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Abstract

Manifold learning techniques are affected by two criti-
cal aspects: (i) the design of the adjacency graphs, and (ii)
the embedding of new test data—the out-of-sample problem.
For the first aspect, the proposed schemes were heuristically
driven. For the second aspect, the difficulty resides in find-
ing an accurate mapping that transfers unseen data samples
into an existing manifold. Past works addressing these two
aspects were heavily parametric in the sense that the opti-
mal performance is only reached for a suitable parameter
choice that should be known in advance.

In this paper, we demonstrate that sparse coding the-
ory not only serves for automatic graph reconstruction
as shown in recent works, but also represents an accu-
rate alternative for out-of-sample embedding. Consider-
ing for a case study the Laplacian Eigenmaps, we applied
our method to the face recognition problem. To evalu-
ate the effectiveness of the proposed out-of-sample embed-
ding, experiments are conducted using the k-nearest neigh-
bor (KNN) and Kernel Support Vector Machines (KSVM)
classifiers on four public face databases. The experimental
results show that the proposed model is able to achieve high
categorization effectiveness as well as high consistency with
non-linear embeddings/manifolds obtained in batch modes.

1. Introduction

Manifold learning refers to the problem of recovering the
structure of a manifold from a set of unordered sample data.
Manifold learning is often equated with dimensionality re-
duction, where the goal is to find an embedding or unrolling
of the manifold into a lower dimensional space such that
certain relationships between samples are preserved. Such
embeddings are typically used for visualization. In recent
years, a new family of non-linear dimensionality reduction
techniques for manifold learning has emerged. The most

known ones are: Kernel Principal Component Analysis
(KPCA) [22], Locally Linear Embedding (LLE) [19, 20],
Isomap [23], Supervised Isomap [11], Laplacian Eigen-
maps (LE)[1]. The non-linear methods such as Locally Lin-
ear Embedding (LLE), Laplacian Eigenmaps, Isomap, Hes-
sian LLE (hLLE) [8] focus on preserving the local struc-
ture of data. LLE formulates the manifold learning problem
as a neighborhood-preserving embedding, which learns the
global structure by exploiting the local symmetries of linear
reconstructions. Isomap extends the classical Multidimen-
sional Scaling (MDS) [3] by computing the pairwise dis-
tances in the geodesic space of the manifold. Essentially,
Isomap attempts to preserve geodesic distances when data
are embedded in the new low dimensional space. Based on
the spectral decomposition of the graph Laplacian, Lapla-
cian Eigenmaps actually try to find Laplacian eigenfunction
on the manifold.

The main issues of the non-linear methods are: (1) the
quality of embedded space is very sensitive to the choice
of free parameters used in the data graph construction [26],
and (2) they do not provide an explicit mapping function be-
tween low and high dimensional spaces [18]. Such function
is essential for ensuring continuity of low dimensional rep-
resentation and projecting data between spaces. Many ex-
isting manifold learning techniques do not naturally contain
an out-of-sample extension so research has been undertaken
to find ways of extending manifold learning techniques to
handle new samples. The out-of-sample extension prob-
lem has not received much attention by researchers since
it was considered as a pure non-linear regression problem
[10, 27]. Therefore, the out-of-sample problem has been ad-
dressed quite satisfactorily by applying Radial Basis Func-
tion network to approximate the optimal mapping function
[10]. However, the quality of Radial Basis Function net-
work relies on the careful selection of a few parameters
which are chosen empirically [21]. In [7], the author pre-
sented an algorithm, Locally Smooth Manifold Learning,
for learning the structure of a manifold in terms of tangent



vectors. Rather than pose manifold learning as the prob-
lem of recovering an embedding, they posed the problem
in terms of learning a warping function for traversing the
manifold using the learned tangent vectors. Smoothness as-
sumptions on this warp allowed the method generalize to
unseen data. In [2], the authors cast MDS, ISOMAP, LLE,
and LE in a common framework, in which these methods
are seen as learning eigenfunctions of a kernel. The authors
try to generalize the dimensionality reduction results for the
unseen data samples. They also show how the width of the
Gaussian can be tuned to achieve extrapolation.

