to the anterior and posterior regions
until the base of the papillary muscles and ends at the base of the lateral wall.

Fig. 1 Purkinje network.

Regarding the mechanical component, the myocardium is modelled as a
slightly compressible material [11]. The cardiac tissue is considered hyper-
elastic, with an anisotropic behavior ruled by the fiber structure. Solid me-
chanics are described by the linear momentum balance:

ρo
∂2u

∂t2
=
∂P

∂X
+ ρoB (2)

for u the displacement at time t, ρo the initial density of the body and B the
body force. The first Piola-Kirchoff stress tensor P determines the behavior
of the material and is related to the Cauchy stress tensor σ. Following [11], σ
is split in an active, σact, and passive, σpas, stress terms:

σ = σpas + σact([Ca
2+])f ⊗ f (3)

for f defining the fiber direction and ⊗ denoting the tensor product. The pas-
sive stress is given by a transverse isotropic exponential strain energy function
computed with a modified version of the Holzapfel-Ogden model [13]. The
active stress governs the excitation-contraction coupling produced in the lon-
gitudinal direction of the fiber. It depends on the calcium concentration [Ca2+]
of the cardiac cell and we compute it using the Hunter-Nash [12] model:

σact =
[Ca2+]n

[Ca2+]n + Cn
50

σmax(1 + β(λ− 1)). (4)
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for λ the muscle fiber stretch, σmax the maximum tensile stress for λ = 1,
Cn

50 calcium concentration for 50% of σmax and β is a control constant factor.
The concentration [Ca2+] mediates the contraction of the myocardium and
is obtained from the O’Hara-Rudy cellular model [15] computed in the elec-
trophysiology equations. Finally, mechanics-electrical feedback is assured by
solving the electrophysiology problem in the deformed configuration.

Equations were solved using Alya platform [26] which simultaneously solves
the electrical and mechanical problems in the same high resolution mesh. The
high performance computing (HPC) simulation tool deals with large unstruc-
tured meshes [18] to account for increasing resolution and accuracy of experi-
mental anatomical data.

Boundary Conditions

The reaction-equation monodomain model (1) assumes non-conductive medium
surroundings. This is modelled as zero normal potential along ΩH boundary:

〈n,∇(D∇V)〉 = 0 in ∂ΩH , (5)

for ∂ denoting the boundary of a volume, n the normal vector to ∂ΩH and
〈·, ·〉 the scalar product.

Concerning mechanics (2), the pericardium acts as a sliding surface that
avoids displacements in the normal direction of the epicardium while the tan-
gential direction remains free. The pericardium induces a displacement of ven-
tricles in the base-apex direction and a slight torsion due to the action of
the cardiac fibers. Following [6], zero normal displacement and zero tangential
stress is imposed to the epicardial surface to simulate the pericardium. We use
a sliding boundary condition for the pericardial region to restrict the normal
displacements and allows tangential displacements.

2.2 Modelling of Cardiac Muscular Architecture

Myocardial Anatomy

In this paper, the volume ΩH is given by the right and left ventricles exclud-
ing the atria. To apply boundary conditions the endocardium (noted End),
epicardium (noted Epi) and basal (noted Bas) surfaces are also identified. We
have developed a method to obtain a volume ΩH preserving the cardiac archi-
tecture defined by fiber connectivity. Assuming more regular fiber orientation
at ventricles, atria are removed considering the longest streamlines of a DTI
tractography.

Given DTI tensor primary eigenvector, f , tractography is computed using
a 5th order Runge-Kutta-Fehlbert integration method with adaptive step size
control [17]. Since the step size is adjusted using an estimated error, integra-
tion stops if f is not regular enough. Thus, the largest streamlines are inside
ventricles, being atrial streamlines (without clear spatial structure) residual.
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Atrial fibers are removed by a length filter and the remaining ones are used
to obtain the basal surface.

