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Abstract—Graph-based methods are known to be successful
in many machine learning and pattern classification tasks.
These methods consider semi-structured data as graphs where
nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these
primitives. However, these non-vectorial graph data cannot be
straightforwardly plugged into off-the-shelf machine learning
algorithms without a preliminary step of – explicit/implicit –
graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being
highly discriminant. In this paper, we propose a novel high-order
stochastic graphlet embedding (SGE) that maps graphs into
vector spaces. Our main contribution includes a new stochastic
search procedure that efficiently parses a given graph and
extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives
as well as their increasingly complex interactions. In order
to build our graph representation, we measure the distribu-
tion of these graphlets into a given graph, using particular
hash functions that efficiently assign sampled graphlets into
isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based
representations have positive impact on the performance of
pattern comparison and recognition as corroborated through
extensive experiments using standard benchmark databases.

Index Terms—Stochastic graphlets, Graph embedding, Graph
classification, Graph hashing, Betweenness centrality.

I. INTRODUCTION

In this paper, we consider the problem of graph-based
classification: given a pattern (image, shape, handwritten char-
acter, document etc.) modeled with a graph, the goal is to
predict the class that best describes the visual and the semantic
content of that pattern, which essentially turns into a graph
classification/recognition problem. Most of the early pattern
classification methods were designed using numerical feature
vectors resulting from statistical analysis [12], [29]. Other
more successful extensions of these methods also integrate
structural information (see for instance [27]). These extensions
were built upon the assumption that parts, in patterns, do not
appear independently and structural relationships among these
parts are crucial in order to achieve effective description and
classification [20].

Among existing pattern description and classification solu-
tions, those based on graphs are particularly successful [11],
[14], [17]. In these methods, patterns are first modeled with
graphs (where nodes correspond to local primitives and edges
describe their spatial and geometric relationships), then graph
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matching techniques are used for recognition. This framework
has been successfully applied to many pattern recognition
problems [9], [14], [44], [53], [54]. This success is mainly
due to the ability to encode interactions between different
inter/intra class object entities and the relatively efficient
design of some graph-based matching algorithms.

The main disadvantage of graphs, compared to the usual
vector-based representations, is the significant increase of
complexity in graph-based algorithms. For instance, the com-
plexity of feature vector comparison is linear (w.r.t vector
dimension) while the complexity of general graph comparison
is currently known to be GI-complete [24] for graph isomor-
phism and NP-complete for subgraph isomorphism. Another
serious limitation, in the use of graphs for pattern recognition
tasks, is the incompatibility of most of the mathematical
operations in graph domain. For example, computing pairwise
sums or products (which are elementary operations in many
classification and clustering algorithms) is not defined in a
standardized way in graph domain. However, these elementary
operations should be defined in a particular way in different
machine learning algorithms. Considering G as an arbitrary
set of graphs, a possible way to address this issue is either
to define an explicit embedding function ϕ : G → Rn to a
real vector space or to define an implicit embedding function
ϕ : G→ H to a high dimensional Hilbert space H where a dot
product defines similarity between two graphs K(G,G′) =
〈ϕ(G), ϕ(G′)〉, G,G′ ∈ G. In graph domain, this implicit
inner product is termed as graph kernel that basically defines
similarity between two graphs which is usually coupled with
machine learning and inference techniques such as support
vector machine (SVM) in order to achieve classification. Graph
kernels are usually designed in two ways: (i) by approximate
graph matching, i.e., by defining similarity between two graphs
proportionally to the number of aligned sub-patterns, such
as, nodes, edges, random walks [18], shortest paths [15],
cycles [21], subtrees [46], etc. or (ii) by considering simi-
larity as a decreasing function of a distance between first or
high order statistics of their common substructures, such as,
graphlets [43], [45] or graph edit distances w.r.t a predefined
set of prototype graphs [6]. Thus, the second family of meth-
ods first defines an explicit graph embedding and then compute
similarities in the embedding vector space. Nevertheless, these
methods are usually memory and time demanding as sub-
patterns are usually taken from large dictionaries and searched
by handling the laborious subgraph isomorphism problem [33]
which is again known to be NP-complete for general and
unconstrained graph structures.

In this paper, we propose a high-order stochastic graphlet
embedding method that models the distribution of (unlimit-
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Fig. 1. Overview of our stochastic graphlet embedding (SGE). Given a graph of a pattern (hand-crafted graph on the butterfly) and denoted as G, our stochastic
search algorithm is able to sample graphlets of increasing size. Controlled by two parameters M (number of graphlets to be sampled) and T (maximum
size of graphlets in terms of number of edges), our method extracts in total M × T graphlets. These graphlets are encoded and partitioned into isomorphic
graphlets using our well designed hash functions with a low probability of collision. A distribution of different graphlets is obtained by counting the number
of graphlets in each of these partitions. This procedure results in a vectorial representation of the graph G referred to as stochastic graphlet embedding.

edly) high-order1 connected graphlets (subgraphs) of a given
graph. The proposed method gathers the advantages of the
two aforementioned families of graph kernels while discarding
their limitations. Indeed, our technique does not maintain
predefined dictionaries of graphlets, and does not perform
laborious exact search of these graphlets using subgraph iso-
morphism. In contrast, the proposed algorithm samples high-
order graphlets in a stochastic way, and allows us to obtain
a distribution asymptotically close to the actual distribution.
Furthermore, graphlets – as complex structures – are much
more discriminating compared to simple walks or tree patterns.
Following these objectives, the whole proposed procedure is
achieved by:
• Significantly restricting graphlets to include only sub-

graphs belonging to training and test data.
• Parsing this restricted subset of graphlets, using an effi-

cient stochastic depth-first-search procedure that extracts
statistically meaningful distributions of graphlets.

• Indexing these graphlets using hash functions, with low
probability of collision, that capture isomorphic relation-
ships between graphlets quite accurately.

Our technique randomly samples high-order graphlets in a
given graph, splits them into subsets and obtains the cardinality
and thereby the distribution of these graphlets efficiently. This
is obtained thanks to our search strategy that parses and hashes
graphlets into subsets of similar and topologically isomorphic
graphlets. More precisely, we employ effective graph hashing
functions, such as degree of nodes and betweenness centrality;

1In general, the order of a graph is defined as the total number of its
vertices. In this paper, we use a dual definition of the term “order” to indicate
the number of its edges.

while it is always guaranteed that isomorphic graphlets will
obtain identical hash codes with these hash functions, it
is not always guaranteed that non-isomorphic graphlets will
always avoid collisions (i.e., obtain different hash codes)2,
and this is in accordance with the GI-completeness of graph-
isomorphism. In summary, with this parsing strategy, we
obtain resilient and efficient graph representations (compared
to many related techniques including subgraph isomorphism
as also shown in experiments) to the detriment of a negligible
increase of the probability of collision in the obtained distribu-
tions. Put differently, the proposed procedure is very effective
and can fetch the distribution of unlimited order graphlets
with a controlled complexity. These graphlets, with relatively
high orders, have positive and more influencing impact on
the performance of pattern classification, as supported through
extensive experiments which also show that our proposed
method is highly effective for structurally informative graphs
with possibly attributed nodes and edges. Considering these
issues, the main contributions of our work include:

1) A new stochastic depth-first-search strategy that parses
any given graph in order to extract increasingly complex
graphlets with a large bound on the number of their
edges.

2) Efficient and also effective hash functions, that index
and partition graphlets into isomorphic sets with a low
probability of collision.

3) Last but not least, a comprehensive experimental setting
that shows the resilience of our graph representation
method against intra-class graph variations and its effi-

2though this collision happens with a very low probability.
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ciency as well as its comparison against related methods.

Fig. 1 illustrates the key idea and the flowchart of our
proposed stochastic graphlet embedding algorithm; as shown
in this example, we consider the butterfly image as a pattern
endowed with a hand-crafted input graph. We sample M × T
connected graphlets of increasing orders with the proposed
stochastic depth-first-search procedure (in Section III). We also
consider well-crafted graph hash functions with low probabil-
ity of collision (in Section IV). After sampling the graphlets,
we partition them into disjoint isomorphic subsets using these
hash functions. The cardinality of each subsets allows us to
estimate the empirical distribution of isomorphic graphlets
present in the input graph. This distribution is referred to as
stochastic graphlet embedding (SGE).

