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Abstract— This paper proposes a novel method for estimating
the geospatial localization of a vehicle. I uses as input a
georeferenced video sequence recorded by a forward–facing
camera attached to the windscreen. The core of the proposed
method is an on–line video synchronization which finds out
the corresponding frame in the georeferenced video sequence
to the one recorded at each time by the camera on a second
drive through the same track. Once found the corresponding
frame in the georeferenced video sequence, we transfer its
geospatial information of this frame. The key advantages of
this method are: 1) the increase of the update rate and the
geospatial accuracy with regard to a standard low–cost GPS
and 2) the ability to localize a vehicle even when a GPS is not
available or is not reliable enough, like in certain urban areas.
Experimental results for an urban environments are presented,
showing an average of relative accuracy of 1.5 meters.

I. INTRODUCTION

In the recent decade the most employed sensor for con-

sumer vehicle navigation and localization is the GPS receiver.

At present, the standalone information of GPS has an approx-

imate accuracy of 5–10 meters [1]. However, it can degrade

specially on urban environments due to satellites occlusion

and multi–path reception provoked by tall buildings, tunnels,

etc. In this paper, we focus on precisely localizing a moving

vehicle based just on a visual input where the GPS is not

available or is not reliable enough. To achieve it, we assume

the path of the vehicle is planned and known previously.

In the literature, a variety of methods have been proposed

for computing the geospatial location of a vehicle or a

robot. They can be decomposed on dead reckoning and

map–matching algorithms, specifically using visual inputs.

The former ones use an on–board inertial measurement

unit to measure the vehicle travel distance and a gyro and

compass to provide the moving direction in order to refine

the geospatial location obtained from a GPS receiver. The

latter corrects the vehicle position based on recovering its

pose with respect to an environment model and differ on

the way they construct the environment model. An approach

for simultaneous localization and mapping (SLAM) is pro-

posed in [2], which is based on the extended Kalman filter,

and assumes that a robot moves in a stationary world of
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landmarks in order to estimate the environment map on–

line. Some works [3], [4], [5], [6], [7] built a topological

world representation estimated on–line by adding images to

a database and maintaining a link graph. The global location

is done by efficient image matching scheme w.r.t. all the

image in the topological map. In particular, Schleicher et al.

[7] combines the visual–information provided by a stereo

camera and a GPS receiver in order to localize a vehicle and

estimate a large–scale environment map. On the other hand,

some works [8], [9] employ a 3D reconstruction of the envi-

ronment built during an off–line learning phase and recover

the geospatial location by matching the current view with

projectives of the learned environment map. The work done

by Hakeen et al. [10] consists in localizing the geospatial

information and estimating the trajectory of a moving camera

without a 3D reconstruction of the environment using a set

of reference images with known GPS which were previously

acquired. However, the algorithms based on mapping only

estimate the geospatial location according to an efficient

image matching scheme without considering the temporal

coherence, that is, a vehicle follows a planned continuous

and smooth planar trajectory.

In this paper, we describe an new approach in that we

model a planned route using visual data. The visual data

is acquired using a forward–facing camera attached at the

windscreen. The key idea is to first record a video sequence

along some road track and at each frame record its geospatial

information with a better accuracy than that provided by

consumer GPS receivers, by using either a differential GPS

(DGPS) or an RTK–GPS. On a second round, when the

vehicle drives later along this track, we record a second

video, which we call the ’observed’ sequence, without any

GPS receiver. Note that, of course, the vehicle speed varies

and this variation is independent in the two videos so that at

one same location the speed is different, in general. For each

current frame of the observed sequence, we will be able to

find out the corresponding frame in the reference sequence,

that is, the one recorded at the same or the closest camera

location in the first ride. In other words, we synchronize the

two video sequences on–line, whilst recording the second

one. Once found the corresponding frame, we transfer the

geospatial information of the corresponding frame in the first

ride to the current frame.

