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Abstract

While wearable cameras are becoming increasingly popular, locating relevant in-
formation in large unstructured collections of egocentric images is still a tedious
and time consuming process. This paper addresses the problem of organiz-
ing egocentric photo streams acquired by a wearable camera into semantically
meaningful segments, hence making an important step towards the goal of au-
tomatically annotating these photos for browsing and retrieval. In the proposed
method, first, contextual and semantic information is extracted for each image
by employing a Convolutional Neural Networks approach. Later, a vocabulary
of concepts is defined in a semantic space by relying on linguistic information.
Finally, by exploiting the temporal coherence of concepts in photo streams,
images which share contextual and semantic attributes are grouped together.
The resulting temporal segmentation is particularly suited for further analysis,
ranging from event recognition to semantic indexing and summarization. Exper-
imental results over egocentric set of nearly 31,000 images, show the prominence
of the proposed approach over state-of-the-art methods.
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1. Introduction

Among the advances in wearable technology during the last few years, wear-
able cameras specifically have gained more popularity [5]. These small light-
weight devices allow to capture high quality images in a hands free fashion from
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Figure 1: Example of temporal segmentation of an egocentric sequence based on what the
camera wearer sees. In addition to the segmentation, our method provides a set of semantic
attributes that characterize each segment.

the first-person point of view. Wearable video cameras such as GoPro and Loox-
cie, by having a relatively high frame rate ranging from 25 to 60 fps, are mostly
used for recording the user activities for a few hours. Instead, wearable photo
cameras, such as the Narrative Clip and SenseCam, capture only 2 or 3 fpm and
are therefore mostly used for image acquisition during longer periods of time
(e.g. a whole day). The images collected by continuously recording the user’s
life, can be used for understanding the user’s lifestyle and hence they are poten-
tially beneficial for prevention of non-communicative diseases associated with
unhealthy trends and risky profiles (such as obesity, depression, etc.). In addi-
tion, these images can be used as an important tool for prevention or hindrance
of cognitive and functional decline in elderly people [12]. However, egocentric
photo streams generally appear in the form of long unstructured sequences of
images, often with high degree of redundancy and abrupt appearance changes
even in temporally adjacent frames, that harden the extraction of semantically
meaningful content. Temporal segmentation, the process of organizing unstruc-
tured data into homogeneous chapters, provides a large potential for extracting
semantic information. Indeed, once the photo stream has been divided into a
set of homogeneous and manageable segments, each segment can be represented
by a small number of key-frames and indexed by semantic features, providing a
basis for understanding the semantic structure of the event.

State-of-the-art methods for temporal segmentation can be broadly classified
into works with focus on what-the-camera-wearer-sees [9, 11, 30] and on what-
the-camera-wearer-does [28, 29]. As an example, from the what-camera-wearer-
does perspective, the camera wearer spending time in a bar while sit, will be
considered as a unique event (sitting). From the what-the-camera-wearer-sees
perspective, the same situation will be considered as several separated events
(waiting for the food, eating, and drinking beer with a friend who joins later).
The distinction between the aforementioned points of view is crucial as it leads
to different definitions of an event. In this respect, our proposed method fits in
the what-the-camera-wearer-sees category. Early works on egocentric temporal
segmentation [11, 23] focused on what the camera wearer sees (e.g. people,
objects, foods, etc.). For this purpose, the authors used as image representation,
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low-level features to capture the basic characteristics of the environment around
the user, such as color, texture or information acquired through different camera
sensors. More recently, the works in [7] and [30] have used Convolutional Neural
Network (CNN) features extracted by using the AlexNet model [20] trained on
ImageNet as a fixed feature extractor for image representation. Some other
recent methods infer from the images what the camera wearer does (e.g. sitting,
walking, running, etc.). Castro et al. [9] used CNN features together with
metadata and color histogram [9].

Most of these methods use as image representation ego-motion [24, 6, 28, 29],
which is closely related to the user motion-based activity but cannot be reliably
estimated in photo streams. The authors combined a CNN trained on ego-
centric data with a posterior Random Decision Forest in a late-fusion ensemble,
obtaining promising results for a single user. However, this approach lack of gen-
eralization, since it requires to re-train the model for any new user, implying to
manually annotate large amount of images. To the best of our knowledge, except
the work of Castro et al. [9], Doherty et al. [11] and Tavalera et al. [30], all other
state-of-the-art methods have been designed for and tested on videos.In our pre-
vious work [30], we proposed an unsupervised method, called R-Clustering, aim-
ing to segment photo streams from the what-the-camera-wearer-see perspective.
The proposed methods relies on the combination of Agglomerative Clustering
(AC), that usually has a high recall, but leads to temporal over-segmentation,
with a statistically founded change detector, called ADWIN [4], which despite its
high precision, usually leads to temporal under-segmentation. Both approaches
are integrated in a Graph-Cut (GC) [8] framework to obtain a trade-off between
AC and ADWIN, which have complementary properties. The graph-cut relies
on CNN-based features extracted using AlexNet, trained on ImageNet, as a
fixed feature extractor in order to detect the segment boundaries.