At the best of our knowledge, no existing work in pat-
tern analysis has achieved this particularly effective, efficient
and resilient graph embedding scheme, i.e., being able to
extract graphlet patterns using a stochastic search procedure
and assign them to topologically isomorphic sets of similar
graphlets using efficient and accurate hash functions with a low
probability of collision. In this context, the two most closely
related works were proposed by Shervashidze et al. [45] and
Saund [43]. In Shervashidze et al. [45], authors consider a
fixed dictionary of subgraphs (with a bound on their degree
set to 5). They provide two schemes in order to enumerate
graphlets; one based on sampling and the other one specifically
designed for bounded degree graphs. Compared to this work,
the enumeration of larger graphlets in our method carries out
more relevant information, which has been revealed in our
experiment.
In Saund [43], authors provide a set of primitive nodes, create
a graph lattice in a bottom-up way, which is used to enumerate
the subgraphs while parsing a given graph. However, the
way of considering limited number of primitives has made
their method application specific. In addition, increment of
the average degrees of node in a dataset would result in a
very big graph lattice, which will increase the time complexity
when parsing graphs. In contrast, our proposed method in
this paper does not require a fixed vocabulary of graphlets.
The candidate graphlets to be considered for enumeration are
entirely determined by training and test data. Furthermore,
our method is not dependent on any specific application and
is versatile. This fact has been proven by experiments on
different type of datasets, viz., protein structures, chemical
compound, form documents, graph representation of digits,
shape, etc.

The rest of this paper is organized as follows: Section II
reviews the related work on graph-based kernels and explicit
graph embedding methods. Section III introduces our efficient
stochastic graphlet parsing algorithm, and Section IV describes
hashing techniques in order to build our stochastic graphlet
embedding. Section V discusses the computational complexity
of our proposed method and Section VI presents a detailed
experimental validation of the proposed method showing the
positive impact of high-order graphlets on the performance of
graph classification. Finally, Section VII concludes the paper
while briefly providing possible extensions for a future work.

II. RELATED WORK

In what follows, we review the related work on explicit
and implicit graph embedding. The former seeks to generate
explicit vector representations suitable for learning and clas-
sification while the latter endows graphs with inner products
involving maps in high dimensional Hilbert spaces; these maps
are implicitly obtained using graph kernels.

A. Graph Kernel Embedding

Kernel methods have been popular during the last two
decades mainly because of their ability to extend, in a unified
manner, the existing machine learning algorithms to non-linear
data. The basic idea, known as the kernel trick [48], consists
in using positive semi-definite kernels in order to implicitly
map non-linearly separable data from an original space to a
high dimensional Hilbert space without knowing these maps
explicitly; only kernels are known. Another major strength of
kernel methods resides in their ability to handle non-vectorial
data (such as graphs, string or trees) by designing appropriate
kernels on these data while still using off-the-shelf learning
algorithms.

1) Diffusion Kernels: Given a collection of graphs G =
{G1, G2, . . . , GN}, a decay factor 0 < λ < 1, and a similarity
function s : G×G→ R, a diffusion kernel [26] is defined as

K =

∞∑
k=0

1

k!
λkSk = exp(λS),

here S = (sij)N×N is a matrix of pairwise similarities;
when S is symmetric, K becomes positive definite [47]. An
alternative, known as the von Neumann diffusion kernel [23], is
also defined as K =

∑∞
k=0 λ

kSk. In these diffusion kernels,
the decay factor λ should be sufficiently small in order to
ensure that the weighting factor λk will be negligible for
sufficiently large k. Therefore, only a finite number of addends
are evaluated in practice.

2) Convolution Kernels: The general principle of convolu-
tion kernels consists in measuring the similarity of composite
patterns (modeled with graphs) using the similarity of their
parts (i.e. nodes) [50]. Prior to define a convolution kernel on
any two given graphs G,G′ ∈ G, one should consider elemen-
tary functions {κ`}d`=1 that measure the pairwise similarities
between nodes {vi}i, {v′j}j in G, G′ respectively. Hence, the
convolution kernel can be written as [35]:

κ(G,G′) =
∑
i

∑
j

d∏
`=1

κ`(vi, v
′
j).

This graph kernel derives the similarity between two graphs
G, G′ from the sum, over all decompositions, of the similarity
products of the parts of G and G′ [35]. Recently, Kondor and
Pan [25] proposed multi-scale Laplacian graph kernel having
the property of lifting a base kernel defined on the vertices of
two graphs to a kernel between graphs.

3) Substructure Kernels: A third class of graph kernels
is based on the analysis of common substructures, including
random walks [49], backtrackless walks [1], shortest paths [4],
subtrees [46], graphlets [45], edit distance graphlets [30],
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etc. These kernels measure the similarity of two graphs by
counting the frequency of their substructures that have all
(or some of) the labels in common [4]. Among the above
mentioned graph kernels, the random walk kernel has received
a lot of attention [18], [49]; in [18], Gärtner et al. showed
that the number of matching walks in two graphs G and
G′ can be computed by means of the direct product graph,
without explicitly enumerating the walks and matching them.
This makes it possible to consider random walks of unlimited
length.

B. Explicit Graph Embedding

Explicit graph embedding is another family of represen-
tation techniques that aims to map graphs to vector spaces
prior to apply usual kernels (on top of these graph represen-
tations) and off-the-shelf learning algorithms. In this family
of graph representation techniques, three different classes of
methods exist in the literature; the first one, known as graph
probing [31], seeks to measure the frequency of specific
substructures (that capture content and topology) into graphs.
For instance, the method in [46] estimates the number of
non-isomorphic graphlets while the approach in Gibert et
al. [19] is based on node label and edge relation statistics.
Authors in Luqman et al. [31] consider graph information
at different topological levels (structures and attributes) while
authors in [43] introduce a bottom-up graph lattice in order
to estimate the distribution of graphlets into document graphs;
this distribution is afterwards used as an index for document
retrieval.

The second class of graph embedding methods is based on
spectral graph theory [8], [22], [42], [52]. The latter aims
to analyze the structural properties of graphs using eigen-
vectors/eigenvalues of adjacency or Laplacian matrices [52].
In spite of their relative success in graph representation and
embedding, spectral methods are not fully able to handle noisy
graphs. Indeed, this limitation stems from the fact that eigen-
decompositions are sensitive to structural errors such as miss-
ing nodes/edges and short cuts. Moreover, spectral methods are
applicable to unlabeled graphs or labeled graphs with small
alphabets, although recent extensions tried to overcome this
limitation [28].

The third class of methods is inspired by dissimilarity
representations proposed in [37]; in this context, Bunke and
Riesen present the vectorial description of a given graph by
its distances to a number of pre-selected prototype graphs [5],
[6], [39], [41]. Finally, and besides these three categories
of explicit graph embedding, Mousavi et al. [34] recently
proposed a generic framework based on graph pyramids which
hierarchically embeds any given graph to a vector space (that
models both local and global graph information).

III. HIGH ORDER STOCHASTIC GRAPHLETS

Our main goal is to design a novel explicit graph embedding
technique that combines the representational power and the
robustness of high-order graphlets as well as the efficiency of
graph hashing. As shown subsequently, patterns represented
with graphs are described with distributions of high-order

graphlets, where the latter are extracted using an efficient
stochastic depth-first-search strategy and partitioned into iso-
morphic sets of graphlets using well defined hashing functions.

A. Graphs and Graphlets

Let us consider a finite collection of m patterns S =
{P1, ...,Pm}. A given pattern P ∈ S is described with an
attributed graph which is basically a 4-tuple G = (V,E, φ, ψ);
here V is a node set and E ⊆ V × V is an edge set. The
two mappings φ : V → Rm and ψ : E → Rn respectively
assign attributes to nodes and edges of G. An attributed graph
G′ = (V ′, E′, φ′, ψ′) is a subgraph of G (denoted by G′ ⊆ G)
if the following conditions are satisfied:
• V ′ ⊆ V
• E′ = E ∩ V ′ × V ′
• φ′(u) = φ(u),∀u ∈ V ′
• ψ′(e) = ψ(e),∀e ∈ E′

A graphlet refers to any subgraph g of G that may also
inherit the topological and the attribute properties of G; in
this paper, we only consider “connected graphlets” and, for
short, we omit the terminology “connected” when referring to
graphlets. We use these graphlets to characterize the distribu-
tion of local pattern parts as well as their spatial relationships.
As will be shown, and in contrast to the mainstream work,
our method neither requires a preliminary tedious step of
specifying large dictionaries of graphlets nor checking for the
existence of these large dictionaries (in the input graphs) using
subgraph isomorphism which is again intractable.