II. SYSTEM OVERVIEW

The aim of vehicle geolocalization is to compute the

position of a vehicle using a GPS receiver. However, we

focus on computing the geospatial localization of a vehicle

replacing the GPS receiver with a forward facing camera and



a video sequence with known GPS. The video sequence is

recorded from moving vehicles whose frames are annotated

with geospatial information. This video sequence are called

reference sequence. Note that we assume that the vehicles

follow similar trajectories on the same track. This assumption

is plausible due to transportation vehicles normally follow

planned routes.

The overall vehicle geolocalization method consists of two

stages, which are shown in Fig. 1. In the first stage, an

image descriptor at and a∗ are computed for each frame

t in the observed video sequence and all video frames

in the georeferenced sequence, respectively (see Sect. II-

A). The image descriptor at is a simply representation of

the image acquired at time t used to compare it among

all images descriptors of the reference sequence, a∗. The

image descriptor is robust to different illumination conditions

which allow us to handle the comparison among frames

acquired at different times. In the second stage, a video

synchronization is proposed to estimate the corresponding

frame in the georeferenced sequence to the most recently

acquired frame in the observed video, in order to transfer

its geospatial information to the current frame(see Sect. II-

B). The temporal coherence of the video synchronization

algorithm consists in relating the frames of the observed se-

quence with regard to the frames of georeferenced sequences

which maximizes jointly a ’similar’ content. These stages

are repeated while the observed sequence is being acquired

in order to estimate the GPS locations of the vehicle. The

following sections detail these two steps.

Fig. 1. Illustration of the overall framework of our vehicle geolocalization
decomposed into two stages: computation of the image descriptor a and
on–line video synchronization, and the database.

A. Image descriptor

Let Fo
t and Fr

xt
denote the tth frame and the xth

t frame

of the observed and a reference sequence, respectively. The

image descriptors at and axt
describe the images Fo

t and

Fr
xt

, respectively. These image descriptors are compared in

the video synchronization stage in order to measure the

degree of similarity between the two frames they represent,

in order to later estimate the likelihood that t and xt are

corresponding frames. The image descriptor a∗ is computed

as follows. First, the image is smoothed using a Gaussian

kernel and downsampled at 1/16th of the original resolution.

Then, partial derivatives ( ∂·
∂x

, ∂·
∂y

) are computed and the value

at each pixel is set to zero if the gradient magnitude is less

than 5% of the maximum. Finally, the partial derivatives are

stacked all into a column vector a∗ which is normalized

to unit norm. This image descriptor is adopted because it

is simple to compute and compare in order to evaluate

instantaneously all the similarities among a subset of image

descriptors in the reference sequence. At the same time, this

image descriptor deals with contrast or lighting changes and,

of course, when they show different foreground objects like

vehicles. Fig. 2 summarizes the computation of the image

descriptors at and axt
with regard to the frames Fo

t and

Fr
xt

.

Fig. 2. Illustration of the computation flow of an image descriptor
decomposed as follows: (1) smooth the input image, (2) downsample at
the (1/24)th of the original resolution, (3) compute partial derivatives and
finally, (4) stack the partial derivatives into a column vector normalized to
unit norm.

B. video synchronization

The aim of video synchronization is the alignment along

the time dimension of two video sequences recorded at

different times. Video synchronization estimates a discrete

mapping c(t) = xt at time t = 1, . . . , no of the observed

sequence such that Fr
xt

maximizes some measure if simi-

larity with Fo
t , among a subset of frames of Fr, being no

the number of frames of the observed sequence and Fr
xt

and Fo
t the xth

t and tth frame in the reference and observed

sequence respectively. Once the discrete mapping is found,

the geospatial information of the corresponding frame Fr
xt

at time t is transferred to the current input frame Fo
t . These

video sequences are recorded by a pair of independently

moving cameras, although their motion is not completely

free because we impose the vehicles to follow approximately

coincident trajectories. As consequence, the video frames

have a large overlapping in the field of view of the two

cameras. The video synchronization is a challenging task

because it must face (1) varying and independent speed of

the cameras in the two sequences which implies a non–linear

time correspondences and (2) slight rotations and translations

of the camera location due to dissimilar trajectories. Al-

though several video synchronization techniques have been

proposed [11], [12], [13], only our previous work [14] on

video alignment addresses these two specific requirements.