In this paper, we extend our previous work by adding a semantic level to
the image representation. Due to the free motion of the camera and its low
frame rate, abrupt changes are visible even among temporally adjacent images
(see Fig. 1 and Fig. 7). Under these conditions motion and low-level features
such as color or image layout are prone to fail for event representation, hence
urges the need to incorporate higher-level semantic information. Instead of rep-
resenting images simply by their contextual CNN features, which capture the
basic environment appearance, we detect segments as a set of temporally adja-
cent images with the same contextual representation in terms of semantic visual
concepts. Nonetheless, not all the semantic concepts in an image are equally
discriminant for environment classification: objects like trees and buildings can
be more discriminant than objects like dogs or mobile phones, since the for-
mer characterizes a specific environment such as forest or street, whereas the
latter can be found in many different environments. In this paper, we propose
a method called Semantic Regularized Clustering (SR-Clustering), which takes
into account semantic concepts in the image together with the global image
context for event representation.

To the best of your knowledge, this is the first time that semantic concepts
are used for image representation in egocentric videos and images. With respect
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to our previous work published in [30], we introduce the following contributions:

• Methodology for egocentric photo streams description based on semantic
information.

• Set of evaluation metrics applied to ground truth consistency estimation.

• Evaluation on an extended number of datasets, including our own, which
will be published with this work.

• Exhaustive evaluation on a broader number of methods to compare with.

This manuscript is organized as follows: Section 2 provides a description of
the proposed photo stream segmentation approach discussing the semantic and
contextual features, the clustering and the graph-cut model. Section 3 presents
experimental results and, finally, Section 4 summarizes the important outcomes
of the proposed method providing some concluding remarks.

2. SR-Clustering for Temporal Photo Stream Segmentation

A visual overview of the proposed method is given in Fig. 2. The input
is a day long photo stream from which contextual and semantic features are
extracted. An initial clustering is performed by AC and ADWIN. Later, GC
is applied to look for a trade-off between the AC (represented by the bottom
colored circles) and ADWIN (represented by the top colored circles) approaches.
The binary term of the GC imposes smoothness and similarity of consecutive
frames in terms of the CNN image features. The output of the proposed method
is the segmented photo stream. In this section, we introduce the semantic and
contextual features of SR-clustering and provide a detailed description of the
segmentation approach.

2.1. Features

We assume that two consecutive images belong to the same segment if they
can be described by similar image features. When we refer to the features of
an image, we usually consider low-level image features (e.g. color, texture, etc.)
or a global representation of the environment (e.g. CNN features). However,
the objects or concepts that semantically represent an event are also of high
importance for the photo stream segmentation. Below, we detail the features
that semantically describe the egocentric images.

2.1.1. Semantic Features

Given an image I, let us consider a tagging algorithm that returns a set of
objects/tags/concepts detected in the images with their associated confidence
value. The confidence values of each concept form a semantic feature vector to
be used for the photo streams segmentation. Usually, the number of concepts
detected for each sequence of images is large (often, some dozens). Additionally,
redundancies in the detected concepts are quite often due to the presence of
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Figure 2: General scheme of the Semantic Regularized Clustering (SR-Clustering) method.

synonyms or semantically related words. To manage the semantic redundancy,
we will rely on WordNet [26], which is a lexical database that groups English
words into sets of synonyms, providing additionally short definitions and word
relations.

Given a day’s lifelog, let us cluster the concepts by relying on their synset
ID in WordNet to compute their similarity in meaning, and following, apply
clustering (e.g. Spectral clustering) to obtain 100 clusters. As a result, we can
semantically describe each image in terms of 100 concepts and their associated
confidence scores. Formally, we first construct a semantic similarity graph G =
{V,E,W}, where each vertex or node vi ∈ V is a concept, each edge eij ∈ E
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represents a semantic relationship between two concepts, vi and vj and each
weight wij ∈ W represents the strength of the semantic relationship, eij . We
compute each wij by relying on the meanings and the associated similarity given
by WordNet, between each appearing pair. To do so, we use the max-similarity
between all the possible meanings mk

i and mr
j in Mi and Mj of the given pair

of concepts vi and vj :

wij = max
mk

i ∈Mi,mr
j∈Mj

sim(mk
i ,m

r
j).

To compute the Semantic Clustering, we use their similarity relationships in the
spectral clustering algorithm to obtain 100 semantic concepts, |C| = 100. In
Fig. 3, a simplified example of the result obtained after the clustering procedure
is shown. For instance, in the purple cluster, similar concepts like ’writing’,
’document’, ’drawing’, ’write’, etc. are grouped in the same cluster, and ’writing’
is chosen as the most representative term. For each cluster, we choose as its
representative concept, the one with the highest sum of similarities with the
rest of elements in the cluster.

The semantic feature vector fs ∈ R|C| for image I is a 100-dimensional array,
such that each component fs(I)j of the vector represents the confidence with
which the j-th concept is detected in the image. The confidence value for the
concept j, representing the cluster Cj , is obtained as the sum of the confidences
rI of all the concepts included in Cj that have also been detected on image I:

fs(I)j =
∑

ck∈{Cj}

rI(ck)

where CI is the set of concepts detected on image I, Cj is the set of concepts
in cluster j, and rI(ck) is the confidence associated to concept ck on image I.
The final confidence values are normalized so that they are in the interval [0, 1].