Assuming a long axis aligned with the z-axis, the basal surface corresponds
to points that achieve the maximal values of the ventricular fibers z-coordinate.
Maximal z-values are obtained from a height volume, ZBas, of the projection
of ventricular fibers onto the x-y plane. Let (xf1, xf2, zf3) be the coordinates
of the ventricular streamlines, then ZBas is given by:

ZBas(i, j, k) =

{
1 if k ≤ [ZMax(i, j)]
0 otherwise

(6)

for [·] the integer part of a real number and ZMax(i, j) := max{[xf1]=i, [xf2]=j}(xf3).
The intersection of ZBas with an initial segmentation of the cardiac volume,
noted ΩH0, including the atria defines ΩH as:

ΩH := ZBas ∩ΩH0 (7)

Fig.2 sketches our computation of ΩH . Short fibers shown in light green are
mainly present in the atria. When removed, ZBas can be computed according
to maximum z-coordinates of the streamlines.

Identification of the 3 boundary surfaces (End, Epi, Bas) is based on

morphological methods that compare ΩH0, ΩH and a volume, noted Ωf
H0,

including heart cavities. This volume is computed by a 2D filling of ΩH0 SA
slices. Boundary surfaces are obtained from ΩH0, ΩH and Ωf

H0 as:

Epi = ∂Ωf
H0 ∩ ∂ΩH

End = ∂(Ωf
H0 \ΩH0) ∩ ∂ΩH

Bas = ∂ΩH \ (Epi ∪ End)

(8)

We extract a tetrahedral mesh of ΩH with boundary nodes labelled according
to their belonging to End, Epi, Bas in order to apply boundary conditions.
The 3D tetrahedral mesh (shown in fig.2(d)) used for simulation had 89067
nodes and 450168 elements of size 0.1 cm3.

Fiber Models

We have chosen two approaches representative of mathematical and experi-
mental fiber models:

Mathematical Fiber Model. We use Streeter model [22] computed follow-
ing [16]. For each node, fiber orientation is computed from a helix angle α
that defines the rotation of the fiber along transmural direction. First we de-
fine a normalized thickness, e, using the distance from each mesh node to
endocardium (dendo) and epicardium (depi):

e =
dendo

dendo + depi
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Fig. 2 Anatomy computation based on fiber density. (a.1) DTI fibers including atrial ones,
(a.2) only large fibers; (b.1) All fibers shown in a LA cut, (b.2) Computation of ZBas form
the large fibers; (c) Truncation ΩH0 following ZBas; (d) Final mesh extracted from ΩH .

The gradient of such distance in each element is used to calculate the trans-
mural direction. Finally, α is calculated as:

α = R(1− 2e)n

Following [22] R = π/3 for LV and R = π/4 for RV. Like [1] we have considered
a cubic (n = 3) and a linear (n = 1) model.

Experimental Fiber Model. They are defined from DTI studies as DTI ten-
sor primary eigenvector. We have used JHU public database 2 which provides

2 http://gforge.icm.jhu.edu
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volumes of eigenvectors reconstructed from DTI data and the b0 volume with
no diffusion weighting. This volume is the one we use to define ΩH . See [10] for
additional information about JHU database including image acquisition and
post-processing methods.

Fig.3-4 show the considered fiber models: linear Streeter, ST1, cubic Streeter,
ST3, and experimental, DTI. We show streamlines reconstructed using [17] col-
ored (see side color bar) according to their elevation angle (cyan for 0o). For
better comparison of architecture, fig.4 shows a partial tractography obtained
from seeds at the mid non-septal epicardium. We also show SA and LA cuts
of volume b0. Basal Streeter fibers have 0o elevation angle and are concen-
trically arranged. Regarding DTI, streamlines elevate to the basal ring, cross
it to reach the epicardium and then trace a dense helicoid from base to apex
[24]. Such helicoid and epi-endo basal connection are better visualized in the
streamlines restricted to the non-septal LV of fig.5.

Fig. 3 Fiber models. Streeter (linear, ST1, and cubic, ST3) and DTI fibers.

3 Comparison to Experimental Data

3.1 Experimental DataSet

Simulations have been compared to experimental functional data acquired in
the MIOCARDIA project 3. The data acquired consists in TMRI studies from
20 healthy volunteers and 3 pathological patients with different levels (mild,
medium and severe) of depressed LV function.