Algorithm 1 STOCHASTIC-GRAPHLET-PARSING(G): Create
a set of graphlets S by traversing G.
Require: G = (V,E), M , T
Ensure: S

1: S← ∅
2: for i = 1 to M do
3: u← SELECTRANDOMNODE(V )
4: U0 ← u, A0 ← ∅
5: for t = 1 to T do
6: u← SELECTRANDOMNODE(Ut−1 )
7: v ← SELECTRANDOMNODE(V ) : (u, v) ∈ E\At−1

8: Ut ← Ut−1 ∪ {v} , At ← At−1 ∪ {(u, v)}
9: S← S ∪ {(Ut, At)}

10: end for
11: end for

B. Stochastic Graphlet Parsing

Considering an input graph G = (V,E, φ, ψ) corresponding
to a pattern P ∈ S, our goal is to obtain the distribution of
graphlets in G, without considering a predefined dictionary
and without explicitly tackling the subgraph isomorphism
problem. The way we acquire graphlets is stochastic and
we consider both the low and high-order graphlets without
constraining their topological or structural properties (max
degree, max number of nodes, etc.).
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Our graphlet extraction procedure is based on a random
walk process that efficiently parses and extracts subgraphs
from G with increasing complexities measured by the num-
ber of edges. This graphlet extraction process, outlined in
Algorithm 1, is iterative and regulated by two parameters
M and T , where M denotes the number of runs (related
to the number of distinct connected graphlets to extract) and
T refers to a bound on the number of edges in graphlets.
In practice, M is set to relatively large values in order to
make graphlet generation statistically meaningful (see Line 2).
Our stochastic graphlet parsing algorithm iteratively visits
the connected nodes and edges in G and extracts (samples)
different graphlets with an increasing number of edges denoted
as t ≤ T (see Line 5), following a T -step random walk process
with restart. Considering Ut, At respectively as the aggregated
sets of visited nodes and edges till step t, we initialize, A0 = ∅
and U0 with a randomly selected node u which is uniformly
sampled from V (see Line 3 and Line 4). For t ≥ 1, the process
continues by sampling a subsequent node v ∈ V , according
to the following distribution

Pt(v|u) = α Pt,w(v|u) + (1− α) Pt,r(v),

here Pt,w(v|u) corresponds to the conditional probability of
a random walk from node u to its neighbor v set to uniform
(if graphs are label/attribute-free) or set proportional to the
label/attribute similarity between nodes u, v otherwise, and
Pt,r(v) is the probability to restart the random walk from
an already visited node v ∈ Ut−1, defined as Pt,r(v) =
1{v∈Ut−1} .

1
|Ut−1| , with 1{} being the indicator function. In

the definition of Pt(v|u), the coefficient α ∈ [0, 1] controls the
trade-off between random walks and restarts, and it is set to 1

2
in practice. This choice of α provides an equilibrium between
two processes (either “continue the random walk” from the last
visited node or “restart this random walk” from another node);
when α� 1

2 the algorithm gives preference to ”continue” and
this may statistically bias the sampling by giving preference to
“chain-like” graphlet structures (that favor the increase of their
depth/diameter) while α� 1

2 results into “tree-like” graphlet
structures (that favor the increase of their width). Considering
this model, graphlet sampling is achieved following two steps:
• Random walks: in order to expand a currently generated

graphlet with a neighbor v of the (last) node u visited
in that graphlet which possibly has similar visual fea-
tures/attributes.

• Restarts: in order to continue the expansion of the cur-
rently generated graphlet using other nodes if the set of
edges connected to u is fully exhausted.

Finally, if (u, v) ∈ E and (u, v) /∈ At−1, then the aggregated
sets of nodes and edges at step t are updated as:

Ut ← Ut−1 ∪ {v}

At ← At−1 ∪ {(u, v)},

which is also shown in Line 8 of Algorithm 1.
This algorithm iterates M times and, at each iteration, it
generates T graphlets including 1, . . . , T edges; in total, it
generates M × T graphlets. Note that Algorithm 1 is already
efficient on single CPU configurations – and also highly

parallelizable on multiple CPUs – so it is suitable to parse
and extract huge collections of graphlets from graphs.

This proposed graphlet parsing algorithm, by its design,
allows us to uniformly sample subgraphs (graphlets) from a
given graph G and assign them to isomorphic sets in order
to measure the distribution of graphlets into G. By the law
of large numbers, this sampling guarantees that the empirical
distribution of graphlets is asymptotically close to the actual
distribution. In the non-asymptotic regime (i.e., M �∞), the
actual number of samples needed to achieve a given confidence
with a small probability of error is called the sample complex-
ity (see for instance the related work in bioinformatics [38],
[45] and also Weissman et al. [51] who provide a distribution
dependent bound on sample complexity, for the L1 deviation,
between the true and the empirical distributions). Similarly to
[45], we adapt a strong sample complexity bound M as shown
subsequently.

Theorem 1. Let D be a probability distribution on a finite set
of cardinality a and let {Xj}Mj=1 be M samples identically
distributed from D. For a given error ε > 0 and confidence
(1− δ) ∈ [0, 1],

M =

⌈
2
(
a ln 2 + ln( 1δ )

)
ε2

⌉

samples suffice to ensure that P
{
||D − D̂M ||1 ≤ ε

}
≥ 1 −

δ, with D̂M being the empirical estimate of D from the M
samples {Xj}Mj=1.

TABLE I
SAMPLE COMPLEXITY BOUNDS ACCORDING TO THEOREM 1 FOR

GRAPHLETS WITH ORDERS RANGING FROM 1 TO 10 AND FOR DIFFERENT
SETTINGS OF ε AND δ.

Orders Number M M M M
of of possible (ε = 0.1, (ε = 0.1, (ε = 0.05, (ε = 0.05,

graphs graphs (a) δ = 0.1) δ = 0.05) δ = 0.1) δ = 0.05)
1 1 600 738 2397 2952
2 1 600 738 2397 2952
3 3 877 1016 3506 4061
4 5 1154 1293 4615 5170
5 12 2125 2263 8497 9051
6 30 4620 4759 18478 19033
7 79 11413 11551 45649 46204
8 227 31930 32069 127718 128273
9 710 98888 99027 395550 396105
10 2322 322359 322497 1289433 1289987

The proof of the above theorem is out of the main scope of
this paper and related background can be found in [45], [51].
In order to highlight the benefit of this theorem, we show
in Table I different estimates of M w.r.t δ, ε and increasing
graph orders. For instance, with 4 edges, only 5 categories of
non-isomorphic graphlets3 exist in a given graph G; for this
setting, when ε = 0.1 and δ = 0.1, the overestimated value of
M is set to 1154. For (ε = 0.1, δ = 0.05), (ε = 0.05, δ = 0.1)

3Refer to the article A002905 (http://oeis.org/A002905) of OEIS (Online
Encyclopedia of Integer Sequence) to know more about the number of graphs
with a specific number of edges.
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TABLE II
PROBABILITY OF COLLISION E(f) OF DIFFERENT HASH FUNCTIONS viz. betweenness centrality, core numbers, degree of nodes AND clustering coefficients.

THESE VALUES ARE ENUMERATED ON GRAPHLETS WITH NUMBER OF EDGES t = 1, . . . , 10; SOME EXAMPLES OF THESE GRAPHLETS ARE SHOWN IN
FIG 2.

betweenness centrality core numbers degree clustering coefficients
Order Number Number of compar- Number of Probability Number of Probability Number of Probability Number of Probability

of of possible isons for checking collision of collision of collision of collision of
graphlets (t) graphlets (a) collisions ( aC2) occurs collision occurs collision occurs collision occurs collision

1 1 − 0 0.00000 0 0.0000 0 0.0000 0 0.0000
2 1 − 0 0.00000 0 0.0000 0 0.0000 0 0.0000
3 3 3 0 0.00000 1 0.3333 0 0.0000 1 0.3333
4 5 10 0 0.00000 2 0.2000 0 0.0000 3 0.3000
5 12 66 0 0.00000 7 0.1061 2 0.0303 7 0.1061
6 30 435 0 0.00000 22 0.0506 11 0.0253 18 0.0414
7 79 3081 1 0.00032 68 0.0221 44 0.0143 50 0.0162
8 227 25651 5 0.00019 211 0.0082 167 0.0065 157 0.0061
9 710 251695 27 0.00011 687 0.0027 604 0.0024 537 0.0021
10 2322 2694681 108 0.00004 2290 0.0008 2145 0.0008 1907 0.0007

Fig. 2. Example of graphlets with an increasing number of edges, for generating these particular examples we have used T = 40. This shows that our
stochastic search algorithm is not restricted to small orders.

and (ε = 0.05, δ = 0.05), M is set to 1293, 4615 and 5170
respectively.

IV. GRAPHLET HASHING

In order to obtain the distribution of sampled graphlets in
a given graph G, one may consider subgraph isomorphism
(which is again NP-complete for general graphs [33]) or
alternatively partition the set of sampled graphlets into iso-
morphic subsets using graph isomorphism; yet, this is also
computationally intractable4 (see Table III) and known to be
GI-complete [24], so no polynomial solution is known for
general graphs. In what follows, we approach the problem
differently using graph hashing. The latter generates compact
and also effective hash codes for graphlets based on their local
as well as holistic topological characteristics and allows one
to group generated isomorphic graphlets while colliding non-
isomorphic ones with a very low probability.

The goal of our graphlet hashing is to assign and count
the frequency of graphlets (in G) whose hash codes fall into
the bins of a global hash table (referred to as HashTable in

4We tested such isomorphism-based graphlet partitioning strategy and
compared it against our hashing-based partitioning and we found that the
latter is at least 2 orders of magnitude faster.