Taking into account that the camera wearer can be continuously moving,
even if in a single environment, the objects that can be appearing in temporally
adjacent images may be different. To this end, we apply a Parzen Window
Density Estimation method [27] to the matrix obtained by concatenating the
semantic feature vectors along the sequence to obtain a smoothed and tempo-
rally coherent set of confidence values. Additionally, we discard the concepts
with a low variability of confidence values along the sequence which correspond
to non-discriminative concepts that can appear on any environment. The low
variability of confidence value of a concept may correspond to constantly having
high or low confidence value in most environments.

In Fig. 4, the matrix of concepts (semantic features) associated to an ego-
centric sequence is shown, displaying only the top 30 classes. Each column of
the matrix corresponds to a frame and each row indicates the confidence with
which the concept is detected in each frame. In the first row, the ground truth
of the temporal segmentation is shown for comparison purposes. With this rep-
resentation, repeated patterns along a set of continuous images correspond to
the set of concepts that characterizes an event. For instance, the first frames of
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Figure 3: Simplified graph obtained after calculating similarities of the concepts of a day’s
lifelog and clustering them. Each color corresponds to a different cluster, the edge width
represents the magnitude of the similarity between concepts, and the nodes size represents
the number of connections they have (the biggest node in each cluster is the representative
one). We only showed a small subset of the 100 clusters. This graph was drawn using graph-
tool (http://graph-tool.skewed.de).
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Figure 4: Example of the final semantic feature matrix obtained for an egocentric sequence.
The top 30 concepts (rows) are shown for all the images in the sequence (columns). Addition-
ally, the top row of the matrix shows the ground truth (GT) segmentation of the dataset.

the sequence represent an indoor scene, characterized by the presence of people
(see examples Fig. 5). The whole process is summarized in Fig. 6.

Figure 5: Example of extracted tags on different segments. The first one corresponds to the
period from 13.22 - 13.38 where the user is having lunch with colleagues, and the second, from
14.48 - 18.18, where he/she is working in the office with the laptop.

In order to consider the semantics of temporal segments, we used a concept
detector based on the auto-tagging service developed by Imagga Technologies
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Figure 6: General scheme of the semantic feature extraction methodology.

Ltd. Imagga’s auto-tagging technology 1 uses a combination of image recogni-
tion based on deep learning and CNNs using very large collections of human
annotated photos. The advantage of Imagga’s Auto Tagging API is that it can
directly recognize over 2,700 different objects and in addition return more than
20,000 abstract concepts related to the analyzed images.

2.1.2. Contextual Features

In addition to the semantic features, we represent images with a feature
vector extracted from a pre-trained CNN. The CNN model that we use for
computing the images representation is the AlexNet, which is detailed in [20].
The features are computed by removing the last layer corresponding to the

1http://www.imagga.com/solutions/auto-tagging.html
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classifier from the network. We used the deep learning framework Caffe [17] in
order to run the CNN. Due to the fact that the weights have been trained on
the ImageNet database [10], which is made of images containing single objects,
we expect that the features extracted from images containing multiple objects
will be representative of the environment. It is worth to remark that we did not
use the weights obtained using a pre-trained CNN on the scenes from Places
205 database [34], since the Narrative camera’s field of view is narrow, which
means that mostly its field-of-view is very restricted to characterize the whole
scene. Instead, we usually only see objects on the foreground. As detailed in
[30], to reduce the large variation distribution of the CNN features, which results
problematic when computing distances between vectors, we used a signed root
normalization to produce more uniformly distributed data [33].

2.2. Temporal Segmentation

The SR-clustering for temporal segmentation is based on fusing the semantic
and contextual features with the R-Clustering method described in [30].

2.2.1. Agglomerative Clustering

After the concatenation of semantic and contextual features, the hierarchi-
cal Agglomerative Clustering (AC) method is applied following a bottom-up
clustering procedure. In each iteration, the method merges the most similar
pair of clusters based on the distances among the image features, updating the
elements similarity matrix. This is done until exhausting all possible consis-
tent combinations. The cutoff global parameter defines the consistency of the
merged clusters. We use the Cosine Similarity between samples, which is suited
for high-dimensional positive spaces [31]. The shortcoming of this method is
that it tends to over-segment the photo streams.

2.2.2. ADWIN

To compensate the over-segmentation produced by AC, we proposed to
model the egocentric sequence as a multi-dimensional data stream and to detect
changes in the mean distribution through an adaptive learning method called
ADWIN [4], which provides a rigorous statistical guarantee of performance in
terms of false positive rate. The method, based on the Hoeffding’s inequality
[15], tests recursively if the difference between the averages of two temporally
adjacent (sub)windows of the data, say W1 and W2, is larger than a threshold.
The value of the threshold takes into account if both sub-windows are large
enough and distinct enough for a k−dimensional signal [13], computed as:

εcut = k1/p
√

1

2m
ln

4

kδ′

where p indicates the p−norm, δ ∈ (0, 1) is a user defined confidence parameter,
and m is the harmonic mean between the lengths of W1 and W2. In other
words, given a predetermined confidence, ADWIN statistically guarantees that
it will find any major change in the data means. Given a confidence value δ,
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the higher the dimension k is, the more samples n the bound needs to reach
assuming the same value of εcut. The higher the norm used is, the less important
the dimensionality k is. Since we model the sequence as a high dimensional
data stream, ADWIN is unable to predict changes involving a relatively small
number of samples, which often characterizes Low Temporal Resolution (LTR)
egocentric data, leading to under-segmentation. Moreover, since it considers
only the mean change, it is able to detect changes due to other statistics such
as the variance.

