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We present a computational model that computes and integrates in a nonlocal fashion several configural
cues for automatic figure–ground segregation. Our working hypothesis is that the figural status of each
pixel is a nonlocal function of several geometric shape properties and it can be estimated without explic-
itly relying on object boundaries. The methodology is grounded on two elements: multi-directional linear
voting and nonlinear diffusion. A first estimation of the figural status of each pixel is obtained as a result
of a voting process, in which several differently oriented line-shaped neighborhoods vote to express their
belief about the figural status of the pixel. A nonlinear diffusion process is then applied to enforce the
coherence of figural status estimates among perceptually homogeneous regions. Computer simulations
fit human perception and match the experimental evidence that several cues cooperate in defining fig-
ure–ground segregation. The results of this work suggest that figure–ground segregation involves feed-
back from cells with larger receptive fields in higher visual cortical areas.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Figure–ground is a particular kind of organizational phe-
nomenon that determines the interpretation of a visual scene into
figures (object-like regions) and grounds (background-like regions),
thus enabling higher-level processing such as the perception of sur-
faces, shapes and objects. Understanding the laws underlying fig-
ure–ground organization has been a major focus of attention for
Gestalt Psychologists: Rubin (1921), followed by Bahnsen (1928),
Metzger and Wolfgang (1975), Kanizsa and Gerbino (1976) demon-
strated that figure–ground perception is governed by several gen-
eric shape properties, such as region size, surroundness,
symmetry, parallelism and convexity among others (see Fig. 1).

More recently, a few figure–ground principles that also apply to
static, homogeneously colored regions have been discovered (e.g.
lower region Vecera, Vogel, & Woodman (2002), and top-bottom
polarity Hulleman & Humphreys (2004)) and evidence against
the innate nature of Gestalt laws has accumulated both from direct
reports (Gibson & Peterson, 1994; Peterson & Gibson, 1994;
Peterson, Harvey, & Weidenbacher, 1991) and indirect measures
(Driver & Baylis, 1996; Peterson & Skow, 2008; Vecera & Farah,
1997). Furthermore, the idea of Brunswik and Kamiya (1953), fol-
lowing which Gestalt cues reflect the statistics of the natural world
in which the visual system evolved, has been validated to some
extent by studying and quantifying the correlation between some
statistical configural properties and depth in natural images
(Burge, Fowlkes, & Banks, 2010; Fowlkes, 2007). Taken together,
these findings are consistent with the claims that figure–ground
segregation can occur preattentively, but it can also be affected
by attention and that past experience can exert an influence on
several aspects of figure–ground perception. Classic configural cues
are not innate but are the results of a sophisticated learning mech-
anism that has evolved to allow humans to extract the statistical
properties of the environment in which they live.

Despite the advances of the last century, the computational
mechanisms underlying figure–ground perception are still poorly
understood and of interest to both neuroscientists (Domijan &
Šetić, 2008; Heitger & von der Heydt, 1993; Pao, Geiger, & Rubin,
1999) and computer vision researchers (Calderero & Caselles,
2013; Dimiccoli, 2009; Ren, Malik, & Fowlkes, 2005; Ren,
Fowlkes, & Malik, 2006). Indeed, with the goal of providing input
to high-level tasks such as shape recognition and 3D recovery,
computer vision researchers are placing an increasing emphasis
on the specific problem of figure–ground segregation and to the
more general problem of monocular depth estimation in natural
images. As outlined in Rubin (2001), one of the central issues con-
cerns the way multiple configural cues yield a unitary percept.
Similarly to the laws of perceptual grouping, all figure–ground
principles tend to be treated as qualitative ceteris paribus rules,
in which a given factor has a stated effect when all others are neu-
tralized. As a consequence, they are unable to predict the outcome
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Fig. 2. In a strict mathematical sense, A is a not convex shape (left) and B is a
convex shape (right).