In this paper, we address the out-of-sample extension
problem. We adopt the sparse representation approach as
an optimal solution to the ’out-of-sample’ problem. The
sparse representation was recently used as an effective alter-
native to the parametric construction of the adjacency graph
[26]. Without any loss of generality, we chose the Laplacian
Eigenmaps as one of the non-linear dimensionality reduc-
tion techniques to test our method. We present a general-
ized out-of-sample extension solution using the recent find-
ings in sparse coding theory. Unlike existing approaches we
do not require information to be retained from the learning
process, such as the pairwise distance matrix or the resultant
eigenvectors, we simply learn the mapping from the origi-
nal high-dimensional data and its low-dimensional counter-
part. Although the proposed method integrates the locality
preserving principle in its derivation, it is intended to be in-
dependent of any specific manifold learning algorithm.

The paper is structured as follows. In section 2, we
briefly review the Laplacian Eigenmaps as well as the L1

graph construction. In section 3, we introduce our proposed
approach for the out-of-sample problem based on sparse
representation. Section 4 contains the experimental results
performed on four face data sets. We evaluate the perfor-
mance of the proposed out-of-sample method for the face
recognition problem. Finally, in section 5 we present our
conclusions.

2. Background

2.1. Review of Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimension-
ality reduction technique that aims to preserve the local
structure of data [1]. Using the notion of the Laplacian of
the graph, this non-supervised algorithm computes a low-
dimensional representation of the data set by optimally pre-
serving local neighborhood information in a certain sense.
We assume that we have a set of N samples {xi}Ni=1 ⊂
RD. LE seeks latent points {yi}Ni=1 ⊂ RL that minimize
1
2

∑
i,j ∥yi− yj∥2 Wij , which discourages placing far apart

latent points that correspond to similar observed points. It
can be shown in [1] that the matrix of embedded data Y can
be obtained by solving a generalized eigenvalues problem.

The maximum number of eigenvectors (i.e., the dimension-
ality of the embedded space) is given by the number of the
training samples.

2.2. Review of L1 graph reconstruction

In traditional graph construction process, the graph ad-
jacency structure and the graph weights are derived sepa-
rately. In [26], the authors argue that the graph adjacency
structure and the graph weights are interrelated and should
not be separated. Thus it is desired to develop a procedure
which can simultaneously completes these two tasks within
one step. Indeed, many experiments show that the recogni-
tion rate in the embedded space of LE obtained with a tra-
ditional graph construction can be highly depending on the
choice of the neighborhood size in the reconstructed graph
[25, 15]. Choosing the ideal size in advance can be a very
difficult task.

The basic idea of [26] is to simultaneously estimate the
graph adjacency structure and graph weights. To this end,
every sample image is coded as a sparse linear combination
of the rest of the training samples [9, 24]. This is carried out
by implementing an L1 minimization process to obtain the
sparse representation of that sample as linear combination
of the remaining training samples. The coefficients for the
L1 reconstruction reflect the relation among samples [14].
The spareness of the obtained coefficients encodes the graph
structure, and the absolute values of the coefficients are the
weights.

Figure 1. The out-of-sample problem consists in finding the em-
bedding coordinate of an unseen sample.

3. Proposed out-of-sample embedding
In this section, we show that the theory of sparse repre-

sentation (coding) can be used for solving the out-of-sample
extension problem without relying on traditional heuristics
that are usually parametric. For a case study, we use the
Laplacian Eigenmaps for the non-linear embedding. The



reason of our choice is motivated by the fact that this trans-
form is widely used by machine learning community for
spectral clustering [16, 28].

3.1. Projection of new samples

Assume we have obtained an LE embedding Ys =
(y1, . . . , yN ) of seen samples Xs = (x1, . . . , xN ) and
consider unseen (out-of-sample) sample in observed space
xN+1 (See Figure 1). The natural way to embed the
new sample would be to recompute the whole embedding
(Ys, yN+1) for (Xs, xN+1). This is computationally costly
and does not lead to defining a mapping for new samples;
we seek a way of keeping the old embedding fixed and em-
bed new sample based on that. Then, the next most natural
way is to recompute the embedding but keeping the old em-
bedded samples fixed and imposing that the embedding of
the new sample (vector yN+1) should minimize the follow-
ing target function:

N∑
i=1

∥yN+1 − yi∥2 W(N+1)i (1)

=
N∑
i=1

(yN+1 − yi)
T (yN+1 − yi)W(N+1)i (2)

The above should correspond to a minimum, and thus
the derivative with respect to yN+1 of the target function
should vanish:

2
N∑
i=1

(yN+1 − yi)W(N+1)i = 0 (3)

From the above, we can conclude that the embedding
yN+1 is given by:

yN+1 =

∑N
i=1 W(N+1)i yi∑N
i=1 W(N+1)i

(4)

The above formula stipulates that the embedding of an un-
seen sample is simply the linear combination of all fixed
embedded samples where the linear coefficients are set to
the similarity between the unseen sample and the existing
sample.

