
Decremental Generalized Discriminative Common
Vectors applied to images classification

Katerine Diaz-Chitoa,∗, Jesús Mart́ınez del Rincónb, Aura Hernández-Sabatéa

aCentre de Visio per Computador, Universitat Autònoma de Barcelona, Spain
bCentre for Secure Information Technologies, Queen’s University Belfast, UK

Abstract

In this paper, a novel decremental subspace-based learning method called Decre-

mental Generalized Discriminative Common Vectors method (DGDCV) is pre-

sented. The method makes use of the concept of decremental learning, which

we introduce in the field of supervised feature extraction and classification. By

efficiently removing unnecessary data and/or classes for a knowledge base, our

methodology is able to update the model without recalculating the full projec-

tion or accessing to the previously processed training data, while retaining the

previously acquired knowledge. The proposed method has been validated in 6

standard face recognition datasets, showing a considerable computational gain

without compromising the accuracy of the model.

Keywords: Decremental learning, Generalized Discriminative Common

Vectors, Feature extraction, Linear subspace methods, Classification

1. Introduction

Feature extraction methods are one of the most crucial steps in pattern

recognition. Extracting a relevant and discriminant set of features from raw

data facilitates the classification and recognition tasks to be performed by the

subsequent classifier, significantly improving the overall performance of the sys-5

∗Corresponding author
Email addresses: kdiaz@cvc.uab.es (Katerine Diaz-Chito),

j.martinez-del-rincon@qub.ac.uk (Jesús Mart́ınez del Rincón), aura@cvc.uab.cat (Aura
Hernández-Sabaté)

Preprint submitted to Knowledge-Based Systems May 23, 2017

tem. In the last decades, vast amount of feature extraction techniques have

been proposed. However, many of them are specific to a particular domain

and based on a costly hand-crafted design process [1, 2]. In contrast, two more

general feature extraction strategies have emerged as more general and effective

methodologies: those based on deep neural networks [3] and those based on10

subspaces [4]. While the first one has shown state of the art performance for

large datasets, subspace based methods perform better when training data is

more restricted.

In this context, incremental methods [5, 6] are particularly interesting due

to their properties to learn and evolve without requiring full access to the initial15

training information, which may be lost or under restricted access. Furthermore,

updating the system with new information without having to retrain this from

scratch leads to convenient trade-offs between computational cost and perfor-

mance as well as space complexity. Incremental learning is specially interesting

in automatic feature extraction given that some of those methodologies require20

days or weeks to be trained [7]. In addition, for many practical applications

such as object tracking [8], image classification [9], stream processing [6], or

face recognition [10], a complete set of training samples is usually not known in

advance but generally provided little by little, which makes incremental learning

best suited for the task.25

However, incremental methods only address updating the system by adding

new information, but they do not considered updating the learned model by

removing wrong, misleading or obsolete information previously introduced. In

this sense, we define decremental learning as an online process that allows re-

moving samples, classes or any initial information from a previously trained30

model. We postulate decremental learning can be as important as incremental

learning for automatic feature extraction.

Several application fields will clearly benefit from the ability to decrement a

learned model. For instance, biometric systems used to manage and identify a

large population of users in big organizations may require updating the model35

by removing his/her corresponding class when a user leaves the organization.

2

This may be a laborious and long process, even impossible depending on the

scale of the user database and antiquity of the model, which may result on delays

and limited access to the other users, as well as privacy issues. Similarly, being

able to remove a single instance from a complex model encompassing thousands40

of samples and classes, when this outlier has been introduced by mistake, is a

desirable feature that will reduce the computational cost and the requirement

of multiplicity of backed-up models. The use of subspace-based methods as

part of hierarchical classification architecture, such as decision trees, will also

benefit from a decremental methods where more specific subspace can be derived45

from a global. Finally, generalizing the decrementing of a learned model can be

used for an efficient leave-m-out cross validation [11] of a classification pipeline

containing a subspace-based method.

In this paper, we propose for the first time a decremental subspace-based

learning method for supervised problems. Our approach is able to update the50

system by deleting unnecessary old data, while retaining the previously acquired

knowledge, without accessing the previously processed training data. This is not

only a more cost-effective approach than batch methodologies, but also allows

reusing models and projections when the original training data has been lost or

it is not accessible. Furthermore, it facilitates maintaining an effective and con-55

sistent subspace projection, without repeating the lengthy process of parameter

tuning for every update, which takes better advantage of an initial parame-

ter optimization process. Our novel decremental framework, called Decremen-

tal GDCV approach (DGDCV), is constructed on the basis of the Generalized

Discriminative Common Vectors method (GDCV) [9] for being particularly ap-60

pealing due to good performance, flexibility of implementation and capacity for

dealing with the Small Sample Size (SSS) case, a common problem in applica-

tions such as computer vision and biometrics. The proposed implementation

allows decrementing both full classes and individual samples, as well as any

combination of them, depending on the users requirements and the given appli-65

cation.

The remainder of the paper is structured as follows. Section 2 presents

3

an overview of the related work. Section 3 describes the problem statement.

Section 4 briefly introduces the batch GDCV method. Section 5 presents the

Decremental GDCV, which it is the main contribution of this paper. Section 670

describes the validation and presents the results of the analysis of the proposed

approach. Finally, Section 7 presents the main conclusions and some ideas about

further research.

