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Abstract—In this paper, we propose a new approach for
symbol description. Our method is built based on the combi-
nation of shape context of interest points descriptor and sparse
representation. More specifically, we first learn a dictionary
describing shape context of interest point descriptors. Then,
based on information retrieval techniques, we build a vector
model for each symbol based on its sparse representation in a
visual vocabulary whose visual words are columns in the learned
dictionary. The retrieval task is performed by ranking symbols
based on similarity between vector models. Evaluation of our
method, using benchmark datasets, demonstrates the validity of
our approach and shows that it outperforms related state-of-the-
art methods.

I. INTRODUCTION

The problem of accurate localize queried symbols on
technical documents, without segmented them before, is known
in the Document Analysis community as symbol spotting.
Symbol spotting system are composed of two phases: symbol
description and symbol retrieval. The description phase consist
of defining local shape descriptors, invariant to similarity
transforms, robust to local symbol distortions and robust to
document noise. The retrieval phase consist of implementing
matching algorithms together indexing, or hashing, techniques
to effective retrieve queried symbols. This paper focus in
the symbol description phase, while symbol retrieval relies
on state-of-the-art information retrieval techniques that have
proven to perform well in video retrieval [18] as well symbol
retrieval [17].

Regarding to shape descriptors and based on objective
of encoding the shape of the symbol, Marçal et. al. [13]
divide description techniques into three different main cat-
egories. These categories are photometric description, geo-
metric description and syntactic and structural description.
Photometric description is suitable for recognizing complex
symbols, e.g., logos. Techniques in this category include SIFT
descriptor [10], moment-based descriptors [4], [5], [8], and
generic Fourier descriptor (GFD) [26]. SIFT descriptor charac-
terizes each interest point by the local edge distribution around
the point. This is very useful to describe complex symbols,
but it loses effectiveness when representing simpler o (see
Section IV). Moment-based descriptors have some advantages
in symbol description comparing to other descriptors. For
instance, they are invariant to translation, scaling, and rotation
transforms. In addition, we can recover original symbols from
moment descriptors [5], [8]. However, they still have some
shortcomings, e.g., do not allow multi-resolution analysis of a

shape in radial direction [27]. GFD is extracted from spectral
domain by applying 2-D Fourier transformation on polar shape
symbol. Hence, it overcomes the problem of noise sensitivity
while still be invariant under the affine transformations.

Geometric description techniques are primitive-based
methods that have shown to be useful when the symbols are
non-isolated and be affected by occlusions [15], [16], [19].
Some examples of such primitives are contours, closed regions,
connected components, skeletons, etc. to enumerate some of
the most popular ones. Although these descriptors can easily
be computed, they are usually poorly discriminant [16], and
sometimes the matching process is time consuming [15]. In
addition, there are also several primitives describing symbols
using geometric information [12] or vector signatures [6]. In
general, they are invariant under similarity transformations, but
[6] depends on a prior normalization step to achieve invariance
and [12] is very sensitive to noise at vector level.

There has been a great number of works on finding good
syntactic and structural descriptions [3], [9], [14], [24]. These
descriptors aim at defining relationships between primitives.
In [3], [14], the authors propose rule-based descriptions whose
performance are highly affected by noisy data. In [9], [24], the
authors propose structural descriptors which present symbols
as one-dimensional string or by an attribute relational graph. In
general, graph-based descriptors are powerful tools for symbol
description but the computation time linked to them is huge
since we have to deal with sub-graph isomorphism, which
is NP-hard. In summary, most of photometric descriptors
requires well-segmented symbols to satisfactory perform while
geometric descriptors have low discriminant capacities and
structural descriptors are computationally demanding.

In this paper, we extend the work done in [17] by providing
a sparse representation of local descriptors based on key-
points. Sparse representation has been widely used in image
denoising, separating, and extracting the text regions [7], [28].
But, to best of our knowledge, sparse representation has not
been applied to symbol descriptors. In this way, we achieve a
sparse description of invariant descriptors which will improve
the performance of retrieval systems.

More specifically, we first compute shape context of in-
terest points in symbols and use them as training dataset
for learning a sparse dictionary by means of the K-SVD
algorithm [7]. Then, we consider the learned dictionary as a
visual vocabulary whose visual words are each of the entries
of this dictionary. Next, we construct a vector model for every



symbol based on its sparse representation in the vocabulary
and adapting the tf-idf approach to the sparse representation.
Finally, the retrieval task is performed by ranking symbols
based on their similarity to the query symbol and where the
similarity is computed based on the vector model approach.

We have organized the rest of this paper as follows.
In Section II, we present some fundamental background on
shape context and shape context of interest points descriptors.
Our proposed method and retrieval model are presented in
Section III and we report experimental results in Section IV.
Finally, we conclude and discuss the future work in Section V.