Whenever W(N+1)i is set to a Kernel function (i.e.,
W(N+1)i = K(xN+1, xi), Eq. (4) is equivalent to the
Laplacian Eigenmaps Latent Variable Model (LELVM) in-
troduced in [6].

3.2. Computation of the similarity coefficients via
Sparse Representation

The problem of out-of-sample embedding boils down to
the estimation of the similarities W(N+1)i, i = 1, . . . , N . In

[6], these W(N+1)i were computed using a K nearest neigh-
bor and a Heat Kernel. However, it is well known that the
neighborhood size as well as the Kernel parameter may af-
fect the embedding process. We will bypass this limitation
by using the coding provided by sparse representation.

We apply the sparse coding/representation principle for
computing the set of coefficients W(N+1)i [14]. Let the vec-
tor a = (W(N+1)1,W(N+1)2, . . . ,W(N+1)N )T . Thus, the
objective is to compute the vector a given the unseen sample
and the training data. Based on sparse coding, the unseen
sample xN+1 can be written as

xN+1 =
N∑
i=1

ai xi + e = X a + e (5)

The goal is to minimize both the reconstruction error e and
the L1 norm of the vector a:

mina,e (∥a∥L1 + ∥e∥L1) s.t. xN+1 = X a + e (6)

Let a′ denote the vector a′ = (aT , eT )T and I denote the
D × D identity matrix, then the objective function (6) can
be written as:

min ∥a′∥L1 s.t. [X I] a′ = xN+1 (7)

Although no sparse priors are imposed, the sparse prop-
erty of the coefficient vector a is generated naturally by the
L1 optimization. The optimization of (7) is carried out us-
ing the matlab package provided by [5]. Once the vector
(aT , eT )T is computed, the similarity coefficients W(N+1)i

are set to:

W(N+1)i = |ai|, i = 1, . . . , N

3.3. Advantages of the proposed outofsample em
bedding scheme

Although our proposed out-of-sample formula (Eq. (4))
is similar to that of the Latent Variable Model [6], it has the
two following interesting differences and advantages:

1. For the LVM scheme, the neighborhood size must be
set manually, and the optimal setting may be different
for different data sets. In our scheme, the computation
of similarity coefficients adapts to the dataset through
the use of sparse coding. No parameter is required.

2. There have been many ways to compute the similar-
ity coefficients and the most popular one among them
is the typical Heat Kernel (Gaussian weighting func-
tion). However, the Gaussian aperture may affect the
final classification results significantly, and how to op-
timally determine this parameter is still an open prob-
lem. Our scheme get rid of this since we exploit the



sparseness property of the deduced coefficients in or-
der to express both adjacency structure and the associ-
ated weights without any predefined parameter.

4. Performance evaluation

To validate the effectiveness of our proposed approach,
we applied it to the face recognition problem. The exper-
imental results are reported in terms of recognition accu-
racy and a similarity measure of the embeddings (’out-of-
sample’ vs ’batch-mode’).

4.1. Data sets

We considered in our experiments four public face data
sets. All these databases are characterized by a large vari-
ation in face appearance. These databases are as follows:
ORL1, Extended Yale - part B2, PIE3, and PF014. Figure
2 shows some face samples in the PF01 face Database.

Figure 2. Some samples in PF01 data set.

4.2. Recognition accuracy

To make the computation of the embedding process more
efficient, the dimensionality of the original face samples
was reduced by applying random projections [12]. It has
a similar role to that of PCA yet with the obvious advantage
that random projections do not need any training data.