2. Related Work

Among subspace-based methods, several incremental feature extraction tech-75

niques have been proposed, such as those based on Principal Components Anal-

ysis (PCA) [6, 12, 13, 14], Linear Discriminative Analysis (LDA) [5, 10, 15, 16]

and Discriminative Common Vector (DCV) [9, 17, 18, 19] methods. While in-

cremental learning has been extensively studied in the literature, few research

has been done in decremental learning or sample removal.80

The initial approach to the problem was the use of instance reduction al-

gorithms, IRA [20], and it aimed to reduce the initial training set size without

affecting the overall performance through instance selection. These algorithms

focus on detecting those samples in the set that are not relevant or do not con-

tain information before training, so they are not online learning approaches. If85

an initially relevant sample or class is then declared obsolete, the system will

need to be fully retrained without any computational benefit.

Relevant steps towards decremental systems were presented in incremental

and decremental Support Vector Machines (SVM) [21] and logistic regression

[22], although they only allow the removal of one sample at a time. An extended90

version [23] was further developed to allow the efficient removal of multiple

samples. However, their decremental learning modifications are embedded into

the classifier and their internal optimization processes. Since they do not involve

the feature extraction process, this limits the decremental update to only a part

of the recognition pipeline, obtaining overall suboptimal results. It must be95

noticed how these approaches have been tested in very low dimensional data

4

(e.g. 21 dimensions, [23]) or data that has been proved to work directly on

SVM without feature extraction or preprocessing (e.g. LIBSVM datasets, [22]).

These simple pipelines will struggle to solve difficult cases, such as complex and

high dimensional problems and/or SSS case [24].100

Regarding feature extraction and subspace learning methodologies, only two

research works can be found related to decremental learning. Hall et al. [25] pre-

sented the Merging and Splitting EigenSpaces (MSES) method. This method

permits simultaneous arbitrary addition and deletion operations, by transform-

ing the eigen-value/vector decomposition (EVD) of the total scatter matrix.105

Jin et al. [26] introduces a incremental/decremental version of PCA. This EVD

Dualdating (EVDD) method provides similar functionalities to the previous

method but transforming the EVD of the total scatter matrix into a single

value decomposition (SVD) updating problem. Both approaches are unsuper-

vised and under the same limitations than PCA, i.e. the extracted subspace and110

the corresponding extracted features are not necessarily invariant and suited for

classification purposes.

3. Problem Statement

LetX = [x1j . . . x
mj

j] ∈ Rd×M , j = 1, . . . , c be a data matrix ofM =
∑c
j=1mj

samples belonging to c classes, where each class j has mj samples. Each of the

training samples xij , i = 1, . . . ,mj is therefore a d-dimensional column vector.

Subspace-based learning methods aim to find a transformation or projection W

from the d-dimensional input space, Rd, into another space where the relevant

information is easily separable into the different classes. In order to obtain the

optimal projection W to the new subspace, the bases of the subspace, U , should

be first calculated. These bases are obtained by solving the eigenproblem of the

within-scatter matrix, SXw , of the given training data X. This scatter matrix is

defined as,

SXw =

c∑
j=1

mj∑
i=1

(xij − xj)(xij − xj)T = XcXc
T (1)

5

where xj is the average of the samples in the jth class. Matrix notation can

be used to simplify these mathematical expressions so that Xc = X − X is115

the centered matrix, where X = [x1 . . . xc] is the matrix comprising all the

class-averages.

The eigendecomposition of SXw can be written in general as

EVD(SXw) : XcXc
T = UΛUT = [Ur Uo]

 Λr

0

 Ur
T

Uo
T

where U = [u1 . . . ud] is a column matrix formed by the eigenvectors associated

to the eigenvalues, λ1 ≥ . . . ≥ λd, contained in the diagonal matrix Λ. Ur and

Uo are bases of two complementary subspaces, the range space -containing the120

eigenvectors with λi > 0- and the null space -containing the eigenvectors with

λi = 0- of SXw , respectively. Notice that λi = 0 for all i > r, being r the range

of matrix SXw . Theses subspace can be reformulated as the restricted range

subspaces, Rr(SXw), and the extended null subspaces, Ne(SXw), respectively. In

those particular cases where the number of input samples is limited with respect125

to the dimensionality, i.e. d > M , the eigenproblem is unsolvable, problem

known as the Small Sample Size case or SSS. For those SSS cases, the smaller

matrix XT
c Xc can be used instead of XcX

T
c to calculate Ur [27].

Depending of the particular subspace-based technique, the sought projection

W will have a different mathematical relation with U , Ur and Uo, giving a130

different resulting subspace.

As described in the introduction, our aim is to investigate the role of decre-

mental learning on an initially calculated projection W and the correspond-

ing subspace basis Ur. In order to keep a consistent notation throughout the

document, for any variable A, its updated version after deleting a class is de-135

noted by Ã. For example, the data matrix X is changed to X̃ after delete

an old class. In current methods, when one or several old training classes

need to be deleted the eigenproblem should be recalculated. We denote by

X = [X̃ XD] ∈ Rd×M the decomposition of the initial training set in the new

training one, X̃ ∈ Rd×(M−mj), and the old training classes, XD ∈ Rd×mj .140

6

This leads to issues regarding spatial complexity, sinceX should be accessible

at any time, and computational complexity, since the EVD problem should be

solved from scratch every time, even if a single sample is due to be removed.

Furthermore, as the dataset becomes smaller, the SSS case will become more

prominent, leading to inconsistencies in the solution. The challenge then is to145

obtain the subspace, Ũr, associated to X̃ without explicitly having X̃ and SX̃w .

4. Generalized Discriminative Common Vectors

The Generalized Discriminant Common Vector (GDCV) method [9], also

referred to as Rough Common Vector, RCV [28], constitutes a different way

to overcome the singularity problem in LDA. It consists of finding a projection150

matrix, W ∈ Rd×(c−1), that maximizes the projected between-class scatter,

subject to the fact that the subspace generated by W belongs to the Ne(SXw).