Fig. 1. Adapted from Kubovy Perception Lab website (2009). (a) Convexity: the
black shapes are perceived as figures because, contrary to white regions, they are
limited by piecewise convex boundaries. (b) Smallness: smaller areas (in black)
tend to be seen as figures against a larger background. (c) Symmetry: the black
shapes are perceived as figure surrounded by the white one because of theur
symmetry. (d) Surroundedness: the surrounded area (in black) tends to be
perceived as figure. (e) Bottom-up polarity: the black region is perceived as figure
beacause its base is wider than the contiguous white region. (f) Lower region: the
lower region in the visual field (in black) is perceived as figure. (g) Protrusion: the
black region on the left protrudes into the white region and it is perceived as figure.
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when several conflicting factors are at work in the same display.
Kanizsa posed the problem in terms of competitive interactions
formulated in descriptive terms and demonstrated that convexity
has a stronger influence than other global shape properties, such
as symmetry and contrast polarity (Kanizsa, 1979).

In general, relatively little work has been done to understand
the theoretical and neural basis underlying these interactions. A
relevant attempt has been made by Kienker et al. (1986), who pro-
posed an interesting neural network architecture but without sys-
tematic evaluation against human perception in terms of figure–
ground rules and their combinations. Stanley and Rubin (2003)
showed through functional Magnetic Resonance Imaging (MRI)
that illusory contours elicit responses in the Lateral Occipital
Complex (LOC), whose neurons pool information from large por-
tions of the visual field. They also showed that salient regions (fig-
ure) activated the LOC but they did not go into the question of
which cues are used by the brain to detect them and how these
image cues are computed. Domijan and Šetić (2008) proposed a
neural model based on the interaction between the dorsal and
the ventral streams. The ventral stream computes object bound-
aries which are used to construct surface representation, whereas
the dorsal stream computes saliency based on a blurred version
of the boundary signals. Their model can account for how classic
and recently discovered principles of figure–ground assignment
influence the perception of the figure. However, their results con-
tradict physiological findings about border ownership responses
in V2 (Zhou, Friedman, & Von Der Heydt, 2000).

Most computational models by computer vision researchers
have focused on how to combine local and global information more
than how to robustly detect configural cues. The general approach
is first to compute several local cues and than to enforce global
consistency using different frameworks (Calderero & Caselles,
2013; Dimiccoli, 2009; Ren et al., 2005, 2006). An exception is
the work of Calderero and Caselles (2013), which does not deal
with cue detection explicitly but in which occlusion arises natu-
rally with the image model leading to local estimations of border
ownership.

This manuscript proposes a new computational model for fig-
ure–ground segregation, in which several geometrical shape prop-
erties, namely convexity, size, surroundness and lower region, are
estimated in a nonlocal fashion, without explicitely relying on pre-
viously computed image boundaries. This leads to very robust and
independent estimations of different configural cues, from which
unitary figure–ground percepts can be inferred through a very sim-
ple integration mechanism.

2. Material and methods

Sampled images contain a finite number of values on a grid: in the
biological case the elements of the grid are hexagonal cells with
growing sizes from the fovea, whereas in the digital case the grid cor-
responds to a Charge Coupled Device (CCD) matrix. In the latter case,
the elements of the grid together with their intensity values, which
encode the number of photon hits during a fixed exposure time, are
called pixels. A digital image is usually modeled as a real valued dis-
crete function defined on a rectangular domain: u : X � Z2 !R,
whereR is the set of real numbers, Z is the set of integer numbers,
X ¼ ½0;N� � ½0;M� is a rectangle, C ¼ @X is its boundary. In this sec-
tion, we will focus on binary digital images, say u : X � Z2 ! 0;1f g,
corresponding to F/G displays. Following Mathematical Morphology
(Serra, 1983), a digital binary image is fully characterized by its
upper level set X k ¼ x 2 X : uðxÞP kf g; k ¼ 1, that is the set of pix-
els with positive value.

A level set may be composed by one or by the union of several
connected components (cc), usually referred to in Mathematical
Morphology (Serra, 1983) as the shapes of the image:
X k ¼ [n

i¼1cciðX kÞ. We are interested in measuring the properties
of these image shapes related to figure–ground assignment. To this
goal, we first recall the definition of convexity of a set in R2, which
is as follows.

Definition 1 (Convex sets). A set A � R2 is convex if for any x; y 2 A
and any k 2 ½0;1�; k 2 R : fð1� kÞxþ kyg 2 A

Fig. 2 is an example of not convex set: the segment having as
extremes the points x and y of A partially lies outside A. The follow-
ing proposition shows that only boundary points matter as far as
determining the convexity of a non-empty closed set.

