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Abstract: This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human
pose estimation problem. The proposed approach first obtains the human body joints of a set of images,
which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from
another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed
for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements
in the accuracy of body joints estimations.

1 INTRODUCTION

The 2D Human Pose Estimation (HPE) problem is
generally tackled by first detecting human body joints
(e.g., wrist, shoulder, knee, etc.) and then connect-
ing them to build the human body stick figure. Differ-
ent solutions have been proposed in the literature (e.g.
OpenPose, DeepPose, Stacked Hourglass Networks)
and robust solutions obtained when all body joints are
detected. However, this problem becomes a challeng-
ing one when joints are occluded (e.g., due to self oc-
clusions, which is something common in monocular
vision system scenarios). Applications such as human
action recognition, augmented reality, healthcare, just
to mention a few, have taken advantage of the accu-
racy of 2D human pose to develop on top of them dif-
ferent solutions. In recent years, convolutional neural
networks (CNN) have become a de facto tool to tackle
most of computer vision tasks; for instance it has been
used in image enhancement, object detection, camera
pose estimation, just to mention a few, getting better
results with respect to classical approaches (e.g.,(Tian
et al., 2019), (Wu et al., 2020), (Charco et al., 2018)).
Also in the human pose estimation problem we can
find different CNN architectures to solve it in a deep
learning based framework showing appealing results
(e.g., (Wei et al., 2016), (Newell et al., 2016), (Fang
et al., 2017), (Cao et al., 2019), (Sun et al., 2019)).

The proposed approaches have used as input a set
of images with single or multiple-person to feed the
architectures, typically from single-view. Regarding
this latter point, multiple-person pose estimation, the
number of people in the image increase the compu-
tational cost, and hence, also the inference time in
real-time. In order to tackle these problems, two ap-
proaches have been introduced. The first, known as
top-down, localizes the persons in the image and es-
timate the body joints. The second, referred to as
bottom-up, estimates the human body parts in the im-
age and then compute the pose. Despite appealing
results obtained on HPE from single-view, the chal-
lenge lies in the occlusions of the human body joints
in complex poses, causing self-occlusions of certain
parts of the human body, in spite of the fact that also
the scene could contain multiples moving objects (i.e.,
bicycles, cars), leading partial occlusion of the human
body. In order to overcome this problem, multi-view
approaches could be considered; in these cases the
human body is captured at the same time from dif-
ferent positions by different cameras. Hence, joints
self-occluded in one view can be observed without
occlusion by some other camera from other point of
view.

The multi-view framework has been already ex-
plored to tackle the region occlusion problem in tasks
such as 3D-reconstruction, camera pose, autonomous



driving, object detection. (e.g., (Xie et al., 2019),
(Sarmadi et al., 2019), (Charco et al., 2021), (Hof-
bauer et al., 2020), (Tang et al., 2018)). For the 2D hu-
man pose estimation problem by using a multi-view
approach, few works have been proposed. The au-
thors in (Qiu et al., 2019) have proposed a CNN ar-
chitecture to fuse all features on epipolar line of the
images across of all different views. In (He et al.,
2020), the authors have proposed to leverage the us-
age of the intermediate layer to find its corresponding
point in a neighboring view, an then combine the fea-
tures of both views.

On the contrary to previous approaches, where
complex deep learning based architectures feed with
images from different cameras acquired at the same
time, in the current work a compact architecture, orig-
inally proposed for monocular scenarios, is adapted to
the multi-view scenario. Actually, the multi-view sce-
nario is considered just during the training stage. Im-
ages of the same scene, simultaneously acquired by
cameras at different point of views, are acquired and
used for the CNN training. The proposed architecture
uses a variant of ResNet-152 with learning weights as
backbone that was proposed in (Iskakov et al., 2019).
The multi-view adapted backbone proposed in the
current work is trained considering the set of images
acquired as mentioned above. It allows to tackle com-
plex poses and overcome the self-occlusion problem,
improving the accuracy of estimated joints, being the
basis to solve other related problems, such as 3D hu-
man pose estimation.