2.2.3. Graph-Cuts regularization

We use Graph-Cuts (GC) as a framework to integrate both of the previously
described approaches, AC and ADWIN, to find a compromise between them that
naturally leads to a temporally consistent result. GC is an energy-minimization
technique that works by finding the minimum of an energy function usually
composed of two terms: the unary term U , also called data term, that describes
the relationship of the variables to a possible class and the binary term V , also
called pairwise or regularization term, that describes the relationship between
two neighboring samples (temporally close images) according to their feature
similarity. The binary term smooths boundaries between similar frames, while
the unary term keeps the cluster membership of each sequence frame according
to its likelihood. In our problem, we defined the unary term as the sum of 2
parts (Uac(fi) and Uadw(fi)). Each of them expresses the likelihood of an image
Ii represented by the set of features fi to belong to segments coming from the
corresponding previously applied segmentation methods. The energy function
to be minimized is the following:

E(f) =

n∑
i

[
(1− ω1)Uac(fi) + ω1Uadw(fi)

]
+ ω2

n∑
i

[
1

|Ni|
∑
j∈Ni

Vi,j(fi, fj)

]

where fi = [f c(Ii), f
s(Ii)] , i = {1, ..., n} are the set of contextual f c and

semantic image features fs for the i-th image, Ni is a set of temporal neigh-
bors centered at i, and ω1 and ω2 (ω1, ω2 ∈ [0, 1]) are the unary and the binary
weighting terms, respectively. We can improve the segmentation outcome of GC
by defining how much weight do we give to the likelihood of each unary term
and balancing the trade-off between the unary and the pairwise energies, respec-
tively. The minimization is achieved through the max-cut algorithm, leading
to a temporal segmentation with similar frames having as large likelihood as
possible to belong to the same segment, while maintaining segment boundaries
in temporally neighboring images with high feature dissimilarity.

More precisely, the unary energy is composed of two terms representing,
each of them, the likelihoods of each sample to belong to each of the clusters (or
decisions) obtained either applying ADWIN (Tadw) or AC (Tac) respectively:

Uac(fi) = Pac(fi ∈ Tac), Uadw(fi) = Padw(fi ∈ Tadw)
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The pair-wise energy is defined as:

Vi,j(fi, fn) = e−dist(fi,fj)

An illustration of this process is shown in Fig. 2.

3. Experiments and Validation

In this section, we discuss the datasets and the statistical evaluation mea-
surements used to validate the proposed model and to compare it with the
state-of-the-art methods. To sum up, we apply the following methodology for
validation:

1. Three different datasets acquired by 3 different wearable cameras are used
for validation.

2. The F-Measure is used as a statistical measure to compare the performance
of different methods.

3. Two consistency measures to compare different manual segmentations is
applied.

4. Comparison results of SR-Clustering with 3 state-of-the-art techniques is
provided.

5. Robustness of the final proposal is proven by validating the different com-
ponents of SR-Clustering.

3.1. Data

To evaluate the performance of our method, we used 3 public datasets
(EDUB-Seg, AIHS and Huji EgoSeg’s sub dataset) acquired by three different
wearable cameras (see Table 1).

Dataset Camera FR SR #Us #Days #Img
EDUB Narrative 2 fpm 2592x1944 7 20 18,735
AIHS-subset SenseCam 3 fpm 640x480 1 5 11,887
Huji EgoSeg GoPro Hero3+ 30fps* 1280x720 2 2 700

Table 1: Table summarizing the main characteristics of the datasets used in this work: frame
rate (FR), spatial resolution (SR), number of users (#Us), number of days (#Days), number
of images (#Img). The Huji EgoSeg dataset has been subsampled to 2 fpm as detailed in the
main text.

EDUB-Seg: is a dataset acquired by people from our lab with the Narrative
Clip, which takes a picture every 30 seconds. Our Narrative dataset, named
EDUB-Seg (Egocentric Dataset of the University of Barcelona - Segmentation),
contains a total of 18,735 images captured by 7 different users during overall
20 days. To ensure diversity, all users were wearing the camera in different
contexts: while attending a conference, on holiday, during the weekend, and
during the week. The EDUB-Seg dataset is an extension of the dataset used in
our previous work [30], that we call EDUB-Seg (Set1) to distinguish it from the
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newly added in this paper EDUB-Seg (Set2). The camera wearers, as well as all
the researchers involved on this work, were required to sign an informed written
consent containing set of moral principles [32, 19]. Moreover, all researchers of
the team have signed to do not publish any image identifying a person in a photo
stream without his/her explicit permission, except unknown third parties.

AIHS subset: is a subset of the daily images from the database called All I
Have Seen (AIHS) [18], recorded by the SenseCam camera that takes a picture
every 20 seconds.The original AIHS dataset 2 has no timestamp metadata. We
manually divided the dataset in five days guided by the pictures the authors
show in the website of their project and based on the daylight changes observed
in the photo streams. The five days sum up a total of 11,887 images. Comparing
both cameras (Narrative and SenseCam), we can remark their difference with
respect to the cameras’ lens (fish eye vs normal), and the quality of the images
they record. Moreover, SenseCam acquires images with a larger field of view
and significant deformation and blurring. We manually defined the GT for this
dataset following the same criteria we used for the EDUB-Seg photo streams.