Algorithm 2); each bin in this table is associated with a subset
of isomorphic graphlets (see Algorithm 2 and Line 9). These
hash codes are related to the topological properties of graphlets
which should ideally be identical for isomorphic graphlets
and different for non-isomorphic ones (see [13] for a detailed
discussion about these topological properties). When using
appropriate hash functions (see Section IV-A), this algorithm,
even though not tackling the subgraph isomorphism, is able to
count the number of isomorphic subgraphs in a given graph
with a controlled (polynomial) complexity.

Algorithm 2 HASHED-GRAPHLETS-STATISTICS(G): Create
a histogram H of graphlet distribution for a graph G.
Require: G, HashTable
Ensure: H

1: S← STOCHASTIC-GRAPHLET-PARSING(G)
2: Hi ← 0, i = 1, . . . , |S|
3: for all g ∈ S do
4: hashcode← HASHFUNCTION(g)
5: if hashcode /∈ HashTable then
6: HashTable← HashTable ∪ {hashcode}
7: end if
8: i← GETINDEX-IN-HASHTABLE(hashcode)
9: Hi ← Hi + 1

10: end for
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[1, 2, 2, 2, 3] [1, 2, 2, 2, 3] [1, 1, 1, 2, 2, 3] [1, 1, 1, 2, 2, 3] [0, 0, 0, 0, 10, 16, 22] [0, 0, 0, 0, 10, 16, 22] [0, 0, 0, 0, 0, 12, 20, 34] [0, 0, 0, 0, 0, 12, 20, 34]

(a) (b) (c) (d)

[0, 0, 0, 0, 12, 12, 20, 32] [0, 0, 0, 0, 12, 12, 20, 32] [0, 0, 0, 0, 12, 20, 22, 24] [0, 0, 0, 0, 12, 20, 22, 24] [0, 0, 0, 0, 12, 20, 24, 28] [0, 0, 0, 0, 12, 20, 24, 28] [0, 0, 0, 0, 14, 24, 26, 30, 38] [0, 0, 0, 0, 14, 24, 26, 30, 38]

(e) (f) (g) (h)

Fig. 3. Examples of non-isomorphic graphlets with the same hash codes (shown just below the respective graphlets) for different hash functions: (a)-(b) Two
pairs of non-isomorphic graphlets (with t = 5) that have the same degree values, (c) A pair of non-isomorphic graphlets (with t = 7) that have the same
betweenness centrality values, (d)-(h) Five pairs of non-isomorphic graphlets (with t = 8) that have the same betweenness centrality values.

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6
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Fig. 4. (a)–(m) An example of twelve graphs which are mutually non-isomorphic; these graphs are representatives of twelve groups with each one including
a subset of (5+1) isomorphic graphs (only the twelve representatives of these groups are shown in this figure). (g) In this 2D plot, points with different colors
stand for non-isomorphic graph groups (whose representatives are shown in (a)–(m)) while points with the same colors stand for isomorphic graphs. (Best
viewed in pdf)

Two types of hash functions exist in the literature: local and
holistic. Holistic functions are computed globally on a given
graphlet and include number of nodes/edges, sum/product of
node labels, and frequency distribution of node labels, while
local functions are computed at the node level; among these
functions

• Local clustering coefficient of a node u in a graph is
the ratio between the number of triangles connected to u
and the number of triples centered around u. The local
clustering coefficient of a node in a graph quantifies how
close its neighbors are for being a clique.

• Betweenness centrality of a node u is the number of
shortest paths from all nodes to all others that pass
through the node u. In a generic graph, betweenness
centrality of a node provides a measurement about the
centrality of that node with respect to the entire graph.

• Core number of a node u is the largest integer c such
that the node u has degree greater than zero when all the
nodes of degree less than c are removed.

• Degree of a node u is the number of edges connected to
the node u.

As these local measures are sensitive to the ordering of nodes
in graphlets, we sort and concatenate them in order to obtain
global permutation invariant hash codes.

TABLE III
EXAMPLES OF SPEEDUP FACTORS (WITH DIFFERENT SETTINGS OF t, ε

AND δ) OF OUR HASHING-BASED METHOD VS. GRAPH ISOMORPHISM, ON
THE MUTAG DATABASE (SEE DETAILS ABOUT MUTAG LATER IN

EXPERIMENTS).

Setting Speedup Setting Speedup
(t = 3, ε = 0.1, δ = 0.1) 121× (t = 5, ε = 0.1, δ = 0.1) 239×
(t = 3, ε = 0.1, δ = 0.05) 124× (t = 5, ε = 0.1, δ = 0.05) 252×
(t = 3, ε = 0.05, δ = 0.1) 163× (t = 5, ε = 0.05, δ = 0.1) 297×
(t = 3, ε = 0.05, δ = 0.05) 173× (t = 5, ε = 0.05, δ = 0.05) 318×
(t = 4, ε = 0.1, δ = 0.1) 154× (t = 6, ε = 0.1, δ = 0.1) 303×
(t = 4, ε = 0.1, δ = 0.05) 161× (t = 6, ε = 0.1, δ = 0.05) 319×
(t = 4, ε = 0.05, δ = 0.1) 214× (t = 6, ε = 0.05, δ = 0.1) 356×
(t = 4, ε = 0.05, δ = 0.05) 242× (t = 6, ε = 0.05, δ = 0.05) 371×

A. Hash Function Selection

Ideally, a reliable hash function is expected to provide
identical hash codes for two isomorphic graphlets and two
different hash codes for two non-isomorphic ones. While
it is easy to design hash functions that provide identical
hash codes for isomorphic graphlets, it is very challenging
to guarantee that non-isomorphic graphlets could never be
mapped to the same hash code. This is also in accordance with
the fact that graph isomorphism detection is GI-complete and
no polynomial algorithm is known to solve it. The possibility
of mapping two non-isomorphic graphlets to the same hash
code is termed as a collision. Let f be a function that returns a
hash code for a given graphlet, then the probability of collision
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of that function is defined as

E(f) = P
(
(g, g′) ∈ I0 | f(g) = f(g′)

)
,

here g, g′ denote two graphlets, and the probability is with re-
spect to I0 which stands for pairs of non-isomorphic graphlets;
equivalently, we can define I1 as the pairs of isomorphic
graphlets. Since the cardinality of I0 is really huge for
graphlets with large number of edges, i.e., |I1| � |I0|, one
may instead consider

E(f) = 1− P
(
(g, g′) ∈ I1 | f(g) = f(g′)

)
,

which also results from the fact that our hash functions
produce same codes for isomorphic graphlets. For bounded t
(t ≤ T ), the evaluation of E(f) becomes tractable and reduces
to

E(f) = 1−
∑
g,g′ 1{(g,g′)∈I1}∑
g,g′ 1{f(g)=f(g′)}

.

Considering a collection of hash functions {fc}c, the best one
is chosen as

f∗ = argmin
fc

E(fc)

Table II shows the values of E(f) for different hash func-
tions including betweenness centrality, core numbers, degree
and clustering coefficients, and for different graphlet orders
(number of edges) ranging from 1 to 10. In order to build this
table, we enumerate all the non-isomorphic graphs [32] with
a number of edges bounded5 by 10 and compute the hash
codes with the above mentioned hash functions to quantify
the probability of collisions. First, we observe that E(f) is
close to 0 as t reaches large values for all the hash functions.
Moreover, the hash function degree of nodes has probability of
collision equal to 0 for graphlets with t ≤ 4 but this probability
increases for larger values of t, while betweenness centrality
has the lowest probability of collision for all t; the number of
non-isomorphic graphs with the same betweenness centrality
is very small for low order graphs and increases slowly as
the order increases (see for instance Fig. 3) and this is in
accordance with facts known in network analysis community.
Indeed, two graphs with the same betweenness centrality
would indeed be isomorphic with a high probability [10], [36];
see also our MATLAB library6 that reproduces the results
shown in Table II.

The proposed algorithm involves random sampling of
graphlets and partitioning them with well designed hash
functions having very low probability of collisions. This
technique fetches accurate distribution of those sampled high
order graphlets in a given graph and maps the isomorphic
graphs to similar points and non-isomorphic ones to different
points. Fig. 4 shows this principle for different and increasing
graph orders; from this figure, it is clear that all the non-
isomorphic graphs are mapped to very distinct points while
isomorphic graphs are mapped to very similar points. Hence,
the randomness (in graphlet parsing) does not introduce any

5More details can be found at: http://users.cecs.anu.edu.au/∼bdm/data/
graphs.html

6Available at https://github.com/AnjanDutta/StochasticGraphletEmbedding/
tree/master/HashFunctionGraphlets

arbitrary behavior in the graph embedding and the SGE of
isomorphic graphlets converge to very similar points in spite
of being seeded differently7.

V. COMPUTATIONAL COMPLEXITY

The computational complexity of our method is O(MT ) for
Algorithm 1 and O(MTC) for Algorithm 2, here M is again
the number of runs, T is an upper bound on the number of
edges in graphlets and C is the computational complexity of
the used hash function; for “degree” and “betweenness cen-
trality” this complexity is respectively O(|V |) and O(|V ||E|),
where |V | (resp. |E|) stands for the cardinality of node (resp.
edge) set in the sampled graphlets. Hence, it is clear that the
complexity of these two algorithms is not dependent on the
size of the input graph G, but only on the parameters M , T
and the used hash functions.