The singularity is avoided by extending the null space Uo to include not only

null directions or basis vectors, i.e. λi = 0, but also with almost null directions,

λi ≈ 0. This extension implies restricting the corresponding range space Ur to155

the highest directions, according to α parameter

α = 1− tr(UTα S
X
w Uα)

tr(SXw)
(2)

where Uα is the resulting restricted basis for a Rr(SXw), where some almost null

directions have been removed. The parameter α takes values in the interval

[0, 1]. When α = 0, Uα = Ur. The scattering added by the extension to the

null space can be measured as tr(UTα S
X
w Uα). This quantity is zero when no160

directions are removed from Uα and increases as more and more important

directions disappear by Eq. 2. For different particular values of α < 1, different

projections can be obtained with different levels of preserved variability, so

that Uα spans to the restricted range of SXw according to α to a new value

of rα ≤ (r − 1). Note that decreasing variability in the restricted range space165

directly results in increasing variability in the corresponding extended null space.

7

The projection basis fulfilling the above conditions for a given value of α can be

obtained through the eigendecomposition of SXw .

Figure 1 presents the main subspaces involved in the GDCV method. The

procedure to obtain a projection basis and the corresponding generalized com-170

mon vectors, and the time complexity corresponding to each of its steps are

presented in algorithm 1.

Figure 1: Main subspaces involved in the GDCV method.

8

Algorithm 1. GDCV Algorithm

Parameter: α, 0 ≤ α < 1

Input: X ∈ Rd×M , M =
∑c
j=1mj

Output: Uα ∈ Rd×r, Λα ∈ Rr×r, X ∈ Rd×c

Method:

1. Compute SXw = XcX
T
c // O(d2M)

if d > M use the matrix XT
c Xc // O(dM2)

2. Compute U and Λ by the EVD of SXw // O(d3)

if d > M use the EVD of the matrix XT
c Xc // O(M3 + dMr)

and extract the eigenvectors and eigenvalues in Λ according to α

3. Compute the generalized common vector as xjcv = xj − UαUTα xj // O(drc)

4. Define Xcom = [x1cv . . . x
c
cv] and let Xcom

c be its centered version with regard to

the mean xcom = (1/c)
∑c
j=1 x

j
cv // O(d(c− 1))

5. Compute the projection matrix such that W = orth(Xcom
c) ∈ Rd×(c1) //

O(d(c− 1)2)

6. Obtain the discriminative common vectors as WTxj .

To test a new sample, xtest, project it as WTxtest and then the label is

allocated from the minimum distance between the projected sample and the

discriminative common vectors.

The computational complexity of the GDCV method is O(d2M + d3), when175

d ≤ M . In the SSS case, (d > M), the computational complexity is O(dM2 +

M3 + dMr). It is worthy to note that steps 3-6 in the algorithm 1 have a

complexity of O(drc + dc2), independently of the ratio between d and M , and

their impact in the total cost, which is dominated by the costs in steps 1 and 2,

is almost negligible. Regarding the space complexity it is O(min(d,M)2).180

5. Decremental Generalized Discriminative Common Vectors

The key idea of DGDCV algorithm is to obtain the feature extraction model,

Ũα, associated to X̃ by accessing and processing only XD and the current model

Uα, and without explicitly having access to X̃ and SX̃w . Figure 2 illustrates the

9

subspaces involved when updating GDCV models by deleting one or several185

classes or samples.

Initial model
Resulting subset

Decremental
GDCV

Update set

Resulting
mapping

Figure 2: Main subspaces involved in the DGDCV approach. Uα spans to the restricted range

of SXw , XD are the data to be removed, and Ũα is the base than spans to the new restricted

range.

To achieve this goal, we assume the decomposition of the within-class scatter

matrix as the sum of its component following a similar reasoning and justifica-

tion as in [25, 9],

SXw = SX̃w + SXD
w (3)

Thus, SX̃w can be estimated as:

SX̃w = SXw − SXD
w ≈ UαΛαU

T
α −XDc

XT
Dc

(4)

where XDc = XD−XD is the centered data matrix of XD with respect to their

own average XD.

A basis that generates the range space of the remaining data set, SX̃w , can

be approximated as:

Ũ ≈ [Uα V]R (5)

where V is orthogonal to Uα, such as V = orth(XDc
− UαUTαXDc

) ∈ Rd×rD .

orth() function refers to any orthonormalization procedure - a Graham-Schmidt190

10

Orthonormalization (GSO) is used in our case-, rD to the range of SXD
w , and R

is a rotation matrix that controls the dimensionality of the Rr(SX̃w) .

By substituting 5 in the decomposition of 4

EVD(SX̃w) : SX̃w = Ũ Λ̃ŨT (6)

and projecting these scatters onto Rr(SX̃w) as [Uα V]T (·)[Uα V], we obtain

R Λ̃ RT = Mα : EVD(Mα) (7)

where

Mα =

Λα 0

0 0

− [Uα V]TXDcX
T
Dc

[Uα V] (8)

From the eigendecomposition of Mα, we can extract the eigenvectors, Rβ ,

as the column vectors in R corresponding to the largest eigenvalues, Λ̃α, such

that tr(Λ̃α) = β · tr(Λ̃).

β =

∥∥∥∥∥diag(Λ̃)

diag(Λ)

∥∥∥∥∥ · (1 + α) (9)

Note that the factor β is defined with regard to Mα, while α refers to SX̃w .