Huji EgoSeg: due to the lack of other publicly available LTR datasets
for event segmentation, we also test our temporal segmentation method to the
ones provided in the dataset Huji EgoSeg [28]. This dataset was acquired by
the GoPro camera, which captures videos with a temporal resolution of 30fps.
Considering the very significant difference in frame rate of this camera compared
to Narrative (2 fpm) and SenseCam (3 fpm), we applied a sub-sampling of
the data by just keeping 2 images per minute, to make it comparable to the
other datasets. In this dataset, several short videos recorded by two different
users are provided. Consequently, after sub-sampling all the videos, we merged
the resulting images from all the short videos to construct a dataset per each
user, which consists of a total number of 700 images. The images were merged
following the numbering order that was provided by the authors to their videos.
We also manually defined the GT for this dataset following the same used criteria
for the EDUB-Seg dataset.

In summary, we evaluate the algorithms on 27 days with a total of 31,322
images recorded by 10 different users. All datasets contain a mixture of highly
variable indoor and outdoor scenes with a large variety of objects. We make pub-
lic the EDUB-Seg dataset3, together with our GT segmentations of the datasets
Huji EgoSeg and AIHS subset. Additionally, we release the SR-Clustering ready-
to-use complete code4.

2http://research.microsoft.com/en-us/um/people/jojic/aihs/
3http://www.ub.edu/cvub/dataset/
4https://github.com/MarcBS/SR-Clustering
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3.2. Experimental setup

Following [22], we measured the performances of our method by using the
F-Measure (FM) defined as follows:

FM = 2
RP

R+ P
,

where P is the precision defined as (P = TP
TP+FP ) and R is the recall, defined

as (R = TP
TP+FN ). TP , FP and FN are the number of true positives, false

positives and false negatives of the detected segment boundaries of the photo
stream. We define the FM, where we consider TPs the images that the model
detects as boundaries of an event and that were close to the boundary image
defined in the GT by the annotator (given a tolerance of 5 images in both sides).
The FPs are the images detected as events delimiters, but that were not defined
in the GT, and the FNs the lost boundaries by the model that are indicated in
the GT. Lower FM values represent a wrong boundary detection while higher
values indicate a good segmentation. Having the ideal maximum value of 1,
where the segmentation correlates completely with the one defined by the user.

The annotation of temporal segmentations of photo streams is a very sub-
jective task. The fact that different users usually do not perform the same when
annotating, may lead to bias in the evaluation performance. The problem of
the subjectivity when defining the ground truth was previously addressed in the
context of image segmentation [25]. In [25], the authors proposed two measures
to compare different segmentations of the same image. These measures are used
to validate if the performed segmentations by different users are consistent and
thus, can be served as an objective benchmark for the evaluation of the segmen-
tation performances. In Fig. 7, we report a visual example that illustrates the
urge of employing this measure for temporal segmentation of egocentric photo
streams. For instance, the first segment in Fig. 7 is split in different segments
when analyzed by different subjects although there is a degree of consistency
among all segments. Inspired by this work, we re-define the local refinement
error, between two temporal segments, as follows:

E(SA, SB , Ii) =
|R(SA, Ii)\R(SB , Ii)|

|R(SA, Ii)|
,

where \ denotes the set difference and, SA and SB are the two segmentations
to be compared. R(SX , Ii) is the set of images corresponding to the segment
that contains the image Ii, when obtaining the segmentation boundaries SX .

If one temporal segment is a proper subset of the other, then the images lie
in one interval of refinement, which results in the local error of zero. However, if
there is no subset relationship, the two regions overlap in an inconsistent manner
that results in a non-zero local error. Based on the definition of local refinement
we provided above, two error measures are defined by combining the values of
the local refinement error for the entire sequence. The first error measure is
called Global Consistency Error (GCE) that forces all local refinements to be in
the same direction (segments of segmentation A can be only local refinements of
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Figure 7: Different segmentation results obtained by different subjects. (a) shows a part of a
day. (b), (c) and (d) are examples of the segmentation performed by three different persons.
(c) and (d) are refinements of the segmentation performed by (b). All three results can be
considered as being correct, due to the subjective intrinsic of the task. As a consequence,
a segmentation consistency metric should not penalize different, yet consistent results of the
segmentation.

segments of segmentation B). The second error measure is the Local Consistency
Error (LCE), which allows refinements in different directions in different parts
of the sequence (some segments of segmentation A can be of local refinements
of segments of segmentation B and vice verse). The two measures are defined
as follows:

GCE(SA, SB) =
1

n
min{

n∑
i

E(SA, SB , Ii),

n∑
i

E(SB , SA, Ii)}

LCE(SA, SB) =
1

n

n∑
i

min{E(SA, SB , Ii), E(SB , SA, Ii)}

where n is the number of images of the sequence, SA and SB are the two different
temporal segmentations and Ii indicates the i-th image of the sequence. The
GCE and the LCE measures produce output values in the range [0, 1] where 0
means no error.