We have compared our method with three other ap-
proaches. The first one is the Latent Variable Model (LVM),
proposed in [6]. The second one is a linearization method of
the existing mapping Xs → Ys. To this end, we use simple
linear regression in order to infer a matrix transform A that
best approximates the existing mapping through the linear
equation Ys = AT Xs. We stress the fact the linearization
has not been thoroughly tested as an out-of-sample method.
Instead, this linearization was used for spectral regression
(e.g., [4]). The third one is a representation based on Radial-
Basis Functions (RBF) [17, 10]. In our implementation of
the RBF method, we used Gaussian kernels whose number
is equal to the number of training samples. In other words,

1http : //www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html

2http : //vision.ucsd.edu/ ∼ leekc/ExtY aleDatabase/
ExtY aleB.html

3http : //www.ri.cmu.edu/projects/project 418.html
4https : //sites.google.com/site/postechimlab2012/databases/face−

database− 2001

we considered each training sample as a center. The aper-
ture of the Gaussian kernels was set to the average squared
distances between the pairs of training samples.

For each face data set and for every embedding method,
we conducted three groups of experiments for which the
percentage of training samples was set to 30%, 50% and
70% of the whole data set. The remaining data was used for
testing. Here, the testing implies: (i) the out-of-sample em-
bedding of the unseen observation (face) (new observation
embedding), and (ii) assigning it a class-label through the
use of a classifier in the embedded space (recognition).

We considered for comparison two classifiers: nearest
neighbor (NN) and Support Vector Machines (SVM). For
a given out-of-sample embedding method, the recognition
rate was computed for several dimensions belonging to
[5, Lmax], where Lmax is the maximum dimensionality of
LE embedding, which is equal to the number of training
samples. Figures 3 and 4 illustrate the recognition rate as
a function of the dimension of the embedded space for all
the 4 out-of-sample embedding methods and for the four
face datasets when the training percentage is set to 30%.
In these two figures, the maximum dimensionality Lmax is
different for every face database since each database has a
different size. The curves have been obtained by averaging
the results over ten random splits. Figure 3 corresponds to
the NN classifier (1 nearest neighbor). Figure 4 corresponds
the SVM classifier based on a Gaussian kernel.

Tables 1 and 2 illustrate the best (average) performance
obtained by each ’out-of-sample’ method, based on 10 ran-
dom splits using NN and SVM, respectively. Numbers
marked in bold designate the best results. Each table de-
picts the results of two groups of experiments for which the
training percentage was 50% and 70%, respectively. For
the case of LVM method, the ϵ parameter corresponds to
the number of neighbors used to approximate the unseen
sample.

From the results, we can draw the following conclusions:
(i) For the case of NN, the above results confirm the

superiority of our approach when compared with existing
ones. We can observe that this superiority was obtained for
all data sets and for all dimensions tested for the obtained
embedding space. We can also observe that the lineariza-
tion method provided the poorest results, which can be ex-
plained by the fact that the linear method is global and does
not take into account the local adjacency information. We
can also appreciate that, for the NN classifier, the perfor-
mance of LVM and RBF depends on the dataset used. There
is no general trend that shows that one method is better than
the other.

(ii) For the case of SVM, the sparse representation does
not guarantee always the best recognition accuracy rate, but
it can be outperformed by the RBF method for some few
cases. This could be explained by the fact that both RBF
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Figure 3. Experimental results on four face data sets. The used
classifier was 1 NN.

and SVM are highly non-linear techniques which can bene-
fit each other well. For the SVM classifier, we can observe
that the superiority of RBF was only obtained for few cases
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Figure 4. Experimental results on four face data sets. The used
classifier was SVM.

and for high dimensions (see PIE and PF01 datasets in Fig-
ure 4). In practice, one needs to find a trade-off between a
high recognition rate and a compact representation with a



reduced number of dimensions. Thus, this requirement fa-
vors again our proposed sparse representation method since
it has the best performance for low dimensions even when
difficult face datasets (such as PIE) are considered. It is
worth mentioning that this advantage is not shown in the
Tables since the latter depict the best performances over the
number of dimensions.