As graphlets are sampled independently, both algorithms
mentioned above are trivially parallelizable. Table IV shows
examples of processing time (in s) for different settings of M ,
T and for single and multiple parallel CPU workers; with
M = 11413, T = 7, our method takes 6.13s on average
(on a single CPU) in order to parse a graph and to generate
the stochastic graphlets, compute their hash codes and find
their respective histogram bins while it takes only 3.14s (with
4 workers). With M = 46204, T = 7 this processing time
reduces from 22.57s to 5.62s (with 4 workers) while it reduces
from 1.13s to 1.01s when M = 4061, T = 3. From all these
results, the parallelized setting is clearly interesting especially
when M and T are large as the overhead time due to ”task
distribution” (through workers) and ”result collection” (from
workers) becomes negligible.

TABLE IV
COMPUTATION TIME FOR DIFFERENT VALUES OF M AND T BOTH IN

SERIALIZED AND PARALLEL (WITH 4 WORKERS) SETTINGS.

M T
Time in secs.

Serialized Parallel (4 workers)
877 3 0.23 0.27
4061 3 1.13 1.01
2125 5 3.18 2.42
9051 5 10.76 2.83
11413 7 6.13 3.14
46204 7 22.57 5.62

VI. EXPERIMENTAL VALIDATION

In order to evaluate the impact of our proposed stochastic
graphlet embedding, we consider four different experiments
described below. We consider graphlets (with different fixed
orders) taken separately and combined; as shown subsequently,
the combined setting brings a substantial gain in performances.
All these experiments are shown in the remainder of this
section and also in a supplemental material [16]8. A Mat-
lab library is also available in https://github.com/AnjanDutta/
StochasticGraphletEmbedding.

7In practice, we found that random uniform node sampling (with different
seeds) is the best strategy among others including sampling nodes with highest
betweenness centrality, highest degree and random seeds, etc (see Table III
of [16]).

8Due to the limited number of pages in the paper, we added more extensive
experiments in [16]
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Fig. 5. Plot of classification accuracy versus amount of edges on MUTAG, PTC and ENZYMES datasets with our proposed stochastic graphlet embedding
and other state-of-the-art methods. RW corresponds to the random walk kernel [49], SP stands for shortest path kernel [4], GK corresponds to the standard
graphlet kernel [45], MLG stands for multiscale Laplacian graph kernel [25], and SGE refers to our proposed stochastic graphlet embedding.

TABLE V
SOME DETAILS ON MUTAG, PTC, ENZYMES, D&D, NCI1 AND

NCI109 GRAPH DATASETS.

Datasets #Graphs Classes Avg. #nodes Avg. #edges
MUTAG 188 2 (125 vs. 63) 17.7 38.9
PTC 344 2 (192 vs. 152) 26.7 50.7
ENZYMES 600 6 (100 each) 32.6 124.3
D&D 1178 2 (691 vs. 487) 284.4 1921.6
NCI1 4110 2 (2057 vs. 2053) 29.9 64.6
NCI109 4127 2 (2079 vs. 2048) 29.7 64.3

A. MUTAG, PTC, ENZYMES, D&D, NCI1 and NCI109

In this section, we show the impact of our proposed
stochastic graphlet embedding on the performance of graph
classification using six publicly available graph databases with
unlabeled nodes: MUTAG, PTC, ENZYMES, D&D, NCI1 and
NCI109. The MUTAG dataset contains graphs representing
188 chemical compounds which are either mutagenic or not.
So here the task of the classifier is to predict the mutagenicity
of the chemical compounds, which is a two class problem.
The PTC (Predictive Toxicology Challenge) dataset consists
of graphs of 344 chemical compounds known to cause (or not)
cancer in rats and mice. Hence the task of the classifier is to
predict the cancerogenicity of the chemical compounds, which
is also a two class problem. The ENZYMES dataset contains
graphs representing protein tertiary structures consisting of
600 enzymes from the BRENDA enzyme. Here the task is
to correctly assign each enzyme to one of the 6 EC top levels.
The D&D dataset consists of 1178 graphs of protein structures
which are either enzyme or non-enzyme. Therefore, the task of
the classifier is to predict if a protein is enzyme or not, which
is essentially a two class problem. The NCI1 and NCI109 rep-
resent two balanced subsets of chemical compounds screened
for activity against non-small cell lung cancer and ovarian
cancer cell lines, respectively. These two datasets respectively
contain 4110 and 4127 graphs of chemical compounds which
are either active or inactive against the respective cancer cells.
Hence, the goal of the classifier is to judge the activeness of the
chemical compounds, which is a two class problem. Details

on the above six datasets are shown in Table V.

In order to achieve graph classification, we use the his-
togram intersection kernel [2] on top of our stochastic graphlet
embedding, and we plug it into SVMs for training and
classification. In these experiments, we report the average clas-
sification accuracies and their respective standard deviations
in Table VI using 10–fold cross validation. We also show
comparison against state-of-the-art graph kernels including
(i) the standard random-walk kernel (RW) [49], that counts
common random walks in two graphs, (ii) the shortest path
kernel (SP) [4], that compares shortest path lengths in two
graphs, (iii) the graphlet kernel (GK) [45], that compares
graphlets with up to 5 nodes, and (iv) the multiscale Laplacian
graph (MLG) kernel [25], that takes into account the structure
at different scale ranges. In these comparative methods, we
use the parameters that provide overall the best performances;
precisely, the discounting factor λ of RW is set to 0.001 and
the maximum number of nodes in GK is equal to 5 while for
MLG, the underlying parameters (namely the regularization
coefficient, the radius of the used neighborhood and the
number of levels in MLG) are set to 0.01, 2 and 3 respectively.
Table VI shows the impact of our proposed stochastic graphlet
embedding for different pairs of ε and δ with increasing order
graphlets (the underlying M is shown in Table I for different
pairs of ε and δ).

Compared to all these methods, our stochastic graphlet
embedding achieves the best performances on all the six
datasets, and this clearly shows the positive impact of high-
order graphlets w.r.t low-order ones (as also supported in [45]),
though a few exceptions exist; for instance, on the PTC dataset,
the accuracy stabilizes and reaches its highest value with only
4 order graphlets. In all these results, we also observe that
increasing the number of samples (M ) impacts – at some
extent – the classification accuracy; indeed, more samples
make the estimated graphlet distribution close to the actual one
(as also corroborated through further extensive experiments
in [16], with much larger values of M and T ).

We further push experiments and study the resilience of our
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TABLE VI
CLASSIFICATION ACCURACIES (IN %) ON MUTAG, PTC, ENZYMES, D&D, NCI1 AND NCI109 DATASETS. RW CORRESPONDS TO THE RANDOM

WALK KERNEL [49], SP STANDS FOR SHORTEST PATH KERNEL [4], GK CORRESPONDS TO THE STANDARD GRAPHLET KERNEL [45], MLG STANDS FOR
MULTISCALE LAPLACIAN GRAPH KERNEL [25], AND SGE REFERS TO OUR PROPOSED STOCHASTIC GRAPHLET EMBEDDING. THE AVERAGE PROCESSING
TIME FOR GENERATING THE STOCHASTIC GRAPHLET EMBEDDING OF A GIVEN GRAPH IS INDICATED WITHIN THE PARENTHESIS AFTER EACH ACCURACY

VALUE. IN THESE RESULTS, “> 1 DAY” MEANS THAT RESULTS ARE NOT AVAILABLE FOR THE STATE-OF-THE-ART METHOD i.e. COMPUTATION DID NOT
FINISH WITHIN 24 HOURS.