Proposition 1 (Characterization of convex sets). Let A be a
non-empty closed subset of R2 and let intA and @A be its interior
and its boundary respectively. A is convex if and only if for any
x; y 2 @A and any k 2 ½0;1�; k 2 R : fð1� kÞxþ kyg n fx; yg is either in
@A or intA.

This characterization, whose proof is provided in Beltagy and
Shenawy (2013, corollary 5), can be used to evaluate the convexity
of morphological shapes on a binary digital image. To do that



Fig. 3. Example of line-shaped neighborhoods of a pixel x partitioned into three
segments, each composed of homogeneous pixels. In this display, points beloging to
the central red segment can be understood as beloging to a convex shape and its
extremes as points belonging to the boundary of a convex shape. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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following strictly the definition, it would be needed to first com-
pute, on the bilinear interpolated image, the boundaries of the
Fig. 4. Modeling convexity: (a) original image. (b) Image whose intensity values corre
account only convexity. Pixels with high intensity values have an high belief to be part
homogeneous regions.
level set, the so called level lines. However, we will show how the
convexity of a shape can be evaluated without directly relying on
level set boundaries.

Let us suppose that we are given the image u and we want to
automatically estimate if each pixel x 2 X belongs to a convex
shape of u or not. In view of Proposition 1, this is equivalent to
evaluating whether each pixel x 2 X belongs to a segment that lies
on the boundary or on the interior of a convex shape. What could
we do in this case? If we consider a line l passing through x with
slope h, say lxðhÞ, we could easily partition this line into L segments,

say sxðhÞi; i ¼ 1; . . . ; L, by grouping similar adjacent pixels (see
Fig. 3). The extremes of the segment including x, can be thought
as points of the hypothetical contour of the region to which the
segment belongs. Hence, the fact that this segment is between
two others, that by construction have different pixel values, can
be related through Proposition 1 to the belief that x is inside a con-
vex shape. Therefore, a positive vote is given to x which reflects the
belief for the statement ‘‘x is part of a convex shape’’ of its
line-shaped neigborhood lxðhÞ. Of course, we can iterate the same
reasoning for a discrete number of directions by varying h and
sum their contributions to the estimation of the figural status of
x. If we do the same thing for each image pixel, only points inside
the convex shape will cast positive votes.

In Fig. 4(b) (first row), the result of the multi-directional linear
voting is visualized through a gray level image, say z : X!R,
where the intensity of each pixel encodes the degree of belief about
the figural status of all its line-shaped neighborhoods, with higher
beliefs being visualized through higher intensity values. To reduce
the computational burden and avoid redundancy, instead of pars-
ing all image pixels and considering multiple lines through each
of them, we consider only the lines through the pixels of the image
boundary: when a segment is between two others on a line, a pos-
itive vote is assigned to all pixels of the segment.
spond to the beliefs computed through multi-directional linear voting taking into
of a foreground region. (c) Normalized probability of foreground after averaging on
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What happens if the shape is perceived as globally convex even
if it is not convex in the strict mathematical sense? As outlined by
Pao et al. (1999), human perception behaves in a ‘‘continuous’’
manner, perceiving as figure the more convex region. Therefore, a
model of figure–ground segregation based on convexity should
offer a continuous measure of convexity. In our case, some points
outside the global convex shape will cast positive votes (see
Fig. 4(b) second and third rows). Since we are interested in mea-
suring the convexity of image shapes, it makes sense to average
the belief of pixels which belong to the same level set of u. This
can be achieved through a neighborhood filter, which performs
an average of the values of pixels in the belief image z which are
similar in gray level value in the original image u. As in the
NL-means (Buades, Coll, & Morel, 2006), the average is computed
in a fully nonlocal way on all image domain. Denoting by X k the
unique upper level set of the binary image u, the neighborhood fil-
ter computes for each image pixel a weighted average:

�zðxÞ ¼ 1
CðxÞ

X
y2X

zðyÞ exp � dEðuðxÞ � uðyÞÞ
h

� �
; ð1Þ

where h is a filtering parameter, dE is the Euclidean distance and

CðxÞ ¼
P

y2X exp � dEðuðxÞ�uðyÞÞ
h

� �
is the normalizing factor. Note that,

since the image is binary the exponential term is equal to one for
similar pixels. Hence, this is equivalent to simply averaging the
votes on the upper level set and on its complement. For more details
about neighborhood filters and their applications to the recoverying
of 3D information, the reader is referred to Digne et al. (2011).