To verify that there is consistency among different people for the task of
temporal segmentation, we asked three different subjects to segment each of
the 20 sets of the EDUB-Seg dataset into events. The subjects were instructed
to consider an event as a semantically perceptual unit that can be inferred by
visual features, without any prior knowledge of what the camera wearer is ac-
tually doing. No instructions were given to the subjects about the number of
segments they should annotate. This process gave rise to 60 different segmen-
tations. The number of all possible pairs of segmentations is 1800, 60 of which
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Figure 8: GCE (left) and LCE (right) normalized histograms with the error values distribu-
tions, showing their mean and variance. The first row graphs represent the distribution of
errors comparing segmentations of different sequences while the second row graphs show the
distribution of error when comparing segmentations of the same set, including the segmenta-
tion of the camera wearer.

Figure 9: LCE vs GCE for pairs of segmentations of different sequences (left) and for pairs of
segmentations of the same sequence (right). The differences w.r.t. the dashed line x=y show
how GCE is a stricter measure than LCE. The red dot represents the mean of all the cloud
of values, including the segmentation of the camera wearer.

are pairs of segmentations of the same set. For each pair of segmentations, we
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Figure 10: GCE (left) and LCE (right) normalized histograms with the error values distri-
butions, showing their mean and variance. The first row graphs represent the distribution of
the errors comparing segmentations of different sequences while the second row graphs show
the distribution of the errors when comparing segmentations of the same set, excluding the
segmentation of the camera wearer.

Figure 11: LCE vs GCE for pairs of segmentations of different sequences (left) and for pairs
of segmentations of the same sequence (right). The differences w.r.t. the dashed line x=y
show how GCE is a stricter measure than LCE. The red dot represents the mean of all the
cloud of values, excluding the segmentation of the camera wearer.

computed GCE and LCE. First, we considered only pairs of segmentations of
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the same sequence and then, considered the rest of possible pairs of segmenta-
tions in the dataset. The first two graphics in Fig. 8 (first row) show the GCE
(left) and LCE (right) when comparing each set segmentations with the seg-
mentations applied on the rest of the sets. The two graphics in the second row
show the distribution of the GCE (left) and LCE (right) error when analyzing
different segments describing the same video. As expected, the distributions
that compare the segmentations over the same photo stream have the center of
mass to the left of the graph, which means that the mean error between the
segmentations belonging to the same set is lower than the mean error between
segmentations describing different sets. In Fig. 9 we compare, for each pair
of segmentations, the measures produced by different datasets segmentations
(left) and the measures produced by segmentations of the same dataset (right).
In both cases, we plot LCE vs. GCE. As expected, the average error between
segmentations of the same photo stream (right) is lower than the average error
between segmentations of different photo streams (left). Moreover, as indicated
by the shape of the distributions on the second row of Fig.9 (right), the peak
of the LCE is very close to zero. Therefore, we conclude that given the task
of segmenting an egocentric photo stream into events, different people tend to
produce consistent and valid segmentation. Fig. 10 and 11 show segmentation
comparisons of three different persons (not being the camera wearer) that were
asked to temporally segment a photo stream and confirm our statement that
different people tend to produce consistent segmentations.

Since our interpretation of events is biased by our personal experience, the
segmentation done by the camera wearer could be very different by the seg-
mentations done by third persons. To quantify this difference, in Fig. 8 and
Fig. 9 we evaluated the LCE and the GCE including also the segmentation
performed by the camera wearer. From this comparison, we can observe that
the error mean does not vary but that the degree of local and global consistency
is higher when the set of annotators does not include the camera wearer as it
can be appreciated by the fact that the distributions are slightly shifted to the
left and thinner. However, since this variation is of the order of 0.05%, we can
conclude that event segmentation of egocentric photo streams can be objectively
evaluated.

When comparing the different segmentation methods w.r.t. the obtained FM
(see section 3.3), we applied a grid-search for choosing the best combination of
hyper-parameters. The set of hyper-parameters tested are the following:

• AC linkage methods ∈ {ward, centroid, complete, weighted, single, median,
average,}

• AC cutoff ∈ {0.2, 0.4, . . . , 1.2},

• GraphCut unary weight ω1 and binary weight ω2 ∈ {0, 0.1, 0.2, . . . , 1},

• AC-Color t ∈ {10, 25, 40, 50, 60, 80, 90, 100}.
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Figure 12: Illustration of our SR-Clustering segmentation results from a subset of pictures
from a Narrative set. Each line represents a different segment. Below each segment we show
the top 8 found concepts (from left to right). Only a few pictures from each segment are
shown.

3.3. Experimental results

In Table 2, we show the FM results obtained by different segmentation meth-
ods over different datasets. The first two columns correspond to the datasets
used in [30]: AIHS-subset and EDUB-Seg (Set1). The third column corresponds
to the EDUB-Seg (Set2) introduced in this paper. Finally, the fourth column
corresponds to the results on the whole EDUB-Seg. The first part of the table
(first three rows) presents comparisons to state-of-the-art methods. The second
part of the table (next 4 rows), shows comparisons to different components of
our proposed clustering method with and without semantic features. Finally,
the third part of the table shows the results obtained using different variations
of our method.