Kernel MUTAG PTC ENZYMES D & D NCI1 NCI109
RW [49] 71.89± 0.66 (0.23) 55.44± 0.15 (0.46) 14.97± 0.28 (1.08) > 1 day > 1 day > 1 day
SP [4] 81.28± 0.45 (0.13) 55.44± 0.61 (0.45) 27.53± 0.29 (0.50) 75.78± 0.12 (1.55) 73.61± 0.36 (0.07) 73.23± 0.26 (0.07)
GK [45] 83.50± 0.60 (2.32) 59.65± 0.31 (167.84) 30.64± 0.26 (122.61) 75.90± 0.10 (8.40) 56.56± 0.98 (0.49) 62.00± 0.87 (0.48)
MLG [25] 87.94± 1.61 (1.86) 63.26± 1.48 (2.36) 35.52± 0.45 (2.56) 76.34± 0.72 (166.45) 81.75± 0.24 (2.42) 81.31± 0.22 (2.45)
SGE (t = 3, ε = 0.1, δ = 0.1) 71.67± 0.86 (0.27) 53.53± 0.04 (0.29) 24.17± 0.54 (0.30) 60.00± 0.01 (0.29) 72.60± 0.31 (0.31) 71.66± 0.25 (0.28)
SGE (t = 3, ε = 0.1, δ = 0.05) 75.56± 0.52 (0.39) 53.53± 0.76 (0.41) 25.33± 0.75 (0.40) 60.42± 0.23 (0.41) 74.59± 0.75 (0.39) 74.66± 0.67 (0.42)
SGE (t = 3, ε = 0.05, δ = 0.1) 86.11± 0.00 (0.91) 54.12± 0.48 (0.89) 29.17± 0.03 (0.90) 63.39± 0.58 (0.91) 76.15± 0.72 (0.89) 74.90± 0.62 (0.91)
SGE (t = 3, ε = 0.05, δ = 0.05) 84.44± 0.74 (1.02) 55.88± 0.67 (1.03) 29.17± 0.10 (1.02) 64.07± 0.99 (1.03) 76.15± 0.24 (1.02) 76.21± 0.82 (1.05)
SGE (t = 4, ε = 0.1, δ = 0.1) 77.78± 0.41 (1.16) 55.59± 0.27 (1.17) 24.00± 0.92 (1.16) 59.83± 0.23 (1.18) 76.05± 0.61 (1.17) 78.05± 0.22 (1.15)
SGE (t = 4, ε = 0.1, δ = 0.05) 78.89± 0.41 (1.24) 60.29± 0.39 (1.27) 26.00± 0.26 (1.22) 59.92± 0.88 (1.24) 75.86± 0.65 (1.25) 76.55± 0.41 (1.26)
SGE (t = 4, ε = 0.05, δ = 0.1) 82.22± 0.31 (1.82) 61.18± 0.17 (1.85) 30.67± 0.85 (1.83) 64.41± 0.59 (1.84) 77.71± 0.91 (1.85) 78.82± 0.60 (1.86)
SGE (t = 4, ε = 0.05, δ = 0.05) 81.67± 0.89 (1.93) 63.53± 0.23 (1.95) 30.17± 0.72 (1.94) 64.32± 0.24 (1.96) 77.37± 0.67 (1.94) 78.48± 0.80 (1.97)
SGE (t = 5, ε = 0.1, δ = 0.1) 86.11± 0.05 (2.39) 56.18± 0.26 (2.37) 30.50± 0.43 (2.35) 65.76± 0.60 (2.37) 78.49± 0.49 (2.35) 79.89± 0.33 (2.36)
SGE (t = 5, ε = 0.1, δ = 0.05) 86.11± 0.05 (2.50) 54.71± 0.23 (2.49) 30.17± 0.46 (2.48) 65.68± 0.84 (2.47) 79.51± 0.67 (2.48) 79.74± 0.23 (2.50)
SGE (t = 5, ε = 0.05, δ = 0.1) 85.56± 0.52 (2.79) 62.06± 0.90 (2.73) 32.17± 0.27 (2.75) 68.90± 0.22 (2.76) 81.26± 0.13 (2.78) 79.02± 0.80 (2.77)
SGE (t = 5, ε = 0.05, δ = 0.05) 85.00± 0.89 (2.85) 62.06± 0.79 (2.89) 31.17± 0.85 (2.86) 68.64± 0.81 (2.88) 81.75± 0.29 (2.84) 79.89± 0.85 (2.87)
SGE (t = 6, ε = 0.1, δ = 0.1) 87.78± 0.31 (2.68) 59.41± 0.06 (2.71) 28.67± 0.22 (2.72) 68.98± 0.90 (2.69) 81.84± 0.84 (2.70) 80.65± 0.29 (2.71)
SGE (t = 6, ε = 0.1, δ = 0.05) 88.33± 0.15 (2.83) 61.47± 0.52 (2.84) 28.50± 0.66 (2.86) 70.08± 0.48 (2.83) 81.70± 0.94 (2.85) 80.94± 0.92 (2.87)
SGE (t = 6, ε = 0.05, δ = 0.1) 88.89± 0.70 (3.05) 57.65± 0.58 (3.06) 36.33± 0.28 (3.07) 72.63± 0.37 (3.07) 82.40± 0.88 (3.05) 81.22± 0.54 (3.04)
SGE (t = 6, ε = 0.05, δ = 0.05) 89.75± 0.24 (3.29) 55.59± 0.96 (3.31) 35.17± 0.26 (3.28) 73.05± 0.64 (3.30) 82.48± 0.87 (3.30) 81.25± 0.56 (3.32)
SGE (t = 7, ε = 0.1, δ = 0.1) 85.56± 0.68 (3.16) 58.53± 0.99 (3.15) 37.33± 0.46 (3.14) 72.54± 0.66 (3.13) 81.13± 0.74 (3.17) 81.38± 0.80 (3.15)
SGE (t = 7, ε = 0.1, δ = 0.05) 86.11± 0.93 (3.34) 57.06± 0.82 (3.32) 36.67± 0.85 (3.33) 72.80± 0.41 (3.35) 82.03± 0.55 (3.36) 81.22± 0.15 (3.37)
SGE (t = 7, ε = 0.05, δ = 0.1) 86.67± 0.37 (5.39) 59.12± 0.26 (5.37) 40.00± 0.50 (5.38) 76.08± 0.33 (5.37) 82.49± 0.91 (5.35) 82.62± 0.42 (5.36)
SGE (t = 7, ε = 0.05, δ = 0.05) 87.22± 0.27 (5.62) 60.00± 0.99 (5.61) 40.67± 0.40 (5.60) 76.58± 0.27 (5.63) 82.10± 1.04 (5.62) 82.32± 0.65 (5.64)

graph representation against inter and intra-class graph struc-
ture variations; for that purpose, we artificially disrupt graphs
in MUTAG, PTC and ENZYMES datasets. This disruption
process is random and consists in adding/deleting edges from
each original graph G = (V,E). More precisely, we derive
multiples graph instances (whose edge set cardinality is equal
to τ |E|) either by deleting (1 − τ)|E| edges from G (with
τ ∈ {0.2, 0.4, 0.6, 0.8}) or by adding (τ − 1)|E| extra edges
into G (with τ ∈ {1.2, 1.4, 1.6, 1.8, 2}). For each setting of
τ , we apply the proposed SGE along with the other state-
of-the-art methods – random walk kernel [49] (RW), shortest
path kernel [4] (SP), graphlet kernel [45] (GK), and multiscale
Laplacian graph kernel [25] (MLG) – and we plug the resulting
kernels into SVM for classification. Fig. 5 shows the evolution
of the classification accuracy with respect to different setting
of τ (also referred to as ”amount of edges” in that figure).
From these results, we observe that adding or deleting edges
naturally harms the classification accuracies of all the methods
especially MLG on MUTAG/PTC and RW on PTC and this
clearly shows their high sensitivity; specifically, MLG depends
on a base kernel defined on graph vertices so deleting edges
(possibly along with their nodes) hampers the accuracy. As for
RW, deleting (resp. adding) edges reduces (resp. increases) the
number of common walks between graphs and thereby affects
the relevance of their kernel similarity resulting into a drop in
performances. In contrast, our SGE method and the standard
graphlet kernel, are relatively more resilient to these graph
structure variations.

Finally, we observe that the overall performances of all
the methods (including ours) on the ENZYMES dataset are
relatively low compared to the other databases. This may result
from the relatively large number of classes which cannot be
easily distinguished using only the structure of those graphs

(without labels/attributes on their nodes, etc.). In order to
better establish this fact, we will show, in section VI-B, extra
experiments while considering labeled/attributed graphs.

B. COIL, GREC, AIDS, MAO and ENZYMES

We consider five different datasets (see Table VII) modeled
with graphs whose nodes are now labeled; three of them
viz. COIL, GREC and AIDS are taken from the IAM graph
database repository9 [40], the fourth one i.e. MAO is taken
from the GREYC Chemistry graph dataset collection10. The
fifth one is the ENZYMES dataset mentioned earlier in Section
VI-A, with the only difference being node and edge attributes
which are now used in our experiments. The COIL database
includes 3900 graphs belonging to 100 different classes with
39 instances per class; each instance has a different rotation
angle. The GREC dataset consists of 1100 graphs representing
22 different classes (characterizing architectural and electronic
symbols) with 50 instances per class; these instances have dif-
ferent noise levels. The AIDS database consists of 2000 graphs
representing molecular compounds which are constructed from
the AIDS Antiviral Screen Database of Active Compounds11.
This dataset consists of two classes viz. active (400 elements)
and inactive (1600 elements), which respectively represent
molecules with possible activity against HIV. The MAO
dataset includes 68 graphs representing molecules that either
inhibit (or not) the monoamine oxidase (an antidepressant drug
with 38 molecules). In all these datasets the task is again to
infer the membership of a given test instance among two or
multiple classes.

9Available at http://www.fki.inf.unibe.ch/databases/iam-graph-database
10Available at https://brunl01.users.greyc.fr/CHEMISTRY/
11See at http://dtp.nci.nih.gov/docs/aids/aids data.html
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TABLE VII
AVAILABLE DETAILS ON COIL, GREC, AIDS, MAO AND ENZYMES

(LABELED) GRAPH DATASETS.