By considering the proposed approximation, the directions that are removed

(depending on the α value), are compensated by adding directions from the

remaining data (according to β). Consequently, the quality of the approximation

will depend on how representative the delete class is in comparison to the whole

of the training set. The final approximations for the updated extended null

space projection with parameter α can be accurately written as

Ũα ≈ [Uα V]Rβ

Λ̃α ≈ Λβ

The DGDCV algorithm is presented in the algorithm 2 along with the asymp-

totic cost corresponding to each of its steps.195

11

Algorithm 2. DGDCV Algorithm

Parameter: α, 0 ≤ α < 1

Input: XD ∈ Rd×mj , α

From previous iteration: Uα ∈ Rd×r, Λα ∈ Rr×r, X ∈ Rd×c

Output: Ũα ∈ Rd×r̃, Λ̃α ∈ Rr̃×r̃, X ∈ Rd×c̃

Method:

1. Compute XD regarding its average to obtain XDc // O(dmj)

2. Compute V as V = orth(XDc − UαUTαXDc) ∈ Rd×rD // O(dmjr + dm2
j)

3. Build Mα using Eq. 8 // O(dmj(r + rD))

4. Eigendecompose Mα in RΛ̃RT // O((r + rD)3)

and obtain the eigenvalues Λ̃α = Λβ within Λ̃ according to β Eq. 9

5. Compute the generalized common vector as

xjcv = xj − ŨαŨα
T
xj ∈ Rd×c̃ // O(dr̃c̃)

6. Steps 4-6 of the algorithm 1.

5.1. Computational and space complexity

In this subsection, we estimate the computational complexities of DGDCV

when an obsolete class is deleted from the existing training data. Table 1 shows

the comparison between the DGDCV approach and the batch method.

Step 1 2 3 4

DGDCV O(dmj) O(dmj(r +mj)) O(dmj(r + rD)) O((r + rD)3)

GDCV O(d2M) – – O(d3)

GDCV (SSS case) O(dM2) – – O(M3 + dMr)

Table 1: Main computational complexity for DGDCV and GDCV.

200

The asymptotic cost of the DGDCV is dominated by O(dm2
j +(r+rD)3). In

the case of the batch algorithm the complexity is dominated by O(d2M + d3),

when d ≤M , and O(dM2 +M3), when d > M . We can seen that the DGDCV

approach is more efficient than the batch algorithm in both cases since mj �M ,

and (r + rD)3 < min(d3,M3). Obviously, the closer the value of the number205

of removed samples is to the size of the initial training set, the smaller is the

12

computational gain by using a decremental approach since previous disparities

are not fulfilled. If almost all the samples/classes of the initial training set

are to be deleted, it is simpler to train the system from scratch. However,

this scenario will only be possible for very small and simple problems and toy210

examples, not in real life problems and big sets. Regarding the space complexity,

the batch method presents a O(min(d,M)2) and the decremental algorithm has

a O((r + rD)2), which is also a significant improvement given that (r + rD)2 <

min(d2,M2).

6. Experiments and Results215

6.1. Experimental setup

To demonstrate the advantages of the DGDCV approach to delete existing

classes or samples from the initial training data of a classification problem, we

selected six facial recognition datasets to validate our approach. The choice of

face recognition as classification task has been extensively used in incremental220

learning approaches based on subspaces such as [29, 30, 31]. As classifier, a sim-

ple 1-Nearest Neighbors classifier using Euclidean distance between the training

discriminative common vectors and the test samples projected into the discrim-

inant subspace is employed. The simplicity of the classifier is justified for our

aim to demonstrate the accuracy and approximation of our method to obtain a225

projection into another space where the relevant information is easily separable

into the different classes. A more complex and powerful classifier could hide or

compensate the adequacy of the resulting subspace.

Figure 3 illustrates the datasets used, with a sample of 8 images per dataset

on the top, and a table with their main characteristics at the bottom. All images230

were normalized to 40×40. For each dataset, the Training Set (TR) is composed

by the 70% of the first samples of each class, and the remaining 30% is used

as Test Set (TS), The α parameter was empirically optimised so that the batch

GDCV algorithm provided the best accuracy result when using all samples and

classes.235

13

Name α c mj TR TS cj

AR [32] 0.02 50 14 10 4 [50–17]

BANCA [29] 0.20 52 10 7 3 [52–18]

CMU-PIE [33] 0.04 68 56 40 16 [68–23]

Altkom [29] 0.01 80 15 11 4 [80–27]

FERET [34] 0.01 200 4 3 1 [200–67]

MPEG [30] 0.18 635 5 4 1 [635–212]

Figure 3: Datasets used in validation along with their corresponding details. α is the added

scatter to the null space of SXw . c is the number of classes. mj is the total number of samples

per class. TR and TS are the number of samples per class in the training and test set,

respectively. cj is the range of remaining classes from the training set in our experiments.

All algorithms have been implemented in Matlab and run on a computer with

a Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 3601 Mhz, and 32-GB RAM.

6.1.1. Decrement by class

In a first setup, an initial model is decremented by removing a existing class,

i.e. all samples belonging to that class, at each decremental step. This is the240

most interesting setup since it is closer to a real application where a class may

stop being relevant for a given classification problem. In all experiments under

this setup, the initial model is obtained using the corresponding batch algorithm

and then one class at a time is deleted, until only 1/3 of the total number of

classes remains. The range of these values is represented by cj in Fig. 3.245

First, a comparison is performed to show the discriminant properties of the

GDCV method in both cases, when d ≤ M and d > M . This method is

compared against the well-known LDA/GSVD [35] and LDA/QR [36] methods.