For the TMRI study, a Siemens Avanto 1.5 T (Erlangen, Germany) was
used. TMRI sequences were oriented in a transversal plane from the LV cov-
ering from the base to the apex. The basal slice was chosen as the first one
showing a discrete image of the LV myocardial wall below the LV outflow tract,
and the apical slice considered as the last one allowing the visualization of the
LV cavity in diastole.

3 http://iam.cvc.uab.es/portfolio/cardiac-imaging-analysis/
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Fig. 4 Fiber models architecture from a tractography starting at the white dots.

Fig. 5 DTI fibers helicoidal loop crossing the basal ring.

3.2 Functional Scores

The mechanics simulated using the different fiber models were compared to
experimental data in terms of LV rotation in SA planes along the systolic
cycle and absolute myocardial torsion (AMT) and left ventricular long axis
longitudinal shortening (LVLS) at end-systole. These scores correlate well to
cardiac function and the pair (AMT,LVLS) is discriminate of cardiac function
abnormalities [3]. AMT was given by the difference between the maximum
rotation at the most basal section (BMR) and at the apex (AMR) as:

AMT = AMR−BMR (9)
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Regarding LSLV, the distance (in mm) between the apex of the LV and the
center of the basal ring at end-diastole and end-systole was computed in 2 LA
oriented in 2-chamber and 4-chamber views. The longitudinal shortening on
the 2-chamber (E2) and 4-chamber (E4) planes was calculated as the percent-
age of the reduction in the measured distances:

E2 = 100

(
1− d2,1

d2,0

)
E4 = 100

(
1− d4,1

d4,0

)
(10)

for d2,0, d4,0 distances at end-diastole and d2,1, d4,1 distances at end-systole.
Finally, the LSLV was defined as the average:

LSLV =
E2 + E4

2
(11)

3.3 Statistical Analysis

Like [3], normality models for the probabilistic distribution of SA rotation,
AMT and LVLS were created using the 20 healthy volunteers. These models
were used to assess the likelihood of the scores computed using simulated data.

For (AMT, LVLS) we followed [3] to detect deviations in simulations from
normal cases. A normality model was computed by fitting a bimodal Gaussian
model to AMT and LSLV normal values. The covariance matrix of the model
was used to compute the Mahalanobis distance between simulations and the
Gaussian average as score of deviation from normal cases. The highest this
distance is, the further from the healthy population average simulated scores
are.

Concerning SA rotation, no measure of deviation from normal cases was re-
ported in [3]. In order to quantify deviations, we computed a normality model
from healthy cases. To account for non-Gaussianity in data we used the em-
pirical density function of healthy cases. A different empirical density, labelled
PSA
t , was computed for each SA cut and systolic time t. The probability of

simulated rotations was computed from PSA
t tails as:

pSimSA = pSimSA(t) := min(PSA
t (θ ≤ θSA

t ), PSA
t (θ ≥ θSA

t )) ∈ [0, 1] (12)

for θSA
t the rotation angle obtained from the simulation. Unlike the Maha-

lanobis distance, pSimSA quantifies the similarity of SA rotation to normal
cases. Low values indicate that simulated rotations are not in the ranges ex-
pected for a healthy population.

Tail probabilities (12) were statistically analyzed with R, version 3.2.5. The
descriptive statistical analysis included the number of samples, the mean and
the standard deviation (SD). Main analysis was performed using a generalized
model with a factor for the fiber model, a factor for the SA cut and the
percentage of systolic phase as adjusting factor:

pSimSA
ijk = β0 + β1tijk + α1SimModi + α2SAj + εijk (13)
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Explicative variables Descriptive Model

n mean SD coeff p-val 95% CI
Fiber Model

DTI (SimMod1) 60 0.34 0.33 1 - (0.23,0.31)
ST1 (SimMod2) 60 0.25 0.27 0.05 <0.01 (0.17,0.31)
ST3 (SimMod3) 60 0.20 0.23 0.07 <0.01 (0.13,0.20)