In the following, we will show how multi-directional linear vot-
ing can be generalized as a strategy to measure in nonlocal way
many geometrical shape properties, not just convexity. Consider
the leftmost image on the fourth row of Fig. 4: in this case, the only
cue for figural organization is small size. Taking into account
Fig. 5. Modeling convexity and size: (a) original image. (b) Image whose intensity value
into account convexity and small size. Pixels with high intensity values have an high bel
averaging on homogeneous regions.
sizeness requires favoring small shapes. This can be achieved by
involving the length of the segments: if the segment si

xðhÞ has a
length Lðsi

xðhÞÞ smaller than those of its adjacent segments, that
is if Lðsi

xðhÞÞ < minfLðsi�1
x ðhÞÞ;Lðsiþ1

x ðhÞÞg, than all pixels of si
xðhÞwill

receive a positive vote. To remove border effects, the intervals
intersecting the image borders are considered to have infinite
length. In Fig. 5, are shown the results of simultaneously taking
into account convexity and size: for all image display, the interpre-
tation given by our model matches reports on human observers.

Fig. 6 shows an image display where convexity, size and sur-
roundness are acting at the same time. In this case, when taking
into account only convexity (see first row), the interpretation
agrees with human perception, whereas when taking into account
convexity and size simultaneously, it is no longer the case (see sec-
ond row). This because the role of surroundedness, which is crucial
in this display, has been neglected. To model surroundedness
through the multi-directional linear voting framework, we proceed
as follows (see Fig. 7): let cci

xðhÞ be the connected component of

si
xðhÞ and be ðcci

xðhÞÞ
C ¼ X� cci

xðhÞ its complement. The intersection

of the line lxðhÞ with the set ðcci
xðhÞÞ

C is the set of segments

s j
xðhÞ

n o
; j ¼ 1; . . . ;M. Given lxðhÞ and the segment si

xðhÞ such that

x 2 si
xðhÞ lying on it, we compare the length of si

xðhÞ to those of its

adjacent segments in the set s j
xðhÞ

n o
; j ¼ 1; . . . ;M. As it is shown

in the last row of Fig. 6, this leads to a human-like interpretation.
Other configural cues such as lower region and bottom-up polar-

ity can be easily integrated into this framework giving a special
emphasis to the vertical orientation. This is consistent with psy-
chophysical reports showing better performance in the lower visual
field for a number of visual tasks (Levine & McAnany, 2005;
McAnany & Levine, 2007; Previc, 1990; Rubin, Nakayama, &
Shapley, 1996). Since the distinction between the lower and the
s correspond to the beliefs computed through multi-directional linear voting taking
ief to be part of a foreground region. (c) Normalized probability of foreground after



Fig. 6. (a) Original image. (b) Image whose intensity values correspond to the beliefs computed through multi-directional linear voting taking into account convexity (first
row), convexity and small size (second row), convexity, size and surroundness (third row). Pixels with high intensity values have an high belief to be part of a foreground
region. (c) Normalized probability of foreground after averaging on homogeneous regions.

Fig. 7. Modeling surroundedness: (a) original image with a pixel, say x, marked in red. (b) The horizontal line through x, say lxðhÞwith h ¼ 0, is depicted in gray; the connected
component of x, say cci

x is depicted in white and its complementary ðcci
xÞ

C is in black. (c) The segment si
x to which x belongs is in red: its length is compared to the length of the

two adjacent green segments, given by the intersection of lxðhÞwith ðcci
xÞ

C . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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higher part of an image is most clear in the vertical direction, we con-
sider only vertical line-shaped neighborhoods whose intersection
with the image domain give rise to just two segments. In this case,
to favor regions in the lower part of the image, a positive vote is given
to all pixels in the segment that cross the lower image border.

The pseudocode and the source code are available as
Supplementary Material.
3. Results

This work has proposed a novel computational model able to
compute and integrate, under a common framework, several
ceteris paribus rules for figure–ground segregation. The proposed
model has a feature that differs from the state of the art: configural
cues are quantified without explicitly relying on object boundaries
but are based on global relations between image regions. This
approach leads to very robust estimations for which a simple
mechanism, namely a linear summation followed by a nonlinear
diffusion, can account for how these cues interact.