This will allow us to justify our choice of GDCV as a base for our decremental

algorithm.250

14

Then the proposed DGDCV algorithm is validated, both in terms of the ac-

curacy of its approximation and the decrease in computational time regarding

the batch GDCV algorithm. In this validation, two different empirical scenarios

have been considered to find out if the accuracy and performance of our approx-

imation depend not only on the number of classes removed and the number of255

decremental steps, but also on the size of those classes in terms of number of

samples. In the first scenario all samples per class are used to create the model,

i.e TR=TR (TR = 1 from now on). In the second one, classification models

are created using the half and the quarter of the total number of samples in

each class, i.e. TR = 0.5*TR and TR = 0.25*TR (TR = 0.5 and 0.25 from now260

on). The chosen training samples are randomly selected as in other incremental

setups [37].

6.1.2. Decrement by sample

As a final experiment, we validate our approach when individual samples,

rather than full classes, are decremented. In this setup, an initial model is265

obtained from the full training set using the corresponding batch algorithm.

Then, in each iteration, a samples per class is removed until only the required

minimum of two samples per class remains. Experiments are performed for the

AR, BANCA, CMU-PIE and Altkom datasets. FERET and MPEG could not

used due to their extremely small number of samples per class, which did not270

allow for even a decrement by sample iteration.

6.2. Results and analysis

6.2.1. Decrement by class

Figure 4 shows the accuracy rate for the three batch methods GDCV [9],

LDA/GSVD [35] and LDA/QR [36] over a decremental number of classes, where275

one class of the training data is deleted at each iteration. The greyscale bar

in the figure represents the ratio between the number of samples in TR and

the dimension of the original space, where (M/d) > 1 is shown in black and

(M/d) < 1 is shown in light gray. This allows to compare the performance of

15

the algorithms in case of SSS (light gray) or not. Results show how GDCV gives

Training classes
20253035404550

A
cc

ur
ac

y

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1.01

0.130.160.190.220.250.28

Batch

GDCV
LDA/GSVD
LDA/QR

(a) AR

Training classes
20253035404550

A
cc

ur
ac

y

0.67

0.71

0.75

0.79

0.83

0.87

0.91

0.95

0.99

0.090.110.130.150.18 0.20.22

Batch

GDCV
LDA/GSVD
LDA/QR

(b) BANCA

Training classes
253035404550556065

A
cc

ur
ac

y

 0.7

0.72

0.74

0.76

0.78

 0.8

0.82

0.84

0.86

0.630.750.88 11.131.251.38 1.51.63

Batch

GDCV
LDA/GSVD
LDA/QR

(c) CMU-PIE

Training classes
304050607080

A
cc

ur
ac

y

0.64

0.68

0.72

0.76

 0.8

0.84

0.88

0.92

0.96

0.210.280.340.410.48

Batch

GDCV
LDA/GSVD
LDA/QR

(d) Altkom

Training classes
 80100120140160180200

A
cc

ur
ac

y

0.68

 0.7

0.72

0.74

0.76

0.78

 0.8

0.82

0.84

0.86

0.88

 0.9

0.150.190.230.26 0.30.34

Batch

GDCV
LDA/GSVD
LDA/QR

(e) FERET

Training classes
250300350400450500550600

A
cc

ur
ac

y

0.54

0.58

0.62

0.66

 0.7

0.74

0.78

0.82

0.86

 0.9

0.94

0.630.750.88 11.131.251.38 1.5

Batch

GDCV
LDA/GSVD
LDA/QR

(f) MPEG

Figure 4: Accuracy rate of batch methods GDCV [9], LDA/GSVD [35] and LDA/QR [36]

over a decremental number of classes.

280

16

consistently the best or almost best performance and more stable discriminants

properties in all datasets and cases, which justify the use of GDCV as baseline

method in our decremental approach.

Figure. 5 shows the comparative performance between DGDCV and GDCV

for the first scenario, TR = 1. We can observe how our DGDCV approach285

exhibits a stable performance regarding the batch method and the effect of the

approximation can be considered negligible, since the difference is small (see

Table 2) and no divergence is shown. It is also noticeable how the decremen-

tal method shows a more continuous and smooth performance, which seems to

indicate a better resiliance against local maxima and minima and spikes in per-290

formance that may happen in the batch method, as reflected in Fig.5.b at 25-20

classes, Fig.5.d at 40-35 classes and Fig.5.f at 250-212 classes. This continuity

or smoothness in performance was measured by adjusting a piecewise polyno-

mial spline to each graph in Figure. 5 and measuring the RMSE bewteen each

method’s performance and its spline. The average error for DGDCV is 5.28e-4,295

smaller than the GDCV with 7.74e-4.

Table 2 summarizes the Root Mean Squares Error, RMSE, and the Relative

Error, ER, between the DGCV and its batch method. These relative errors are

computed according to:

RMSE =

√√√√ n∑
i=1

(Acciupdate
−Accibatch

)2

n
∗ 100

RE =

n∑
i=1

Acciupdate
−Accibatch

Accibatch

∗ 100

n

The second scenario for accuracy comparison between DGDCV and GDCV

is shown in Figure 6, for different sizes of training sets and class size TR =

1, TR = 0.5 and TR = 0.25. As expected in any machine learning algorithm,300

the lower the number of samples, the lower performance. Similarly to the pre-

vious scenario, DGDCV shows a similar or better performance than its batch

version in all cases. No differences were observed in the comparative behavior

17

Training classes
20253035404550

A
cc

ur
ac

y

0.94

0.95

0.96

0.97

0.98

0.99

 1

0.130.160.190.220.250.28

Incremental vs Batch

GDCV
DGDCV

(a) AR

Training classes
20253035404550

A
cc

ur
ac

y

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.090.110.130.150.18 0.20.22

Incremental vs Batch

GDCV
DGDCV

(b) BANCA

Training classes
253035404550556065

A
cc

ur
ac

y

 0.8

0.81

0.82

0.83

0.84

0.630.750.88 11.131.251.38 1.51.63

Incremental vs Batch

GDCV
DGDCV

(c) CMU-PIE

Training classes
304050607080

A
cc

ur
ac

y

0.86

0.87

0.88

0.89

 0.9

0.91

0.92

0.93

0.94

0.210.280.340.410.48

Incremental vs Batch

GDCV
DGDCV

(d) Altkom

Training classes
80100120140160180200

A
cc

ur
ac

y

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.150.190.230.26 0.30.34

Incremental vs Batch

GDCV
DGDCV

(e) FERET

Training classes
250300350400450500550600

A
cc

ur
ac

y

 0.8

0.82

0.84

0.86

0.88

 0.9

0.92

0.94

0.630.750.88 11.131.251.38 1.5

Incremental vs Batch

GDCV
DGDCV

(f) MPEG

Figure 5: Comparison in terms of accuracy between DGDCV and GDCV.

regarding the number of samples per class, although a better resistance against

degeneration is shown by our DGDCV.305

18

Dataset RMSE % ER %

AR [32] 1.0 ± 0.7 -0.2 ± 1.0

BANCA [29] 2.4 ± 1.5 0.3 ± 2.7

CMU-PIE [33] 0.6 ± 0.4 -0.4 ± 0.6

Altkom [29] 1.5 ± 1.0 -0.4 ± 1.6

FERET [34] 1.4 ± 0.9 -0.5 ± 1.6

MPEG v1 [30] 1.5 ± 1.3 0.5 ± 1.7

Table 2: Relative RMSE and ER between DGCV and GDCV, for each dataset and TR = 1.

The computational cost for both decremental and batch methods is depicted

in Figure 7. GDCV shows an almost quadratic behavior decreasing with the

number of samples and classes with inflexion points to a linear model where

the SSS case stops being relevant. On the contrary, DGDCV show a big com-

putational gain regarding its batch version and it exhibits a much milder lin-310

ear tendency, almost constant in the majority of the cases. The explanation

for this linear behavior is directly due to the fact that the cost term dm2
j , in

(dm2
j + (r+ rD)3), behaves as dmj due to the sublinear decreasing of the ranks

since (r + rD)3 � dm2
j . Please note that the initial cost to generate the initial

model to be decremented is not considered in either method.315

6.2.2. Decrement by sample

Finally, Figures 8 and 9 show the accuracy rates and the CPU time of the

methods when individual samples per class are deleted in each iteration. As

expected, we can observe how having less training samples per class will reduce

the recognition rate in both batch and decremental version. However, DGDCV320

reduces the module degeneration and poor generalisation when few sample are

available per class, exhibited in the batch version. Our decremental DGDCV

seems to keep relevant information about the class after each decremental itera-

tion in spite of removing the sample. Thus, the model generated using DGDCV

provides the same or better discriminative properties than the batch model.325

Regarding the computational cost, DGDCV also shows a significative gain re-

garding the batch approach as in all previous experiments.

19

Training classes
20253035404550

A
cc

ur
ac

y

0.82

0.84

0.86

0.88

 0.9

0.92

0.94

0.96

0.98

 1
TR=1

TR=0.5

TR=0.25

Incremental vs Batch

GDCV
DGDCV

(a) AR

Training classes
20253035404550

A
cc

ur
ac

y

 0.4

0.44

0.48

0.52

0.56

 0.6

0.64

0.68

0.72

0.76

 0.8

0.84

0.88

0.92

0.96

TR=1

TR=0.5

TR=0.25

Incremental vs Batch

GDCV
DGDCV

(b) BANCA

Training classes
253035404550556065

A
cc

ur
ac

y

0.78

 0.8

0.82

0.84

TR=1

TR=0.5

TR=0.25

Incremental vs Batch

GDCV
DGDCV

(c) CMU-PIE

Training classes
304050607080

A
cc

ur
ac

y

0.62

0.66

 0.7

0.74

0.78

0.82

0.86

 0.9

0.94
TR=1

TR=0.5

TR=0.25

Incremental vs Batch

GDCV
DGDCV

(d) Altkom

Training classes
80100120140160180200

A
cc

ur
ac

y

0.69

0.71

0.73

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

TR=1

TR=0.5

Incremental vs Batch

GDCV
DGDCV

(e) FERET

Training classes
250300350400450500550600

A
cc

ur
ac

y

 0.7

0.74

0.78

0.82

0.86

 0.9

0.94

TR=1

TR=0.5

Incremental vs Batch

GDCV
DGDCV

(f) MPEG

Figure 6: Accuracy of DGDCV (dotted line) and GDCV (continuous line) for TR = 1, TR =

0.5 and TR = 0.25. In graphs (e) and (f), TR=0.25 was not calculated due to the small size

of each classes.

20

Training classes
20253035404550

C
P

U
 ti

m
e

(s
ec

.)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Incremental vs Batch

GDCV
DGDCV

(a) AR

Training classes
20253035404550

C
P

U
 ti

m
e

(s
ec

.)

0

0.01

0.02

0.03

0.04

0.05

0.06
Incremental vs Batch

GDCV
DGDCV

(b) BANCA

Training classes
253035404550556065

C
P

U
 ti

m
e

(s
ec

.)

0

0.1

0.2

0.3

0.4

0.5

0.6
Incremental vs Batch

GDCV
DGDCV

(c) CMU-PIE

Training classes
304050607080

C
P

U
 ti

m
e

(s
ec

.)