SA Cut
Apex (SA1) 60 0.31 0.32 1 - (0.25,0.34)

Mid (SA2) 60 0.38 0.30 -0.04 0.06 (0.31,0.40)
Base (SA3) 60 0.10 0.12 0.15 <0.01 (0.04,0.12)

Table 1 Model for the probability of simulated rotation.

for SimModi, i = 1, 2, 3 indicating the fiber model used in simulations (SimMod1
for the baseline DTI, SimMod2 for ST1, SimMod3 for ST3), and SAj , j =
1, 2, 3 indicating the short axis plane (SA1 for the reference Apex, SA2 for Mid,
SA3 for Base). The model was adjusted using a Gamma distribution (inverse
link function) for pSimSA

ijk + 1. We computed model coefficients, p values for

significance in main effects, and the 95% confidence intervals (CI) for pSimSA.
CIs were back transformed to the original scale for their interpretation. A p
value < 0.05 was considered statistically significant.

4 Results

Simulations were run on meshes extracted from JHU study DT080803 and
DT080803 b0 volume was segmented using Otsu thresholding to obtain ΩH0.
The mesh of the labelled volume ΩH had 450200 tetrahedral elements of size
0.1 cm3. Fibers were defined from DT080803 DTI tensor and using linear and
cubic Streeter models. Simulated data will be labelled ”DTI”, ”ST1”, ”ST3”
for data obtained using DTI-based, linear Streeter and cubic Streeter models,
respectively. A total of 9 simulations were run solving Electrophysiology and
mechanical deformation equations on the same mesh, to avoid instability issues
and interpolation errors

Fig.6 shows simulations at end-systole in 2 LA views with the volume
at end-diastole displayed in gray for comparison purposes. Streeter models,
especially ST3, present an anomalous bow (indicated with red arrows) at the
basal septal area.

The analysis of pSimSA (reported in Table 1) detected significant differ-
ences across fiber models and in the basal SA cut. According to the model,
the 95% CI for pSimSA was decreasing in the fiber factor SimMod with
(0.23, 0.31) for DTI, (0.17, 0.31) for ST1, and (0.13, 0.20) for ST3. A test com-
paring CIs was significant for differences between DTI and the two rule-based
models ST1 (p-val=0.02) and ST3 (p-val< 0.01). Line graphs in fig.7 illus-
trate these comparisons. The decreasing pattern with respect systolic phase
percentage is expected due to accumulation errors. Concerning SA levels, sim-
ulations were significantly worst at basal level with a 95% CI for pSimSA equal
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Fig. 6 Simulated motion in two different LA views at end systole.

to (0.04, 0.12) in comparison to a CIs equal to (0.31, 0.40) for Mid cuts and
(0.25, 0.34) for the Apex.
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Fig. 7 Comparison of the estimated probability of rotation for each fiber model

Concerning Mahalanobis distances for (AMT, LVLS), the values for sim-
ulated data were 4.18 for DTI, 7.7 for ST1 and 8.4 for ST3, while values for
pathological cases were 3.3 for the mild, 8.7 for the medium and 15.13 for the
severe case. Fig.8 shows (AMT, LVLS) values for the healthy cases (blue dots),
pathological ones (red crosses) and simulated data (green crosses labelled with
the fiber model). To better compare to normality values, the ellipse represent-
ing the 99% of the probability density function for the healthy population is
also drawn. Samples outside this ellipse have less than 1% of probability of
being healthy.

5 Discussion and Conclusions

Our experiments show that DTI-simulations using a geometry especially seg-
mented to preserve fiber architecture produce functional scores significantly
closer to healthy ranges than Streeter models. Such models have a circular
disposition in SA planes (fig.4) and fail to reproduce the helicoidal trace and
epi-endo basal connection of experimental data.
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Fig. 8 Distribution of the pair (AMT, LVLS).