II. RELATED WORK

In this section, we present shape context and shape context
of interest point background as well as their main invariant
properties under rotation and scaling transforms.

A. Shape Context

Shape context (SC) is one of the descriptors with higher
accuracy rates in many shapes recognition tasks and was intro-
duced in [2]. Shape boundaries, either internal and external, are
sampled in n points. For each point pi on the symbol contour,
[2] compute its coarse histogram hi of the relative coordinates
of the remaining n− 1 points:

hi(l) = card{c 6= pi : (c− pi) ∈ bin(l)}, l = 1, L (1)

where c are contours points expressed in log-polar coordinates
and L is the number of bins of the SC histogram at point
pi. Thus, for each symbol S, its SC is the real matrix H =
{h1, ..., hn} with dimensions L× n.

Since all measurements are computed with respect to all
points that are sampled from internal or external contours on
the symbol, SC is therefore invariant under shape translation.
Invariance under scaling is obtained by normalizing all radial
distances by the mean distance among all point pairs in
the symbol. Moreover, it is inherently insensitive to small
perturbations of symbols, and indeed it is robust to small
nonlinear transforms.

B. Shape Context of Interest Points

SC defined so far show two main drawbacks when applied
to symbol retrieval tasks. On the one hand, as most of photo-
metric descriptors, we need to segment symbols well enough
for having satisfactory retrieval performance. On the other
hand, matching function is computationally time-demanding
if the number of boundary points is large.

Inspired by the works of detecting efficiently an object
from its key-points (also known as interest points) [1], [11], the
authors in [17] proposed a new approach, named Shape context
of interest point (SCIP). In their approach, SC is only defined
in detected interest points. More specifically, they detect the
interest points IP = {p1, p2, . . . , pr} and the contour points
C = {c1, . . . , cn}, of a given symbol. Indeed, each of these
interest points pi is thus a reference point to compute the
SC of a symbol. Because the IP set is rarely a subset of C
for most of the cases [20], the same rotation normalization
method for SC cannot be applied to SCIP. Instead, they
use dominant orientation of interest point information for

orientation normalization. In more detail, each interest point pi
is represented by its coordinates and the dominant orientation:
pi = {xi, yi, ~ei}. The relative log-polar coordinates of contour
points cj ∈ C is denoted by cij = (log rij , θij) in which rij
is the normalized distance from pi to cj , and θij = 〈−−→picj , ~ei〉.
The coarse histogram at pi is computed as below.

h̄i(l) = card{cij 6= pi : (cij − pi) ∈ bin(l)}, l = 1, L (2)

Then, the SCIP descriptor is the set H̄ = {h̄1, h̄2, . . . , h̄r},
where each h̄i is a histogram of L bins.

III. SPARSE REPRESENTATION AND SYMBOL RETRIEVAL

Querying symbols on a dataset using SCIP descriptor needs
of accurate assign each SCIP descriptor to a visual word. In
the proposed approach we avoid this step by describing each
SCIP descriptor by a linear combination of visual words being
each entry of a learned dictionary A. In this section, we will
first explain how to learn a dictionary from a set of SCIP
descriptors providing sparse representation and then, how to
built vector models permitting to us querying symbols in a
dataset.

A. Learned Dictionary of SCIPs

An over-complete dictionary A for sparse representation is
a dictionary built from a family of training signals in which
each signal has an optimally sparse approximation in A.

In this paper, we use SCIPs {H̄n}Nn=1 extracted from a set
of N training symbols as a family of training signals. Each
training signal h̄i ∈ RL has an optimally sparse approximation
xi satisfying ‖h̄∗i − h̄i‖2 ≤ ε with h̄∗i = Axi.

min
xi,A

∑
i

‖xi‖1 subject to ‖h̄i −Axi‖22 ≤ ε (3)

Such a dictionary can be obtained by solving the problem
defined in Equation 3. To do this, Aharon et al [7] proposed a
2 step iterative algorithm called K-SVD. In this algorithm, they
iteratively adjust A via two main stages: sparse coding stage
and update dictionary stage. In the sparse coding stage, all
sparse representations X = {xi}i of Y = {h̄i}i are computed
while keeping A fixed. These sparse representations can be
computed by an algorithm that approximates the solution of
Equation 4. The algorithm used by the authors, and also by
us in this approach, is the orthogonal matching pursuit (OMP)
algorithm [23].

xi = min
x
‖x‖0 subject to ‖h̄i −Ax‖22 ≤ ε (4)

In the update dictionary stage, an updating rule is used to
optimize the sparse representations of the training signals. In
general, the way to update the dictionary is different from
one learning algorithm to another. In K-SVD algorithm, the
updating rule is applied column-wise on the dictionary’s matrix
A. Thus, each column ai0 of A is updated sequentially such
as minimizing the residually error in Equation 5:

‖Y −AX‖2F = ‖(Y −
∑
i 6=i0

aix
T
i )− ai0xTi0‖

2
F

= ‖Ei0 − ai0xTi0‖
2
F

(5)



since all columns in A other than i0-th column are fixed, Ei0 is
also fixed. Thus, the minimization of the Equation 5 depends
only on the optimal ai0 and xTi0 , where xTi0 refers to the i0-th
row of X . This problem is therefore converted to a problem of
approximating a matrix Ei0 by a rank 1 matrix by minimizing
the Frobenius norm. Moreover, to ensure the sparsity in vector
x, [7] defined a group of indexes Ωi0 where xTi0 is different
to zeros, and ER

i0
is the Ei0 matrix restricted to those indexes.

Then, the minimization of Equation 5 is equivalent to the
minimization with respect to xi0 of the next equation:

‖Ei0Ωi0 − ai0xTi0Ωi0‖2F = ‖ER
i0 − ai0x

R
i0‖

2
F (6)

The optimal solution xRi0 in Equation 6 has the same
support as the original xTi0 , and can be find it by calculating
the singular value decomposition (SVD) of the error matrix
ER

i0
.

B. Visual vector model

After applying the K-SVD algorithm on the set of SCIPs
descriptors {H̄n}Nn=1 used as training dataset, we have learned
a dictionary A ∈ RL×K as well as the sparse representations
of all SCIPs in that dataset. In the remainder of this section
we will explain how we can built up a visual vector model
from the sparse representation of SCIP descriptor that we will
use for retrieval tasks in the experiments sections. Thus, the
columns of the dictionary matrix A will play the role of words
in a visual word vocabulary framework.

Without loss of generality, we can assume that h̄ ∈ RL is
one SCIP descriptor in {H̄n}Nn=1 and x ∈ RK is the sparse
representation of h̄ given the dictionary A. Instead of assigning
a single visual word, typically the nearest centroid of a cluster
given by a k-means algorithm like in [17], [18], h̄ can be
seen as a linear combination of visual words. Therefore, we
have to adapt the vector model construction to the sparse
representation of SCIP descriptors.

Let I be the indexes set where x is different to 0.
We define the characteristic vector v ∈ RK as being
the 0-1 valued vector v(k) = 1 if i ∈ I and 0 oth-
erwise. For example, if I = {1, p − 1, p, q, q + 1} then
v = {11, 02, . . . , 1p−1, 1p, 0p+1, . . . , 1q, 1q+1, 0q+2, . . . , 0K}.
For each training symbol n, H̄n = {h̄n1 , h̄n2 , . . . , h̄nrn} is its
SCIP descriptor set and rn is number of interest points detected
for such symbol. Then, vni denote the characteristic vector of
h̄ni , which is contributed by the sparse representation xni of h̄ni
given the learned dictionary A.

Similarly to the tf-idf approach used in information retrieval
for building vector models, we define tf and idf factors to
describe, respectively, the document contents and the impor-
tance degree of terms. Herein, documents and symbols are
identified. Thus, fnk is the frequency of the word k in a
symbol n and tfk,n =

fn
k

maxs fn
s

. Observe that we can easily
computed these frequencies through the characteristic vector:
fnk =

∑rn
i vni (k).

The idf factor is similarly defined as usual information
retrieval systems but also adapting its definition to the sparse
representation of SCIP descriptors. The importance in distin-
guishing a relevant symbol from non-relevant one in a database

is measured by log N
lk

, where lk is the number of symbols in
which the word k appears.

lk = card{n = 1, N |fnk 6= 0}

Therefore, the vector model for a given symbol is defined
by the weighted frequency for all words k in our visual
vocabulary:

wn(k) = tfk,n × idfk =
fnk

maxs fns
× log

N

lk
, (7)

C. Retrieval Symbol

For each query symbol sqi in the set of query symbols Sq =
{sq1, s

q
2, . . . , s

q
m}, its vector model is computed in the same way

described in section III-B. We first compute its SCIP descriptor
H̄q

i = {h̄q1, . . . , h̄qri}. Then, using the learned dictionary A,
we find the sparse representation of each element in H̄q

i by
applying the OMP algorithm [23] to solve Equation 4. Finally,
we compute the vector model, named wq

i , as summarized in
Equation 7.

Next, the similarity of a query symbol sqi ⊆ Sq and
symbols in a database sn ⊆ S is computed as the cosine
distance between two vectors wq

i and wn:

distance(wq
i , w

n) =
〈wq

i , w
n〉

|wq
i | × |wn|

(8)

where 〈·, ·〉 is the dot product. Finally, symbols in the database
are ranked based on their similarity to the query symbol sqi .