The remainder of the paper is organized as fol-
lows. In Section 2 previous works are summarized;
then, in Section 3 the proposed approach is detailed
together with a description of the scheme multi-view.
Experimental results are summarized in Section 4
together with comparisons with state-of-the-art ap-
proachs. Finally, conclusions and future work are
given in Section 5.

2 RELATED WORK

Vision-based human pose estimation is a challeng-
ing problem due to the complexity to extract fea-
tures from images; this complexity is due to differ-
ent lighting conditions, complex poses, occlusions,
among others. On this basis, CNN models have been
used for this purpose due to the capability of analysis
of images to extract key features of the human body
(e.g., joints) improving state-of-art results. Some
works have been proposed for 2D-human pose esti-
mation from a single-view scenario. The authors in
(Toshev and Szegedy, 2014) have proposed a Deep

Neural Network (DNN) as a regress to get the (x,y)
image coordinates of human body joints. Addition-
ally, they propose to use a scheme of a cascade of
DNN to increase the precision of estimated coordi-
nates by using higher resolution sub-images for re-
fining the predicted joints. In (Tompson et al., 2015)
the authors have proposed a multi-resolution ConvNet
architecture to implement a sliding window detec-
tor with overlapping contexts to generate heatmaps
for each joint. The architecture is fed with images,
which are running through multiple resolution banks
in parallel, and thus capturing important features at
a variety of scales. The proposal is trained by min-
imizing the Mean Squared-Error (MSE) distance of
the predicted heatmap to a targeted heatmap. Simi-
larly to the previous works, the authors in (Carreira
et al., 2016) have proposed a convolutional network
that takes advantage of hierarchical feature extractor,
which introduces a top-down feedback of both input
and output spaces. The proposal estimates the current
human pose, and the joints with wrong predictions are
iteratively improved by feeding back error predictions
instead of trying to directly predict the target outputs.
The authors in (Newell et al., 2016) have proposed a
model that consists of steps of pooling and upsam-
pling layers, which are stacked together. The pro-
posed model extracts features at every scale to cap-
ture global and local information of the images. Skip
connections are used to preserve spatial information
at each resolution.

On the contrary to the previous approach, in (Xiao
et al., 2018) an architecture have been proposed,
which consists of a variant of ResNet that includes
a few deconvolutional layers at the end. These simple
changes preserve better the information for each reso-
lution than one with skip connections. Similarly to the
previous approaches, MSE is used as the loss between
the predicted heatmaps and the targeted heatmaps.
The authors in (Sun et al., 2019) have proposed a
novel architecture, which is able to maintain a high-
resolution representation through the whole process,
i.e., it starts from a high-resolution subnetwork as the
first stage, and gradually add high-to-low resolution
subnetworks to form more stages that are connected in
parallel, instead of recovering the resolution through
a low-to-high process.

Just few works have been proposed to solve the
human pose estimation problem leveraging any ge-
ometry information of the cameras to improve the
2D detector. In (Qiu et al., 2019), the authors have
introduced a cross-view fusion scheme into CNN to
jointly estimate 2D poses from multiple views. The
initial pose heatmaps are generated for each image
into a multi-view scheme, the corresponding features



Figure 1: CNN backbone feeds with a set of pairs of images of the same scene simultaneously acquired from different points
of view. The multi-view fusion scheme allow to estimate occluded joints with information from other views across of the
relative camera pose.

between them are found on the epipolar line, and then
they are fused across different views. Similarly to the
previous work, the authors in (He et al., 2020) have
proposed an architecture to leverage 3D-aware feature
in the intermediate layers of the 2D detector, and not
only during the final robust triangulation phase. The
epipolar transformer is used to augment the interme-
diate features of a 2D detector for a given view (ref-
erence view) with features from neighboring views
(source view). The authors in (Remelli et al., 2020)
have proposed a novel multi-camera fusion technique,
which uses the feature transform layers to map images
from multiple-views and exploit 3D geometry infor-
mation to a common canonical representation by ex-
plicitly conditioning them on the camera projection
matrix.