The helicoidal disposition generates SA rotations with opposite directions
at basal and apical cuts that produce AMT [3]. Since Streeter fibers are de-
fined according to a transition angle between endocardium and epicardium,
rotations are equal at all SA cuts and, thus, AMT is not within normality
ranges (fig.8). Basal connectivity induces a longitudinal shortening along the
long axis direction. The lack of such connectivity in Streeter models introduces
an anomalous folding (fig.6) of the septal basal region. This is not the case of
DTI simulations, which shortening is along the long axis direction as expected
in a healthy heart.

Even using a geometry extracted to preserve basal connectivity, the real-
ism of DTI simulations at basal level is significantly worse (SA rotation). This
might be attributed to the fact that blood inside the cavities was not consid-
ered and no wall force was imposed in the endocardium, neither pressure nor
viscous strains.

Lack of blood flow might be considered a limitation, although our goal
was to explore the influence of fiber connectivity to determine what assump-
tions should consider rule- based models. Our experiments show that models
should consider the overall 3D connectivity of the muscular architecture. In
order to model blood flow, geometries should be closed and include atria. This
is a limitation for using DTI studies since atria fibers and tissue can not be
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properly captured. In this context, modern techniques like synchrotron-based
micro computed tomography [8] could be considered to obtain models includ-
ing microstructure of the heart. Another limitation of this study is the use of
a single geometry in simulations. This limits the predictive power of statistical
models and further studies are needed to assess the precise impact of fiber
connectivity and basal architecture.

In conclusion, our experiments show that simulations computed using ex-
perimental fibers achieve more realistic results and indicate that fiber connec-
tivity at the basal loop could influence biomechanics. To firmly confirm this
we plan to repeat this work using models with blood flow on the whole JHU
dataset including pathological cases. Given the complexity of computations,
such study is only feasible in a reasonable time using a HPC platform like
Alya on the Marenostrum supercomputer.

Acknowledgements Work funded by Spanish projects DPI2015-65286-R, 2014-SGR-1470
and the CERCA Programme.

Compliance with ethical standards

Conflict of Interest The authors declare that they have no conflict of interest.

Ethical approval For this type of study formal consent is not required

Informed consent This articles does not contain patient data

References

1. Bishop, M., Hales, P., Plank, G., Gavaghan, D.J., Scheider, J., Grau, V.: Comparison of
rule-based and dtmri-derived fibre architecture in a whole rat ventricular computational
model. In: Functional Imaging and Modeling of the Heart, pp. 87–96 (2009)

2. Carapella, V., Bordas, R., Pathmanathan, P., Lohezic, M., Schneider, J.E., Kohl, P.,
Burrage, K., Grau, V.: Quantitative study of the effect of tissue microstructure on
contraction in a computational model of rat left ventricle. PloS one (2014)

3. Carreras, F., Garcia, J., Gil, D., Pujadas, S., Li, C.H., Suarez-Arias, R., Leta, R., Alo-
mar, X., Ballester, M., Pons-Llado, G.: Left ventricular torsion and longitudinal shorten-
ing: two fundamental components of myocardial mechanics assessed by tagged cine-mri
in normal subjects. Int J Card Imag 28(2), 273–84 (2012)

4. Casero, R., Burton, R.A., Quinn, T.A., Bollensdorff, C., Hales, P., Schneider, J., Kohl,
P., Grau, V.: Cardiac valve annulus manual segmentation using computer assisted vi-
sualfeedback in three-dimensional image data. In: EMBC, pp. 738–741 (2010)

5. Ferreira, P.F., Kilner, P.J., McGill, L.A., Nielles-Vallespin, S., D Scott, A., Ho, S.Y.,
P McCarthy, K., Haba, M., Ismail, T., Gatehouse, P., Silva, R., Lyon, A., Prasad, S.,
Firmin, D.: In vivo cardiovascular magnetic resonance diffusion tensor imaging shows
evidence of abnormal myocardial laminar orientations and mobility in hypertrophic
cardiomyopathy. J Cardiovascular Mag Res 16 (87), 1–16 (2014)

6. Fritz, T., Wieners, C., Seemann, G.: Simulation of the contraction of the ventricles in
a human heart model including atria and pericardium. Biomechanics and Modeling in
Mechanobiology (13), 627â641 (2014)
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