Dataset Sparse LVM Lin. RBF

50%-50% ϵ = 3 ϵ = 5

ORL 82.5% 72.0% 60.3% 46.4% 52.4%

Ext. Yale 91.4% 61.1% 46.8% 53.1% 89.6%

PIE 66.2% 27.5% 20.6% 12.2% 56.2%

PF01 52.7% 27.3% 20.4% 8.2% 42.1%

70%-30% ϵ = 3 ϵ = 5

ORL 88.7% 82.1% 73.6% 53.2% 68.6%

Ext. Yale 92.1% 70.9% 58.3% 57.1% 92.5%
PIE 72.8% 35.4% 26.8% 13.4% 64.0%

PF01 54.4% 34.0% 27.1% 8.6% 47.8%

Table 1. Maximum average recognition rate using the Nearest
Neighbor classifier.

Dataset Sparse LVM Lin. RBF

50%-50% ϵ = 3 ϵ = 5

ORL 82.6% 75.4% 64.0% 53.7% 62.6%

Ext. Yale 94.1% 68.8% 63.0% 88.3% 88.0%

PIE 73.28% 31.6% 23.5% 38.5% 74.3%
PF01 53.42% 28.7% 23.0% 20.1% 62.3%
70%-30% ϵ = 3 ϵ = 5

ORL 90.5% 85.6% 77.0% 62.8% 75.7%

Ext. Yale 95.7% 78.5% 75.0% 90.5% 91.0%

PIE 80.7% 40.5% 30.1% 36.7% 80.7%
PF01 60.3% 35.8% 29.1% 15.7% 72.1%

Table 2. Maximum average recognition rate using the SVM clas-
sifier.

4.3. Assessing manifold reconstruction accuracy

In the previous section, we have evaluated the recogni-
tion performance of the proposed out-of-sample embedding
method. However, the main role of the out-of-sample em-
bedding method is to complete the reconstruction of the
manifold in the embedded space (i.e., by adding the new
observations to the embedded space). To this end, we can
compare the coordinates of the new embedded observations
with their coordinates computed in the batch mode. The
batch mode assumes that the whole data set is used in order
to get the non-linear manifold learning.

In order to quantify the accuracy of the out-of-sample
embedding methods, we use the following error measure:

Sparse LVM Linearization RBF
50%-50%
ORL 0.3597 0.4058 0.9614 0.7167
Ext. Yale 0.3564 0.3892 0.7528 0.4958
PIE 0.4248 0.4514 0.7758 0.4462
PF01 0.4040 0.4746 0.7746 0.4433

Table 3. Alignment error between batch-mode manifold and the
out-of-sample computed manifold (See text for details.)

e =
dist(Y, Ŷ)

∥Ŷ∥F
where dist(, ) denotes the Procrustes distance [13], ∥A∥F
denotes the Frobenius norm of the matrix A, and Y and
Ŷ are the test data that are provided by the out-of-sample
method and the associated batch one, respectively. The
above error can quantify the dissimilarity between the batch
mode geometric configuration and the out-of-sample geo-
metric configuration related to the test observations.

In table 3, we show some results based on this definition
for all out-of-sample methods. Numbers marked in bold
represent the best alignment between ’out-of-sample’ and
’batch-mode’ embedding. The smaller the number, the bet-
ter the alignment. We could conclude that sparse represen-
tation offers the best similarity with the batch mode embed-
ding. In the above experiment, the percentage of training is
set to 50%.
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Figure 5. Alignment error as a function of the embedded space
dimensionality.

Figure 5 shows, for the UMIST dataset5 (training per-
centage is 70%), the evolution of the dissimilarity, e, ob-
tained by the out-of sample methods as function of dimen-
sionality of the embedded space. We could appreciate that,
for all out-of-sample methods, the dissimilarity distance is
decreasing with the increase of the embedding dimensional-

5http : //www.shef.ac.uk/eee/research/vie/research/
face.html



ity. However, after a certain threshold, the Sparse represen-
tation, again, guarantees the highest similarity. We can also
observe that the alignment obtained by the LVM and pro-
posed methods was much better than that of the lineariza-
tion and RBF methods.

5. Conclusion
In this paper, we demonstrated that sparse representa-

tion can serve as an accurate alternative for out-of-sample
embedding. Considering for a case study the Laplacian
Eigenmaps, we applied our method to the face recognition
problem. Indeed, the proposed out-of-sample embedding in
general provided the best classification accuracy as well as
the best alignment between out-of-sample mode and batch
mode. The experimental results demonstrate that our algo-
rithm can maintain an accurate low-dimensional represen-
tation of the data without any parameter tuning. A natural
extension of our approach is its application to online learn-
ing and incremental embedding.
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