Fig. 8 shows the results of computer simulations performed on
image displays involving a lower region (first three rows), bottom
up polarity (fourth row) and protrusion (last row). Although pro-
trusion and bottom-up polarity are not explicitly modeled, they
seem to be a consequence of the general sensitivity to global con-
vexity and lower-region respectively.



Fig. 8. Lower-region, bottop-up polarity and protrusion: (a) original image. (b) Image whose intensity values correspond to the beliefs computed through multi-directional
linear voting: pixels with high intensity values have an high belief to be part of a foreground region. (c) Probability of foreground averaged on homogeneous regions and
normalized for visualization.
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The computer simulations in Figs. 9 and 10 model the cues of
convexity, size, surroundness and lower region. These simulations
illustrate the model ability to account for all these cues as well as
for their interactions. On the last row of Fig. 9 there is an image dis-
play with a not simply connected component (because of the pres-
ence of the hole): also in this case, averaging the results of the
multi-directional linear voting on similar regions leads to an
human-agreed interpretation.

The computer simulations in Fig. 11 illustrate the model’s abil-
ity to assign figural status to the occluding surface. Since these
image displays are not binary, we first decompose the image into
bi-level sets (X k1k2 ¼ fxjk1 6 uðxÞ 6 k2g), than we apply the pro-
posed method to each bi-level set separately and finally we linearly
sum the results. On the first row of Fig. 11, the small circular sur-
face is placed on the large circular surface and our model gives the
correct interpretation. On the second row, we presented two over-
lapping squares: in this case, the model correctly selects the
occluding surface. In fact, when we inspect the result of the
multi-directional linear voting (see Fig. 11(f) second row), we see
high values at the location of the missing (or amodal) corner of
the occluded surface, whose presence is implicated by the bound-
aries of the occluded surface.

On the last row is illustrated a limitation of our model: in the
presence of objects in partial occlusion, the small partially
occluded regions appear in the foreground, independent of the
depth order suggested by the T-junctions (see Fig. 11). This is not



Fig. 9. (a) Original image. (b) Image whose intensity values correspond to the beliefs computed through multi-directional linear voting: pixels with high intensity values have
an high belief to be part of a foreground region. (c) Probability of foreground averaged on homogeneous regions and normalized for visualization.
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surprising considering that our model is based on image shape
properties and does not take into account the principle of amodal
completion induced by T-junctions.

Hovewer, if it were possible to model amodal completion and
reconstruct the partially occluded object following global theories
of occlusion perception (Boselie, 1994), linear summation would
still be a good strategy to extract the three levels of depth (see
Fig. 12).

Finally, an extension of our model to natural images would only
require a method to extract meaningful bi-levels sets from images.
This could for instance be done by taking into account color and
texture properties.



Fig. 10. (a) Original image. (b) Image whose intensity values correspond to the beliefs computed through multi-directional linear voting: pixels with high intensity values
have an high belief to be part of a foreground region. (c) Probability of foreground averaged on homogeneous regions and normalized for a better visualization.

Fig. 11. (a) Original image. (b) and (c) are the binary images correspoding to the level sets of the original image. (d) and (e) are the beliefs computed on (b) and (c)
respectively. (f) Sum of the beliefs on each level set. (g) Result of averaging the belief on homogeneous regions.
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Fig. 12. (a) Original image. (b) and (c) are the binary images correspoding to the
level sets of the original image. (d) Completion of image (b) taking (c) as hole. (e)
and (f) are the beliefs computed on (d) and (c) respectively. (g) Sum of the the
beliefs on each level set. (h) Result of averaging the beliefs on homogeneous
regions.
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4. Discussion

The proposed model does not pretend to have a biological basis,
rather it uses interesting computational mechanims to emulate the
outcome of the visual system.