IV. EXPERIMENTAL RESULTS

We have evaluated our proposed method in a benchmark
synthetic dataset like GREC1 dataset. This dataset contains the
occurrences of 50 different symbols (the group A) obtained
by linear transforms (rotation and scaling) and by applying
deformation and degradations processes. We have used symbol
in group A as queries to retrieve similar symbols to them in the
following subsets: dataset D1 includes 250 symbols generated
by linear transforms (rotation and scaling); dataset D2 includes
75 symbols generated by strong non-rigid transforms; and
dataset D3 includes 75 symbols generated by strong non-rigid
transforms and Kanungo noise. The number of occurrences for
each class is not the same for all of them: ranging from 1 to
10 times in dataset 1; from 1 to 11 in dataset 2 and ranging 0
to 11 in dataset 3.

We use the set Di, i = 1, . . . , 3 to construct the learned
dictionary using K-SVD algorithm with number of columns K
is 512.

To examine the effectiveness of the proposed descriptor,
we have compared it to 6 state-of-the-art methods for symbol
recognition, namely R-signature [21], GFD [25], Zernike mo-
ments [22], SIFT [11], SC [2] and SCIP [17]. In addition, for
Zernike moments descriptors, we have built two descriptors.
The first descriptor, G1 includes 32 low-order moments while
the second descriptor, G2, includes 32 hight-order moment. We
have only considered the magnitude of Zernike moments for
both descriptors G1 and G2 and for each one, the computed
moments satisfy the following conditions:

1http://www.cvc.uab.es/grec2003/SymRecContest/
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Fig. 1. The effect of L on the precision and recall rate

G1 =


3 ≤ n ≤ 10

|m| ≤ n
n− |m| = 2k

k ∈ N

G2 =


10 ≤ n ≤ 17

|m| ≤ n
n− |m| = 4k

k ∈ N
For SIFT, SC and SCIP descriptors we have used k-means

algorithm to build the visual dictionary, being each cluster
centroid a visual word. The number of clusters is 175 for the
three descriptors. The similarity measure for retrieval tasks is
always the cosine distance, as defined in Equation 8. We have
used precision-recall rate, denoted by R and P respectively, to
evaluate the retrieval task:

R =
the relevant symbols retrieved

the relevant symbols existing in the database

P =
the relevant symbols retrieved

the number of retrieved symbols

Finally, we have conducted two experiments to asses the
goodness of the proposed approach. The first experiment aims
at finding the best size of SCIP descriptor (L) while the second
experiment aims at evaluating the retrieval performance.

For the first experiment, devoted to find the best dictionary
corresponding with the size of SCIP (L value), we have
compared the averages of precision and recall rates performed
on dataset D1 for the number of bins for log r ranges from
3 to 5 and the number of bins for θ are 12, 16, respectively.
So the descriptor dimension L belongs to {36, 48, 60, 64, 80}.
Figure 1 shows that we have obtained the best precision and
recall rates when L = 36 or L = 64.

We show results for the second experiment in figure 2.
As it was also observe in [17], we can observe that SIFT
descriptor loses its effectiveness when applied to symbols.
SCIP descriptor have proved to be more suitable for symbol
retrieval than SIFT in technical documents. Results also show
that our proposed approach outperform the compared methods
in datasets D1 and D2 while for the D3 dataset GFD show
better performance. Causes of this result can be explained by
two facts. On the one hand, the key-point detection step is
sensitive to noises. On the other hand, we have applied GFD
to the whole image, since symbols in this datasets are fully
segmented.

Nevertheless, comparing our proposed method to the others
based on key-points extraction, SIFT and SCIP, which we can

later applied on complex documents without pre-segmenting
steps, we achieve better retrieval performance than them. It
therefore shows, that building a visual vocabulary based on
sparse representation provides better results than using cluster
algorithms like k-means and assigning just one visual word to
each local descriptor.

We give some retrieval example using our descriptor in
Figure 3 for the reader to have a better qualitative assessment.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new approach for symbol
description based on SCIP descriptors and sparse representa-
tion. This new approach is invariant under rotation, scaling,
and distortion, since SCIP descriptor is. Also, it is well-adapted
degraded and noise symbols since sparse approaches are robust
to this kind of degradations.

Obtained results in a benchmark dataset have proven that
our proposed descriptor is suitable for symbol description in
retrieval task and improve related state-of-the-art methods.
Indeed, by describing each SCIP descriptor as a linear combi-
nation of visual words, instead of only one ’visual word’ for
each shape context of interest points, we have achieve better
system performance.

In the future, we would like to apply this approach to
symbol spotting problem in the large graphical documents
where symbols can not be easily segmented.
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