In the first part of Table 2, we compare to state-of-the-art methods. The first
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AIHS [18] EDUB-Seg Set1 EDUB-Seg Set2 EDUB-Seg

Motion [6] 0.66 0.34

AC-Color [21] 0.60 0.37 0.54 0.50

R-Clustering [30] 0.79 0.55

ADW 0.31 0.32

ADW-ImaggaD 0.35 0.55 0.29 0.36

AC 0.68 0.45

AC-ImaggaD 0.72 0.53 0.64 0.61

SR-Clustering-LSDA 0.78 0.60 0.64 0.61

SR-Clustering-NoD 0.77 0.66 0.63 0.60

SR-Clustering 0.78 0.69 0.69 0.66

Table 2: Average FM results of the state-of-the-art works on the egocentric datasets (first
part of the table); for each of the components of our method (second part); and for each of
the variations of our method (third part). The last line shows the results of our complete
method. AC stands for Agglomerative Clustering, ADW for ADWIN and ImaggaD is our
proposal for semantic features, where D stands for Density Estimation.

method is the Motion-Based segmentation algorithm proposed by Bolaños et al.
[6]. As can be seen, the average results obtained are far below SR-Clustering.
This can be explained by the type of features used by the method, which are
more suited for applying a motion-based segmentation. This kind of segmenta-
tion is more oriented to recognize activities and thus, is not always fully aligned
with the event segmentation labeling we consider (i.e. in an event where the
user goes outside of a building, and then enters to the underground tunnels can
be considered ”in transit” by the Motion-Based segmentation, but be considered
as three different events in our event segmentation). Furthermore, the obtained
FM score on the Narrative datasets is lower than the SenseCam’s for several
reasons: Narrative has lower frame rate compared to Sensecam (AIHS dataset),
which is a handicap when computing motion information, and a narrower field
of view, which decreases the semantic information present in the image. We also
evaluated the proposal of Lee and Grauman [21] (best with t = 25), where they
apply an Agglomerative Clustering segmentation using LAB color histograms.
In this case, we see that the algorithm is even far below the obtained results by
AC, where the Agglomerative Clustering algorithm is used over contextual CNN
features instead of colour histograms. The main reason for this performance dif-
ference comes from the high difference in features expressiveness, that supports
the necessity of using a rich set of features for correctly segmenting highly vari-
able egocentric data. The last row of the first section of the table shows the
results obtained by our previously published method [30], where we were able
to outperform the state-of-the-art of egocentric segmentation using contextual
CNN features both on AIHS-subset and on EDUB-Seg Set1. Another possible
method to compare with would be the one from Castro et al. [9], although the
authors do not provide their trained model for applying this comparison.
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In the second part of Table 2, we compare the results obtained using only
ADWIN or only AC with (ADW-ImaggaD, AC-ImaggaD) and without (ADW,
AC) semantic features. One can see that the proposed semantic features, leads
to an improved performance, indicating that these features are rich enough to
provide improvements on egocentric photo stream segmentation.

Finally, on the third part of Table 2, we compared our segmentation method-
ology using different definitions for the semantic features. In the SR-Clustering-
LSDA case, we used a simpler semantic features description, formed by using the
weakly supervised concept extraction method proposed in [16], namely LSDA.
In the last two lines, we tested the model using our proposed semantic method-
ology (Imagga’s tags) either without Density Estimation, SR-Clustering-NoD
or with the final Density Estimation (SR-Clustering), respectively.

Comparing the results of SR-Clustering and R-Clustering on the first two
datasets (AIHS-subset and EDUB-Seg Set1), we can see that our new method
is able to outperform the results adding 14 points of improvement to the FM
score, while keeping nearly the same FM value on the SenseCam dataset. The
improvement achieved using semantic information can be also corroborated,
when comparing the FM scores obtained on the second half of EDUB-Seg dataset
(Set2 on the 3rd column) and on the complete version of this data (see the last
column of the Table).

Huji EgoSeg [28] LTR
ADW-ImaggaD 0.59
AC-ImaggaD 0.88
SR-Clustering 0.88

Table 3: Average FM score on each of the tested methods using our proposal of semantic
features on the dataset presented in [28].

In Table 3 we report the FM score obtained by applying our proposed method
on the sub-sampled Huji EgoSeg dataset to be comparable to LTR cameras. Our
proposed method achieves a high performance, being 0.88 of FM for both AC
and SR-Clustering when using the proposed semantic features. The improve-
ment of the results when using the GoPro camera with respect to Narrative or
SenseCam can be explained by two key factors: 1) the difference in the field of
view captured by GoPro (up to 170◦) compared to SenseCam (135◦) and Nar-
rative (70◦), 2) the better image quality achieved by the head mounted camera.

In addition to the FM score, we could not consider the GCE and LCE mea-
sures to compare the consistency of the automatic segmentations to the ground
truth, since both methods lead to a number of segments much larger than the
number of segments in the ground truth and therefore these measures would
not descriptive enough. This is due to the fact that any segmentation is a re-
finement of one segment for the entire sequence, and one image per segment is a
refinement of any segmentation. Consequently, these two trivial segmentations,
one segment for the entire sequence and one image per segment, achieve error
zero for LCE and GCE. However, we observed that on average, the number of
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segments obtained by the method of Lee and Grauman [21] is about 4 times
bigger than the number of segments we obtained for the SenseCam dataset and
about 2 times bigger than for the Narrative datasets. Indeed, we achieve an
higher FM score with respect to the method of Lee and Grauman [21], since it
produces a considerable over-segmentation.