 0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
 0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
 0.2

Incremental vs Batch

GDCV
DGDCV

(d) Altkom

Training classes
80100120140160180200

C
P

U
 ti

m
e

(s
ec

.)

 0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 0.1

0.11

0.12

0.13

0.14

0.15

0.16
Incremental vs Batch

GDCV
DGDCV

(e) FERET

Training classes
250300350400450500550600

C
P

U
 ti

m
e

(s
ec

.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Incremental vs Batch

GDCV
DGDCV

(f) MPEG

Figure 7: CPU time in seconds vs training classes in DGDCV and GDCV methods.

21

Training samples per class
2345678910

A
cc

ur
ac

y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GDCV
DGDCV

(a) AR

Training samples per class
22.533.544.555.566.57

A
cc

ur
ac

y

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

GDCV
DGDCV

(b) BANCA

Training samples per class
510152025303540

A
cc

ur
ac

y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

GDCV
DGDCV

(c) CMU-PIE

Training samples per class
234567891011

A
cc

ur
ac

y

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

GDCV
DGDCV

(d) Altkom

Figure 8: Accuracy of DGDCV (dashed line) and GDCV (solid line) when samples are deleted

7. Conclusions330

This paper presents, for the first time, a novel decremental subspace-based

learning method DGDCV, capable of updating a feature space model by deleting

unnecessary samples/classes, while retaining the previously acquired knowledge,

without accessing to the previously processed training data. The new method

shows a significant computational gain in computational cost and memory. Both335

corrupted samples classes and/or obsolete full classes can be removed in our

implementation.

The proposed method has been evaluated in 6 standard datasets for face

recognition with different characteristics. Our methodology has shown to be

consistent in all experiments, a similar or better performance to its batch equiv-340

22

Training samples per class
2345678910

C
P

U
 ti

m
e

(s
ec

.)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

GDCV
DGDCV

(a) AR

Training samples per class
22.533.544.555.566.57

C
P

U
 ti

m
e

(s
ec

.)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

GDCV
DGDCV

(b) BANCA

Training samples per class
510152025303540

C
P

U
 ti

m
e

(s
ec

.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GDCV
DGDCV

(c) CMU-PIE

Training samples per class
234567891011

C
P

U
 ti

m
e

(s
ec

.)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

GDCV
DGDCV

(d) Altkom

Figure 9: CPU time in seconds vs training samples in DGDCV and GDCV methods.

alents. This validates the approximations required to perform the decrement of

its initial model without recomputing the projection and all other calculations

from scratch. As a main advantage, the computational cost when performing

each decremental iteration is significantly smaller than recomputing the full

model and follows a small linear or constant trend. All these conclusions are345

also true in the SSS case. Moreover, DGDCV only needs to know the class sam-

ples to be removed, which reduce the amount of memory and memory accesses

in our method, as well as the required permission and availability of the initial

training samples.

Although the method has no limitations regarding the relation of the number350

of training samples or their dimensionality, the closer the value of the number

23

of removed samples is to the size of the initial training set, the smaller the

computational gain by using our decremental approach results. This is since

mj << M and (r + rD)3 < min(d3,M3) conditions are not fulfilled. If almost

every sample/class of the initial training set has to be deleted, it is simpler to355

train the system from scratch.

Another limitation of our current method is that this decremental approach

does not include incremental learning. Therefore, if new information needs

to be added or incremental and decremental steps need to be alternate, the

incremental algorithm [9] needs to be added as a separate process. As future360

work, we aim to extend this method to integrate dual updates allowing both

adding and removing samples/classes at a time.

References

[1] D. G. Lowe, Object recognition from local scale-invariant features, in: In-
ternational Conference on Computer Vision, 1999, pp. 1150–1157.365

[2] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: IEEE Conference on Computer Vision and Pattern Recognition, 2005,
pp. 886–893.

[3] H. Lee, C. Ekanadham, A. Y. Ng, Sparse deep belief net model for visual
area v2, in: Advances in Neural Information Processing Systems, 2008, pp.370

873–880.

[4] I. Guyon, A. Elisseeff, An introduction to variable and feature selection,
Journal of Machine Learning Research 3 (2003) 1157–1182.

[5] D. Chu, L. Liao, M. Ng, X. Wang, Incremental linear discriminant analysis:
A fast algorithm and comparisons, IEEE Trans. on Neural Networks and375

Learning Systems 26 (11) (2015) 2716–2735.

[6] X. Zeng, G. Li, Covariance free incremental principal component analysis
with exact mean update, Journal of Computational Information Systems
5 (16) (2013) 181–192.

[7] K. He, J. Sun, Convolutional neural networks at constrained time cost, in:380

IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
5353–5360.

[8] D. Ross, J. Lim, R. Lin, M. Yang, Incremental learning for robust visual
tracking, International Journal of Computer Vision 77 (1-3) (2008) 125–
141.385

[9] K. Diaz-Chito, F. Ferri, W. Diaz-Villanueva, Incremental generalized dis-
criminative common vectors for image classification, IEEE Trans. on Neural
Networks and Learning Systems 26 (8) (2015) 1761–1775.

24

[10] Y. Peng, S. Pang, G. Chen, A. Sarrafzadeh, T. Ban, D. Inoue, Chunk in-
cremental idr/qr lda learning, in: International Joint Conference on Neural390

Networks, 2013, pp. 1–8.

[11] M. Karasuyama, I. Takeuchi, R. Nakano, Efficient leave-m-out cross-
validation of support vector regression by generalizing decremental algo-
rithm, New Generation Computing 27 (4) (2009) 307–318.