Now, we need to add a third important requirement: the

temporal correspondence between the observed and the ref-

erence sequence must be computed on–line, because we

need to obtain the geospatial location after each frame

has been acquired. Therefore, we propose a on–line video

synchronization algorithm by extending [14]. That is because

the video synchronization jointly compares the similarity

content among consecutive frames in order to exploit that the

vehicles follow similar trajectories whereas image retrieval

techniques retrieves a frame with the highest similarity being



a challenging task to distinguish the corresponding frame

among a huge amount of frames which show similar content.

Fig. 3. Temporal meaning of a fixed lag–smoothing of a hidden Markov
model where the label xt−l is estimated at time t using L images in the

observed sequence, which are from (t−L)th to tth frame in the observed
sequence.

We state the problem of estimating the corresponding

frame as one of probabilistic inference. A label xt ∈
1, . . . , nr is the number of corresponding frame in the

reference sequence to the tth frame in the observed sequence,

being nr the number of frames in the reference sequence.

The estimation of the label xt is posed as a maximum

a posteriori inference problem of a fixed–lag smoothing

dynamic Bayesian network (DBN) which is defined as

xMAP
t−l = argmax

xt−l∈Ωt

p(xt−l|yt−L:t) , (1)

where Ωt is the set of labellings allowed to infer the label

xt−l, l ≥ 0 is a lag or delay, L ≥ l is the total set of observed

frames used to infer the label xt−l and yt−L:t are the

observations (image descriptors described in Sect. II-A) from

the (t−L)th to the tth in the observed sequence. The range

of the set of labellings Ωt is set as [xt−L−1, xt−l−1 + ∆],
being ∆ the maximum label difference between consecutive

frames. Note that xt−L−1 and xt−l−1 have been estimated

before the set of labellings Ωt is defined at time t. The

estimation of xMAP
t−l requires L + 1 frames of the observed

sequence and the fixed–lag smoothing infers the label t− l at

time t with a delay of l frames. Fig. 3 illustrates the meaning

of a fixed–lag smoothing. In order to estimate the label xt−l,

max–product inference algorithm is applied in Eq. (1) as

xMAP
t−l = argmax

xt−l∈Ωt

max
xt−L:t\xt−l

p(xt−L:t|yt−L:t) , (2)

where xt−L:t = [xt−L, . . . , xt] is a list of labels which cor-

responds the temporal correspondence among the reference

sequence and the observations yt−L:t. The maximization of

the posterior probability density p(xt−L:t|yt−L:t) is over all

the temporal correspondence labels xt−L:t expect for xt−l.

The posterior probability density of the temporal correspon-

dence xt−L:t is decomposed as

p(xt−L:t|yt−L:t) ∝ p(yt−L:t|xt−L:t)p(xt−L:t) , (3)

where p(xt−L:t) and p(yt−L:t|xt−L:t) are a prior and an

observation likelihood respectively. The estimation of label

xt−l is the argument that maximizes the temporal coherence

between two video sequences summarized as

xMAP
t−l = argmax

xt−l∈Ωt

max
xt−L:t\xt−l

p(yt−L:t|xt−L:t)p(xt−L:t) .

(4)

The prior p(xt−L:t) constraints the temporal correspon-

dence between two video sequences depending on the as-

sumption adopted between these two sequences. For sim-

plicity, the prior probability is assumed to be independent

given the label values. Hence, it is written as

p(xt−L:t) = P (xt−L)

t−1
∏

k=t−L

p(xk+1 | xk) , (5)

where P (xt−L) is the probability for the first label of the

current estimation of the temporal correspondence xt−L:t

that gives the same probability to all labels inside Ωt. The

intended meaning of p(xk+1 | xk) is the following: we

assume that vehicles do not go backward, that they move

always forward or at most stop for some time. Therefore, the

labels xt must increase monotonically. Hence, p(xk+1 | xk)
is defined as

p(xk+1 | xk) =

{

β if xk+1 ≥ xk

0 otherwise,
, (6)

where β is a constant that gives equal probability to any label

greater than xk.