3.4. Discussion

The experimental results detailed in section 3.3 have shown the advantages
of using semantic features for the temporal segmentation of egocentric photo
streams. Despite the common agreement about the inability of low-level fea-
tures in providing understanding of the semantic structure present in complex
events [14], and the need of semantic indexing and browsing systems, the use of
high level features in the context of egocentric temporal segmentation and sum-
marization has been very limited. This is mainly due to the difficulty of dealing
with the huge variability of object appearance and illumination conditions in
egocentric images. In the works of Doherty et al. [11] and Lee and Grauman
[21], temporal segmentation is still based on low level features. In addition to
the difficulty of reliably recognizing objects, the temporal segmentation of ego-
centric photo streams has to cope with the lack of temporal coherence, which
in practice means that motion features cannot reliably be estimated. The work
of Castro et al. [9] relies on the visual appearance of single images to predict
the activity class of an image and on meta-data such as the day of the week
and hour of the day to regularize over time. However, due to the huge variabil-
ity in appearance and timing of daily activities, this approach cannot be easily
generalized to different users, implying that for each new user re-training of the
model and thus, labeling of thousand of images is required.

The method proposed in this paper offers the advantage of being needless
of a cumbersome learning stage and offers a better generalization. The em-
ployed concept detector, has been proven to offer a rich vocabulary to describe
the environment surrounding the user. This rich characterization is not only
useful for better segmentation of sequences into meaningful and distinguishable
events, but also serves as a basis for event classification or activity recognition
among others. For example, Aghaei et al. [2, 1, 3] employed the temporal seg-
mentation method in [30] to extract and select segments with trackable people
to be processed. However, incorporating the semantic temporal segmentation
proposed in this paper, would allow, for example, to classify events into social
or non-social events. Moreover, using additional existing semantic features in
a scene may be used to differentiate between different types of a social event
ranging from a official meeting (including semantics such as laptop, paper, pen,
etc.) to a friendly coffee break (coffee cup, cookies, etc.). Moreover, the se-
mantic temporal segmentation proposed in this paper is useful for indexing and
browsing.
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4. Conclusions and future work

This paper proposed an unsupervised approach for the temporal segmen-
tation of egocentric photo streams that is able to partition a day’s lifelog in
segments sharing semantic attributes, hence providing a basis for semantic in-
dexing and event recognition. The proposed approach first detects concepts for
each image separately by employing a CNN approach and later, clusters the de-
tected concepts in a semantic space, hence defining the vocabulary of concepts
of a day. Semantic features are combined with global image features captur-
ing more generic contextual information to increase their discriminative power.
By relying on these semantic features, a GC technique is used to integrate a
statistical bound produced by the concept drift method, ADWIN and the AC,
two methods with complementary properties for temporal segmentation. We
evaluated the performance of the proposed approach on different segmentation
techniques and on 17 day sets acquired by three different wearable devices, and
we showed the improvement of the proposed method with respect to the state-
of-the-art. Additionally, we introduced two consistency measures to validate the
consistency of the ground truth. Furthermore, we made publicly available our
dataset EDUB-Seg, together with the ground truth annotation and the code.
We demonstrated that the use of semantic information on egocentric data is
crucial for the development of a high performance method.

Further research will be devoted to exploit the semantic information that
characterizes the segments for event recognition, where social events are of spe-
cial interest. Additionally, we are interested in using semantic attributes to
describe the camera wearer context. Hence, opening new opportunities for de-
velopment of systems that can take benefit from contextual awareness, including
systems for stress monitoring and daily routine analysis.
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TV3). The funders had no role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript. M. Dimiccoli is supported
by a Beatriu de Pinós grant (Marie-Curie COFUND action). P. Radeva is partly
supported by an ICREA Academia’2014 grant.

References

[1] M. Aghaei, M. Dimiccoli, and P. Radeva. Towards social interaction detection in ego-
centric photo-streams. In Eighth International Conference on Machine Vision, pages
987514–987514. International Society for Optics and Photonics, 2015.

[2] M. Aghaei, M. Dimiccoli, and P. Radeva. Multi-face tracking by extended bag-of-tracklets
in egocentric videos. Computer Vision and Image Understanding, Special Issue on As-
sistive Computer Vision and Robotics, 149:146–156, 2016.

23



[3] M. Aghaei, M. Dimiccoli, and P. Radeva. With whom do I interact? detecting social
interactions in egocentric photo-streams. In Proceedings of the International Conference
on Pattern Recognition, 2016.

[4] A. Bifet and R. Gavalda. Learning from time-changing data with adaptive windowing.
In Proceedings of SIAM International Conference on Data Mining, 2007.

[5] M. Bolaños, M. Dimiccoli, and P. Radeva. Towards storytelling from visual lifelogging:
An overview. To appear on IEEE Transactions on Human-Machine Systems, 2016.

[6] M. Bolaños, M. Garolera, and P. Radeva. Video segmentation of life-logging videos. In
Articulated Motion and Deformable Objects, pages 1–9. Springer-Verlag, 2014.

[7] M. Bolaños, E. Talavera R. Mestre, X. Giró i Nieto, and P. Radeva. Visual summary of
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