3 PROPOSED APPROACH

The proposed approach consists to leverage the multi-
view scheme to solve the self-occlusion problems in
the 2D human pose estimation. The CNN backbone,
proposed by (Iskakov et al., 2019), is used as baseline
to be retrained with the proposed multi-view scheme.
Basically, this backbone is a variant of Resnet-152
with learnable weights, transposed convolutions, and
the number of human body joints as the output chan-
nels. For more details see the work mentioned above.

A multi-view system of C calibrated and synchro-
nized cameras with known parameters Rc (i.e., intrin-
sic and extrinsic parameters), which capture the per-
formance of a single-person in the scene from differ-
ent views, is used by the proposed model. The im-
ages acquired by the multi-view system are denoted
as Imc, and organized in pairs of images, which be-
long to different views, namely, reference view Imre f

and source view Imsrc. The output of the backbone
is a set of heatmaps for each image. These heatmaps

Figure 2: An image point psrc back-projects to a ray in 3D
defined by the point psrc and depth (Z). The ray is projected
to the image plane of reference view to generate the epipolar
line (L).

correspond to each human body joint, which are fused
across source view considering the confidence of each
joint, doing robust the human pose of each view (see
Fig. 1). The details of proposed multi-view approach
are given below.

3.1 Multi-View Scheme

Given a set of pairs of images, the CNN
backbone extracts the heatmaps of each joint
for each input image separately, which are de-
noted as Mre f

Θ
=

{
Imre f

1 , ..., Imre f
i

}
and Msrc

Θ
=

{Imsrc
1 , ..., Imsrc

i }, where i is the number of joints and,
re f and src correspond to the reference and source
view respectively. The heatmaps are used to estimate
the 2D positions of each joint for each input image.
First, it is computed the softmax across the spatial
axes; and then, the 2D positions of the joints (p(x,y))
are computed as the center of mass of the correspond-
ing heatmaps, which is defined as:



p(x,y) =
W

∑
u=1

H

∑
v=1

hi(u,v) .(ζΘ(hi(u,v))), (1)

where ζΘ represents the function softmax; h repre-
sents the ROI of the heatmaps of i-th joint and W and
H correspond to the size of the heatmap ROI.

The values of the joints in the world coordinate
system P = (X ,Y,Z) are obtained using each 2D po-
sition of each joint of each image, as show in Eq. (2):

xi = f X
Z yi = f Y

Z , (2)

where x,y are the 2D position of i-th joint obtained in
Eq. (1), and f corresponds to the focal length of the
camera. Since, the depth (Z) of the joint is unknown,
then two values are used to solve the Eq. (2). The
first, a value of depth near zero that corresponds to
the position close of camera in the world coordinate
system; and the second, a value of depth near to the
size of the space of the scene. Empirically, this value
has been set to 10m for the experiments.

For each 2D position of the joint, two points in
the world coordinate system using the depth estima-
tion mentioned above are computed with Eq. (2),
then they are transformed by using the relative camera
pose between both views (reference and source view)
and projected to the image plane, as shown below:

Trel = Rotsrc · (Tre f −Tsrc), (3)

Rotrel = Q(Rotre f .T )−1 ∗Q(Rotsrc.T ), (4)

pre f
src(x,y) = ∆2Dre f (Rotrel · (Pi −Trel)), (5)

where Q(.) represents the quaternion. Rot ∈ R3x3

and T ∈ R3x1 represent the matrix rotation and the
vector translation respectively. Pi corresponds to co-
ordinates of the i-th joint, obtained in Eq. (2), in the
world coordinate system. As the depth (Z) of i-th
joint is unknown, the linear equation on image plane
of reference view is calculated using the points ob-
tained in the Eq. (5). By definition, the depth (Z)
of the i-th joint in the source view should be any 2D-
point on the linear equation of reference view. Given
that the linear equation has infinite points, and any
of them could be the depth of i-th joint in the source
view, then, the 2D-point on linear equation used as
the depth of the joint in the source view is calculated
by using the intersection between the 2D-point of the
joint calculated in the reference view pre f(x,y) and the
linear equation previously obtained.