On the other hand, the observation likelihood

p(yt−L:t|xt−L:t) describes the similarity of two video

sequences given a temporal correspondence xt−L:t. For

simplicity, we also assume that the likelihood of observations

yt−L:t is independent given their corresponding label values

and hence p(yt−L:t|xt−L:t) factorizes as

p(yt−L:t|xt−L:t) =

t
∏

k=t−L

p(yk|xk) , (7)

where p(yk|xk) describes the similarity between two frames,

one frame from the reference sequence and another from the

observed sequence. We want the similarity to be maximum

or at least high, if two frames are corresponding. The

observations yt−L:t corresponds to the image descriptors

[at−L, . . . ,at], which are described in Sect. II-A. In order

to measure the similarity among the image descriptor of the

current frame at and all image descriptors of the frames

inside Ωt, we consider the inner product of two image de-

scriptor because it measures the coincidence of the gradient

orientation in the subsampled image. Hence, our observation

probability is defined as

P (yk|xk) = max
−∆x<i<∆x

−∆y<j<∆y

Φ(< ai,j
xk

,ak >; 1, σ2
s) , (8)

where Φ(β;µ, σ2) denotes the evaluation of the Gaussian

pdf N (µ, σ2) at β, and σ2
s controls the likelihood of the

similarity measure between two image descriptors. We set σ2
s



to 0.5 to give significant likelihood only those frames whose

image descriptors form an angle less than approximately 5◦.

The upper indexes of ai,j
xt

mean that the image descriptor

is computed from a smoothed low resolution image with a

translation of i and j pixels over the x– and y–directions. The

maximum translation over x– and y–direction are ∆x and ∆y

respectively and, they are set to 2 pixels. These translations

increase the robustness of the likelihood when slight camera

rotations and translations appear due to trajectory dissimilar-

ities.

(a) (b)

Fig. 4. Aerial view of the paths covered by the vehicle where the travel
distance of (a) and (b) are 1.5 and 1 km, respectively.

(a) (b)

Fig. 5. Geospatial information of the vehicle paths shown on Fig. 4 using
a DGPS in the first and the second ride, and the raw GPS and the filtered
raw GPS of a standard low–cost GPS receiver which is synchronized with
the DGPS.

III. RESULTS

In this section we present quantitative results of our vehicle

geolocalization system. In order to test its behaviour two

video sequences have been recorded with a SONY DCR-

PC330E camcorder in our university campus. The camera is

attached to the windscreen and forward–facing. It captures

720× 560 pixel frames at a frame rate of 25 Hz. In order to

evaluate the accuracy of our approach using the Euclidean

distance between geospatial locations, the reference and the

observed are annotated with geospatial information obtained

from a DGPS Trimble-GeoXT, with an estimation accuracy

of 0.5 meters after post–processing and an update rate of

1 Hz. The DGPS data of the reference sequence is used

to transfer it to the observed sequence whereas the DGPS

data of the observed sequence is used as a ground–truth.

Furthermore, we will compare our method with regard to a

the KEOMO 16 channel GPS receiver with Nemeric chipset

with an update rate of 1 Hz, which is denoted as a standard

low–cost GPS. These three sensors are synchronized to

acquire their data at the same time. Note that the GPS

data is available only in 4% of the frames of a video

sequence. However, for the rest of frames there is still some

knowledge that can be exploited, since a vehicle follows a

regular trajectory as shown on Fig. 4. In order to estimate

the geoespatial information of both GPS receivers for each

video frame, we apply a Kalman smoother to process the

available GPS data and interpolate the lacking information

by means of the Rauch–Tung–Striebel Kalman smoother

equations [15]. Hence, all frames of the reference sequence

are georeferenced using the DGPS data. The observed se-

quence is georeferenced using a standard low–cost GPS and

a DGPS data. The latter is used as a ground–truth. The GPS

information of both GPS receivers is available only the 4%
of frames in a video sequence is called raw GPS whereas

the GPS data estimated by a Kalman smoother is called filter

raw GPS.

Fig. 6. The error is the Euclidean distance(e =
√

X2 + Z2) relative to the
GPS ground–truth and their respective lateral and longitudinal component
with regard to the trajectory of the vehicle using a linear interpolation of
GPS data used as a ground–truth. The dot points are the geospatial location
of the ground–truth whereas the cross point is the computed or captured
geospatial location.