[12] H. Zhao, P. Yuen, J. T. Kwok, A novel incremental principal component395

analysis and its application for face recognition, IEEE Trans. on Systems,
Man, and Cybernetics (Part B) 36 (2006) 873–886.

[13] S. Ozawa, S. Pang, N. Kasabov, Incremental learning of chunk data for on-
line pattern classification systems, IEEE Trans. on Neural Networks 19 (6)
(2008) 1061–1074.400

[14] G. Duan, Y. Chen, Batch-incremental principal component analysis with
exact mean update, in: IEEE International Conference on Image Process-
ing, 2011, pp. 1397–1400.

[15] T. Kim, K. Kenneth, B. Stenger, J. Kittler, R. Cipolla, Incremental lin-
ear discriminant analysis using sufficient spanning set approximations, in:405

IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp.
1–8.

[16] G. Lu, J. Zou, Y. Wang, Incremental complete lda for face recognition,
Pattern Recognition 45 (7) (2012) 2510–2521.

[17] K. Diaz-Chito, F. Ferri, W. Dı́az-Villanueva, Null space based image recog-410

nition using incremental eigendecomposition, in: Pattern Recognition and
Image Analysis: 5th Iberian Conference, 2011, pp. 313–320.

[18] G. Lu, J. Zou, Y. Wang, Incremental learning of discriminant common vec-
tors for feature extraction, Applied Mathematics and Computation 218 (22)
(2012) 11269–11278.415

[19] F. Ferri, K. Diaz-Chito, W. Diaz-Villanueva, Fast approximated discrimi-
native common vectors using rank-one svd updates, in: International Con-
ference on Neural Information Processing, 2013, pp. 368–375.

[20] I. Czarnowski, P. Jdrzejowicz, Family of instance reduction algorithms ver-
sus other approaches, in: Intelligent Information Processing and Web Min-420

ing. Advances in Soft Computing, Vol. 21, 2005, pp. 23–30.

[21] G. Cauwenberghs, T. Poggio, Incremental and decremental support vec-
tor machine learning, in: International Conference on Neural Information
Processing Systems, 2000, pp. 388–394.

[22] C. Tsai, C. Lin, C. Lin, Incremental and decremental training for linear425

classification, in: International Conference on Knowledge Discovery and
Data Mining, 2014, pp. 343–352.

[23] M. Karasuyama, I. Takeuchi, Multiple incremental decremental learning of
support vector machines, IEEE Trans. on Neural Networks 21 (7) (2010)
1048–59.430

25

[24] L.-F. Chen, H.-Y. Liao, M.-T. Ko, J.-C. Lin, G.-J. Yu, A new lda-based face
recognition system which can solve the small sample size problem, Pattern
Recognition 33 (10) (2000) 1713–1726.

[25] P. Hall, D. Marshall, R. Martin, Merging and splitting eigenspace models,
IEEE Trans. on Pattern Analysis and Machine Intelligence 22 (9) (2000)435

1042–1049.

[26] B. Jin, Z. Jing, H. Zhao, Evd dualdating based online subspace learning,
Mathematical Problems in Engineering (2014) 1–21.

[27] H. Murakami, B. Kumar, Efficient calculation of primary images from a
set of images, IEEE Trans. on Pattern Analysis and Machine Intelligence440

4 (5) (1982) 511–515.

[28] A. Tamura, Q. Zhao, Rough common vector: A new approach to face
recognition, in: IEEE International Conference on Systems, Man and Cy-
bernetics, 2007, pp. 2366–2371.

[29] T. Kim, B. Stenger, J. Kittler, R. Cipolla, Incremental linear discriminant445

analysis using sufficient spanning sets and its applications, International
Journal of Computer Vision 91 (2) (2011) 216–232.

[30] T. Kim, W. Hwang, J. Kittler, Component-based lda face description for
image retrieval and mpeg-7 standardisation, Image and Vision Computing
23 (7) (2005) 631–642.450

[31] K. Diaz-Chito, F. Ferri, W. Dı́az-Villanueva, Image recognition through
incremental discriminative common vectors, in: International Conference
on Advanced Concepts for Intelligent Vision Systems, 2010, pp. 304–311.

[32] A. Martinez, R. Benavente, The ar face database, Technical Report 24,
Computer Vision Center CVC (1998).455

[33] T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression
(PIE) database, in: IEEE International Conference on Automatic Face and
Gesture Recognition, 2002, pp. 1–6.

[34] J. Phillips, H. Wechsler, J. Huang, P. Rauss, The feret database and eval-
uation procedure for face-recognition algorithms, Image and Vision Com-460

puting 16 (5) (1998) 295–306.

[35] J. Ye, R. Janardan, C. Park, H. Park, An optimization criterion for gen-
eralized discriminant analysis on undersampled problems, IEEE Trans. on
Pattern Analysis and Machine Intelligence 26 (8) (2004) 982–994.

[36] J. Ye, Q. Li, Lda/qr: an efficient and effective dimension reduction algo-465

rithm and its theoretical foundation, Pattern Recognition 37 (4) (2004) 851
– 854.

[37] G.-F. Lu, Z. Jian, Y. Wang, Incremental learning from chunk data for
idr/qr, Image and Vision Computing 36 (2015) 1 – 8.

26

	Introduction
	Related Work
	Problem Statement
	Generalized Discriminative Common Vectors
	Decremental Generalized Discriminative Common Vectors
	Computational and space complexity

	Experiments and Results
	Experimental setup
	Decrement by class
	Decrement by sample

	Results and analysis
	Decrement by class
	Decrement by sample

	Conclusions