Configural cues are classically computed by relying on the activ-
ity of cells in the primary visual cortex. These cells are character-
ized by small receptive fields, from which only elementary
features such as local luminance or chrominance can be extracted.
In our model, the computation of configural cues is performed non-
locally: the figural status of each pixel relying on a specific shape
property is estimated by analyzing line-shaped neighborhoods in
multiple directions and by linearly summing their contributions.
Performing such computations would require cells with large com-
plex receptive fields, formed from input by cells at a lower level in
the visual system, hence supporting the finding that figure–ground
organization involves neurons in the higher cortical visual areas.
Cortical hypercomplex cells, which are sensitive to direction, orien-
tation and length are good candidates to be involved in this task.
Actually, the estimation of the figural status at a given point of
the retina, would require collecting and integrating nonlinear
information from several hypercomplex cells.

Despite the simplicity of its formulation, the multi-directional
voting strategy appears flexible enough to model much of the fig-
ure–ground information available from global shapes: convexity,
sizeness, surroundedness and lower region. Interestingly, the
effects of protrusion and bottom-up polarity emerged via global
convexity and lower regions. Actually, it seems that these local
cues are redundant since they are just different manifestations of
a more general global cue. The issue of which cues would be
needed seems to be related to their ecological validity. Fowlkes
(2007) quantified the relative power of local configural cues in nat-
ural images and showed that convexity, size and lower region are
the most important from an ecological point of view. The authors
did not include in their study surroundness since they were focus-
ing on local configural cues. However, intuitively, it could be
argued that surroundness has a strong ecological validity since fig-
ural regions, being the projection of the objects closer to the view-
point, tend to be surrounded by objects farther from the viewpoint.

How the visual system has adapted over time to these statistical
properties of the world? As argued in van der Helm (2011), this
evolution could have been guided either by the likelihood principle
von Helmholtz (1962), that aims at ensuring external veridicality,
or by the simplicity principle (Koffka, 1935), a modern
information-theoretic translation of the law of Pragnanz that pro-
motes internal efficiency. Following the likelihood principle, evolu-
tion may have selected a natural-statistics special-purpose system,
that is, a system which is highly adapted to one specific environ-
ment. Following the simplicity principle, evolution may have
selected an innate general-purpose system, that is, a system which
is fairly adapted to many different environments but still suffi-
ciently veridical in everyday perception. This is currently an ongo-
ing issue of debate.

The integration of configural cues has frequently been
addressed in computational and human vision. Since studies of
neurophysiology (Zhou et al., 2000) suggest the presence of fig-
ure–ground processing in V2 as soon as 25 ms after response onset,
figure–ground segregation is commonly thought to start from local
cues, which can be available at this time. On the computational
side, integrating local cues into an unified percept implies a more
difficult integration process since local cues are inherently ambigu-
ous. Contrary to state-of-the-art models, in this work the integra-
tion is performed by first linearly summing the beliefs based on
different shape properties (Kastner & McMains, 2007) and then
averaging their values on similar image regions through a nonlin-
ear diffusion process. Since our model is based on very simple
operations such as linear summation and nonlinear diffusion, it
can be easily parallelized, suggesting that figure–ground segrega-
tion can be performed in visual cortex by a large number of neu-
rons working together in parallel as proposed in (Kienker et al.,
1986). In addition, the fact that surface segregation can be com-
puted without relying on image boundaries supports the hypothe-
sis of Palmer and Rock (1994) following which grouping and
parsing depend on shape properties which are well defined only
after boundaries have been assigned (Palmer & Rock, 1994).

If we consider the beliefs as activation levels of neurons on the
image grid, the proposed model seems to predict that V1 neurons
respond more strongly to figure than background regions (Li, 2003)
and that low-level cues suffice to explain figure–ground segrega-
tion on image displays involving multiple cues, without invoking
top-down feedback. Therefore our model seems to suggest the
plausibility of the hypothesis that top-down mechanisms only play
a modulatory role in the perception of border ownership.

Summarizing, based on the results of this work, configural cues
such as convexity, size, surroundedness and lower region can be
computed without taking image contours as input and their inte-
gration for figure–ground estimation can be performed by simple
operations. A linear summation combines independent modula-
tions based on different shape properties and a nonlinear diffusion
enforces the coherence of figural status estimates among perceptu-
ally homogeneous regions. Therefore, instead of computing local
configural cues which are inherently ambiguous and using a com-
plex model to integrate them into a unitary percept, our model
shows the possibility of computing configural cues globally and
then performing integration in a simpler and effective way.
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