The paths covered by the vehicle are shown in Fig. 4

whereas the geospatial information on both video sequences

is shown in Fig. 5. The average speed of the vehicle is

approximately 50 kph on both video sequences and both

paths. The length of each planned route shown in Fig. 5

is approximately 1.5 and 1 km respectively. The reference

and the observed video sequence shown in Fig. 4a are 3200
and 3500 frames long respectively whereas, the reference

and the observed video sequence shown in Fig. 4b are 1800
and 2100 frames long, respectively. The difference in the

number of frames is due to varying and independent speed

of the vehicle during each track. In addition, these sequences

were recorded at noon with the presence of vehicles and

some tall–building. Fig. 6 shows the error metric used to

compare our approach with regard to a standard low–cost

GPS. The error metrics are the Euclidean distance of the

estimated geospatial location w.r.t. the geospatial location of

the ground–truth and the projection of the Euclidian distance

w.r.t. the trajectory of vehicle. This projection decomposes

the error in longitudinal and lateral error component. The

error is calculated at each frame of the observed sequence

in order to illustrate its temporal evolution whereas its his-

togram summarizes it compactly. Furthermore, we compare

our approach w.r.t. a standard low–cost GPS calculating

the error and the histogram using the raw and filtered raw

GPS data of the GPS receiver and the transferred geospatial



(a)

(b)

Fig. 7. Geospatial information of a vehicle using the transferred GPS
and an off-the-shelf low–cost GPS relative, to the ground–truth. The links
relates the corresponding geospatial informations among different geospatial
information. The cross points are the geospatial location whereas the lines
are their correspondence among geospatial locations.

information from the georeferenced reference sequence. Fig.

8 shows the errors and the histograms of the three geospatial

information relative to the ground-truth, which are the trans-

ferred geospatial information, raw and filtered raw GPS data,

in the two paths. Our approach obtains an average Euclidean

error of 1.5 meters approximately whereas the standard low

cost GPS, raw GPS and filtered raw GPS, obtains an error of

6 meters approximately in both GPS datas. Fig. 8 shows that

the main error of our system is the longitudinal component

w.r.t. the trajectory of the vehicle because to distinguish

among consecutive frames is a challenging task due to they

show similar image content. Although, the longitudinal error

of our approach is approximately 4 meters lower than a

standard low–cost GPS. Fig. 7 depicts the estimation of our

vehicle geolocalization system w.r.t. the standard low–cost

GPS and the ground–truth showing their correspondences.

In spite of the large error on some short segments due

to dissimilar vehicle trajectories and video synchronization

errors, as shown in Fig. 8, we are still able to achieve an

accuracy of less than 2 meters in approximately the 80%
of the frames. Furthermore, the update rate of our approach

is 25 Hz, which is 25 times more than a standard low–cost

GPS, and our approach is able to locate the vehicle where

GPS data is not available.

IV. CONCLUSION

In this paper, we have proposed a new method for estimat-

ing the geospatial localization of a vehicle. We synchronized

a captured sequence of images with regard to a video se-

quence with known GPS to transfer the geospatial location of

a vehicle at each time a frame is acquired. The novelty of our

approach is the geospatial information is computed without

a GPS receiver but using an on–line video synchronization

between two video sequences, where one of these video

sequences has been georeferenced using DGPS or inertial

GPS. In addition, we described a qualified method to estimate

the geospatial information for all frames of a video sequence

instead of the 4% of the frames. The advantages of our

method are: (1) the increase of temporal resolution (update

rate) which is 25 times faster than a standard GPS, (2) the

increase of the relative geospatial accuracy with less than

2 meters of error more than 80% of the time instead of an

average accuracy of 5 meters obtained by a standard GPS and

finally, (3) this method is still able to estimate the geospatial

location of a vehicle where the GPS is not available or is not

reliable enough like in urban areas due to multipath reception

and satellite occlusions. As future work, we plan to include

a consumer GPS receiver as an additional observation in

our on–line video synchronization in order to increase the

accuracy.

REFERENCES
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