Datasets #Graphs Classes Avg. #nodes Avg. #edges Node labels Edge labels
COIL 3900 100 (39 each) 21.5 54.2 NA Valency of bonds
GREC 1100 22 (50 each) 11.5 11.9 Type of

joint: corner,
intersection, etc.

Type of edge:
line or curve.

AIDS 2000 2 (1600 vs. 400) 15.7 16.2 Label of atoms Valency of bonds
MAO 68 2 (38 vs. 30) 18.4 19.6 Label of atoms Valency of bonds
ENZYMES 600 6 (100 each) 32.6 124.3 − −

Similarly to the previous experiments, we use the histogram
intersection kernel [2] on top of SGE and we plug it into
SVM for learning and graph classification. In order to measure
the accuracy of our method (reported in Table VIII), we use
the available splits of COIL, GREC and AIDS into training,
validation and test sets; for MAO, we consider instead the
leave-one-out error split. Note that these splits correspond to
the ones used by most of the related state-of-the-art methods.
These related methods also include dissimilarity embedding
(DE) with a prototype set of cardinality 100 and node at-
tribute statistics (NAS) based on fuzzy k-means and soft edge
assignment. Table VIII shows the performance of our proposed
stochastic graphlet embedding on these datasets for different
graphlet orders (and pairs of ε, δ) and its comparison against
the related work. Similarly to the previous section, we globally
observe an influencing positive impact of high-order graphlets
on performances. We also observe a gain in performances as
M (the number of samples) increases. These results clearly
show that our proposed method outperforms the related state-
of-the-art on COIL and MAO while on GREC and AIDS, it
performs comparably and utterly well.

C. AMA Dental Forms

Inspired by the same protocol as [43], we apply our method
to form document indexing and retrieval on the publicly
available benchmark12 used in [43]; the latter is closely related
to our framework. Indeed, it also seeks to describe data by
measuring the distribution of their subgraphs. Therefore we
consider this benchmark and the related work in [43] in order
to evaluate and compare the performance of our method. The
main goal of this benchmark is to index and retrieve form
documents that have sparse and inconsistent textual content
(due to the variability in filling the fields of these documents).
These forms usually contain networks of rectilinear rule lines
serving as region separators, data field locators, and field group
indicators (see Fig. 6).

The dataset used for this experiment is basically a collection
of 6247 American Medical Association (AMA) dental claim
forms encountered in a production document processing ap-
plication. This dataset also includes 208 blank forms which
serve as ground-truth categories, so the task is to assign each
of these forms to one of the 208 categories. In these forms the
rectilinear lines intersect each other in well defined ways that
form junction and also free end terminator, which essentially
serve as the graph nodes and their connections as the graph
edges. There are only 13 node labels depending on the junction

12See www2.parc.com/isl/groups/pda/data/DentalFormsLineArtDataSet.zip

(a) FDent013 (b) FDent097

(c) FDent102 (d) 100721104848

Fig. 6. Examples of American Medical Association (AMA) dental claim
forms documents. Among the above ‘FDent013’, ‘FDent097’ and ‘FDent102’
are the three different categories, which are obtained by digitizing and
removing the textual parts from the respective blank form templates and
‘100721104848’ is a dental claim form encountered in a production document
processing application, which is obtained by digitizing and removing the
textual parts from it. This particular form belongs to the same class as of
‘FDent102’. (Best viewed in pdf).

type (refer to [43] for more details) and only two edge labels:
vertical and horizontal.

We follow the same protocol, as [43], in order to evaluate
and compare the performances of our method. This protocol
consists in comparing the ranking of category model matches
to the document image graphs between the classifier output
and the ground-truth. Let rg,c be the ranking assigned by a
classifier to the model with the top ranking in the ground-truth
and let rc,g be the ranking in the ground-truth of the model
assigned top ranking by the classifier. Then, the performance
of our method is measured by

ρ =
1

2

( 1

rc,g
+

1

rg,c

)
, (1)

here a maximum score ρ = 1 is given only when the top rank-
ing categories assigned by the classifier and the ground-truth
agree. Some credit is also given when the top ranking category
(of the ground truth or classifier output) score highly in the
complement rankings. For more details on this performance
measure, we refer to [43].

We apply our stochastic graphlet embedding both to the
form documents and also to the templates (with ε = 0.05 and
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TABLE VIII
CLASSIFICATION ACCURACIES (IN %) OBTAINED BY OUR PROPOSED STOCHASTIC GRAPHLET EMBEDDING (SGE) ON COIL, GREC, AIDS AND MAO

DATASETS AND COMPARISON WITH STATE-OF-THE-ART METHODS viz.RANDOM WALK KERNEL (RW) [49], DISSIMILARITY EMBEDDING (DE) [7], NODE
ATTRIBUTE STATISTICS (NAS) [19] AND MULTISCALE LAPLACIAN GRAPH KERNEL (MLG) [25]. THE AVERAGE PROCESSING TIME FOR GENERATING

THE EMBEDDING OF A GIVEN GRAPH IS INDICATED WITHIN THE PARENTHESIS JUST AFTER EACH ACCURACY RESULT.

Method COIL GREC AIDS MAO ENZYMES (labeled)
RW [49] 94.2 (2.23) 96.2 (1.67) 98.5 (1.89) 82.4 (2.01) 28.17± 0.76 (3.14)
DE [6] 96.8 95.1 98.1 91.2 −
NAS [19] 98.1 99.2 98.3 81.7 −
MLG [25] 97.3 (3.14) 96.3 (1.67) 94.7 (1.89) 89.2 (2.01) 61.81± 0.99 (3.16)
SGE (t = 1, ε = 0.1, δ = 0.1) 89.60 (0.43) 98.67 (0.40) 95.45 (0.42) 82.35 (0.46) 31.67± 0.89 (0.45)
SGE (t = 1, ε = 0.1, δ = 0.05) 90.60 (0.54) 99.05 (0.52) 94.56 (0.51) 82.35 (0.51) 33.33± 0.39 (0.53)
SGE (t = 1, ε = 0.05, δ = 0.1) 92.40 (0.85) 99.43 (0.84) 94.54 (0.81) 85.29 (0.80) 34.00± 0.56 (0.86)
SGE (t = 1, ε = 0.05, δ = 0.05) 93.90 (1.02) 99.43 (1.06) 95.87 (1.05) 88.24 (1.04) 35.33± 0.26 (1.05)
SGE (t = 2, ε = 0.1, δ = 0.1) 91.50 (0.51) 99.24 (0.53) 95.54 (0.49) 85.29 (0.55) 37.00± 0.81 (0.52)
SGE (t = 2, ε = 0.1, δ = 0.05) 92.40 (0.67) 99.24 (0.62) 96.87 (0.66) 85.29 (0.68) 38.33± 0.74 (0.69)
SGE (t = 2, ε = 0.05, δ = 0.1) 93.90 (1.04) 99.43 (1.07) 97.76 (1.05) 85.29 (1.02) 39.67± 0.05 (1.03)
SGE (t = 2, ε = 0.05, δ = 0.05) 94.40 (1.21) 99.43 (1.23) 97.87 (1.24) 88.24 (1.22) 38.00± 0.89 (1.22)
SGE (t = 3, ε = 0.1, δ = 0.1) 91.80 (0.68) 99.43 (0.67) 97.51 (0.64) 88.24 (0.69) 47.33± 0.30 (0.67)
SGE (t = 3, ε = 0.1, δ = 0.05) 93.70 (0.84) 99.24 (0.82) 98.01 (0.83) 85.29 (0.80) 45.00± 0.62 (0.82)
SGE (t = 3, ε = 0.05, δ = 0.1) 94.70 (1.25) 99.43 (1.22) 97.98 (1.26) 85.29 (1.28) 53.33± 0.97 (1.26)
SGE (t = 3, ε = 0.05, δ = 0.05) 95.90 (1.43) 99.43 (1.41) 97.88 (1.38) 91.18 (1.42) 51.00± 0.67 (1.45)
SGE (t = 4, ε = 0.1, δ = 0.1) 93.50 (1.81) 99.24 (1.83) 97.98 (1.78) 88.24 (1.79) 45.33± 0.93 (1.82)
SGE (t = 4, ε = 0.1, δ = 0.05) 94.70 (1.98) 99.43 (1.97) 98.18 (1.93) 91.18 (1.96) 45.00± 0.62 (2.02)
SGE (t = 4, ε = 0.05, δ = 0.1) 95.80 (2.24) 99.43 (2.26) 98.32 (2.22) 91.18 (2.20) 56.00± 0.40 (2.25)
SGE (t = 4, ε = 0.05, δ = 0.05) 96.50 (2.42) 99.24 (2.43) 98.16 (2.44) 94.12 (2.37) 54.67± 0.52 (2.42)
SGE (t = 5, ε = 0.1, δ = 0.1) 94.90 (2.74) 99.05 (2.71) 98.76 (2.76) 91.18 (2.77) 56.33± 0.52 (2.76)
SGE (t = 5, ε = 0.1, δ = 0.05) 95.50 (2.91) 99.05 (2.93) 98.82 (2.92) 91.18 (2.94) 54.00± 0.73 (2.93)
SGE (t = 5, ε = 0.05, δ = 0.1) 97.90 (3.29) 99.43 (3.31) 99.12 (3.32) 94.12 (3.34) 60.33± 0.45 (3.27)
SGE (t = 5, ε = 0.05, δ = 0.05) 98.86 (3.43) 99.62 (3.39) 98.92 (3.41) 97.06 (3.46) 62.33± 0.14 (3.42)

TABLE IX
PERFORMANCE MEASURE ρ OBTAINED BY OUR METHOD (SGE) FOR RETRIEVING THE AMA DENTAL FORMS DOCUMENTS INTO 208 MODEL

CATEGORIES AND COMPARISON WITH THE METHOD PROPOSED BY SAUND [43]. IT SHOWS THE RESULTS VARYING THE SIZE OF GRAPHLETS AND THEIR
COMBINATION. hist. int. sim. REFERS TO FEATURE VECTOR COMPARISON USING HISTOGRAM INTERSECTION SIMILARITY WHEREAS cosine sim. REFERS

TO FEATURE VECTOR COMPARISON USING COSINE SIMILARITY. CMD comp. REFERS TO FEATURE VECTOR COMPARISON USING THE CMD
DISTANCE [43]. cos comp. REFERS TO FEATURE VECTOR COMPARISON USING THE COSINE DISTANCE. Extv. G.L. Level REFERS TO THE SIZE OF

SUBGRAPH IN TERMS OF NUMBER OF NODES. THE AVERAGE PROCESSING TIME FOR GENERATING THE EMBEDDING OF A GIVEN GRAPH IS INDICATED
WITHIN THE PARENTHESIS AFTER EACH PERFORMANCE MEASURE.

SGE Saund [43]
Distance or Perf. Perf. Extv. Perf.
Similarity Graphlets Measure Graphlets Measure Test G.L. Measure
Measure ρ ρ Condition Level ρ

hist. int. sim. t = 0 0.291 (0.24) − − − − −
hist. int. sim. t = 1 0.264 (1.02) t = {0, . . . , 1} 0.296 (1.15) − − −
hist. int. sim. t = 2 0.336 (1.21) t = {0, . . . , 2} 0.337 (1.37) − − −
hist. int. sim. t = 3 0.382 (1.43) t = {0, . . . , 3} 0.390 (1.61) − − −
hist. int. sim. t = 4 0.388 (2.42) t = {0, . . . , 4} 0.416 (2.71) CMD comp. {1, . . . , 2} 0.411
hist. int. sim. t = 5 0.393 (3.43) t = {0, . . . , 5} 0.435 (3.67) CMD comp. {1, . . . , 3} 0.467
hist. int. sim. t = 6 0.452 (3.87) t = {0, . . . , 6} 0.486 (4.15) CMD comp. {1, . . . , 4} 0.507
hist. int. sim. t = 7 0.489 (6.22) t = {0, . . . , 7} 0.536 (6.45) CMD comp. {1, . . . , 5} 0.524
cosine sim. t = 0 0.289 (0.23) − − − − −
cosine sim. t = 1 0.217 (1.04) t = {0, . . . , 1} 0.293 (1.17) − − −
cosine sim. t = 2 0.276 (1.24) t = {0, . . . , 2} 0.304 (1.41) − − −
cosine sim. t = 3 0.282 (1.41) t = {0, . . . , 3} 0.316 (1.64) − − −
cosine sim. t = 4 0.308 (2.46) t = {0, . . . , 4} 0.328 (2.49) cosine comp. {1, . . . , 2} 0.341
cosine sim. t = 5 0.312 (3.51) t = {0, . . . , 5} 0.336 (3.53) cosine comp. {1, . . . , 3} 0.353
cosine sim. t = 6 0.323 (3.97) t = {0, . . . , 6} 0.361 (3.98) cosine comp. {1, . . . , 4} 0.371
cosine sim. t = 7 0.341 (6.27) t = {0, . . . , 7} 0.382 (6.31) cosine comp. {1, . . . , 5} 0.377

δ = 0.05). We consider two different functions that measure
the similarity between each pair of document and template
embeddings; viz. histogram intersection [2] (a.k.a Common-
Minus-Difference) and cosine as also achieved in [43]. Table
IX shows these measures obtained by our stochastic graphlet
embedding using graphlets with different fixed orders taken
separately and combined; again, t = 0 corresponds to single-
ton graphlets i.e. only nodes. As observed previously, high

order graphlets have more influencing positive impact on
performances. Furthermore, mixing graphlets with different
orders is highly beneficial and makes it possible to overtake
the related work [43].

D. MNIST Database

In this section, we show the impact of our proposed stochas-
tic graphlet embedding on the performance of handwritten
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digit classification. We consider the well known MNIST
database13 (see example in Fig. 7) which consists in 60000
training and 10000 test images belonging to 10 different digit
categories. In this task, the goal is to assign each test sample
to one of the 10 categories; in these experiments, we are
again interested in showing significant and progressive impact
– of combining increasing order graphlets – on performances.
We model each binary digit with its skeleton graph; nodes

Fig. 7. Sample of image pairs belonging to the same class taken from MNIST.

in this graph correspond to pixels and edges connect these
pixels to their 8 respective immediate neighbors (see [16] for
graph representation of digits). In order to label nodes, we
consider the general shape context descriptor [3] on nodes
and cluster them using k-means algorithm (with k = 20); the
latter assigns each node a discrete label in [1, 20]. Considering
the resulting graphs (with labeled nodes) on the handwritten
digits, we use our stochastic graphlet embedding in order to
obtain the distributions of high-order graphlets (with ε = 0.05
and δ = 0.05), and we evaluate the histogram intersection
kernel [2] (on these distributions) to achieve SVM training
and classification; first, we use LIBSVM to train a “one-vs-
all” SVM classifier for each digit category, and then we assign
a given test digit to the category with the largest SVM score.
Table X shows the classification accuracy obtained by our
stochastic graphlet embedding, using graphlets with increasing
orders; as shown in [16], we consider a kernel for each order.
As already observed on the other datasets, the classification
performances steadily improve as graphlet orders increase.

TABLE X
ACCURACIES (IN %) OBTAINED BY OUR METHOD WITH A COMBINATION

OF DIFFERENT GRAPHLET ORDERS (VALUES OF t) ON THE MNIST
DATASET. THE AVERAGE PROCESSING TIME FOR GENERATING THE

EMBEDDING OF A GIVEN GRAPH IS INDICATED WITHIN THE PARENTHESIS
AFTER EACH ACCURACY VALUE.

t {1, 2} {1, . . . , 3} {1, . . . , 4} {1, . . . , 5} {1, . . . , 6} {1, . . . , 7}
Acc. 93.75 (1.37) 95.08 (1.65) 96.15 (2.45) 97.32 (3.51) 98.67 (3.95) 99.20 (6.27)

VII. CONCLUSION

In this paper, we introduce a novel high-order stochastic
graphlet embedding for graph-based pattern recognition. Our
method is based on a stochastic depth-first search strategy
that samples connected and increasing orders subgraphs (a.k.a
graphlets) from input graphs. By its design, this sampling
is able to handle large (unlimited) order graphlets where
nodes (in these graphlets) correspond to local information and
edges capture interactions between these nodes. Our proposed
method is also able to measure the distribution of the sampled
isomorphic graphlets, effectively and efficiently, using hashing
and without addressing the GI-complete graph isomorphism
nor the NP-complete subgraph isomorphism; indeed, we use

13Available at http://yann.lecun.com/exdb/mnist

efficient hash functions to assign graphlets to isomorphic sub-
sets with a very low probability of collision. Under the regime
of large graphlet sampling, the proposed method produces
empirical graphlet distributions that converge to the actual
ones. Extensive experiments show the effectiveness and the
positive impact of high-order graphlets on the performances
of pattern recognition using various challenging databases.

As a future work, one may improve the estimates of graphlet
distributions by designing other hash functions (while reducing
further their probability of collision) and by eliminating the
residual effect of colliding graphlets in these distributions. One
may also extend the proposed framework to graphs with other
attributes in order to further enlarge the application field of
our method.
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[21] T. Horváth, T. Gärtner, and S. Wrobel, “Cyclic pattern kernels for
predictive graph mining,” in KDD, 2004, pp. 158–167.

[22] S. Jouili and S. Tabbone, “Graph embedding using constant shift
embedding,” in ICPR, 2010, pp. 83–92.

[23] J. Kandola, N. Cristianini, and J. S. Shawe-taylor, “Learning semantic
similarity,” in NIPS, 2002, pp. 673–680.
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