Since the i-th joint has two different 2D positions
in the image plane, the first corresponds to the refer-
ence view pre f(x,y) , and the second corresponds to the
source view, which are projected to the reference view
pre f

src(x,y) by using Eq. (5), the confidence values of i-
th are obtained (see Fig. 2). It is calculated as the
distance between the ground-truth of 2D position of
i-th joint and the 2D position of i-th joint obtained by
Eq. (1). In order to improve 2D position of i-th joint
in the reference view, the confidence values and 2D
positions of i-th joints (pre f(x,y) , pre f

src(x,y)) are used, as
shown in Eq. (7).

ω = 1−
∣∣∣∣ D∆(γ̂i,γi)

∑D∆(γ̂i,γi)

∣∣∣∣ , (6)

δupdi(x,y)
= ω∗ pi(x,y) , (7)

where (γ̂ , γ) represent the ground truth and prediction
of 2D position of i-th joint respectively, and ω cor-
responds to the confidence of the points of i-th joint
in the reference view, including the points projected
from source view.

Note that δupdi(x,y)
corresponds to the new 2D po-

sitions of i-th joint, which has been enhanced with the
information and confidence of i-th joint obtained from
the source view. Finally, the loss function used in the
proposed approach is defined as:

Loss =
N

∑
i=1

∥∥∥δupdi(x,y)
− p̂i(x,y)

∥∥∥
2
, (8)

where N corresponds to the number of joints, and
p̂i(x,y) is the ground-truth of i-th joint in image plane.

3.2 Dataset and Metrics

The experiments are conducted on one large-scale
pose estimation public dataset with multi-view syn-
chronized images and evaluated using the JDR(%)
metric. This section will breafly describe both of
them, dataset and used metrics.

3.2.1 Human 3.6m

The Human3.6m dataset was proposed by (Ionescu
et al., 2014), and it is currently one of the largest
publicly available human pose estimation benchmark.
It can be used with monocular or multi-view se-
tups. Four synchronized and calibrated digital cam-
eras were used to capture 3.6 million frames with a
single-person. The motions are performed by 11 pro-
fessional actors (6 males, 5 female) in different activi-
ties such as taking photo, discussion, smoking among
other. In the current work, subjects 1, 5, 7, and 8 are



Table 1: Comparison of 2D pose estimation accuracy on Human3.6m dataset using JDR(%) as metric. ”− ”: these entries
were absent. ∗: approach presented in (Qiu et al., 2019). ϒ trained again by (He et al., 2020). ψ approach presented in (He
et al., 2020). R50 and R152 are ResNet-50 and ResNet-152 respectively. Scale is the input resolution of the network.

Net scale shlder elb wri hip knee ankle root neck head Avg

Sum epipolar line ∗ R152 320 91.36 91.23 89.63 96.19 94.14 90.38 - - - -
Max epipolar line ∗ R152 320 92.67 92.45 91.57 97.69 95.01 91.88 - - - -
Cross-View fusion ∗ϒ R50 320 95.6 95.0 93.7 96.6 95.5 92.8 96.7 96.5 96.2 95.9
Cross-View fusion ∗ϒ R50 256 86.1 86.5 82.4 96.7 91.5 79.0 100 93.7 95.5 95.1
Epipolar transformer ψ R50 256 96.44 94.16 92.16 98.95 97.26 96.62 99.89 99.68 99.63 97.01
Mview-Joints (ours) R152 384 99.65 97.31 93.70 99.22 97.24 97.45 99.83 99.82 99.75 98.22

Table 2: Comparison of average median Euclidean distance error between Mview-Joints and Learning triangulation backbone
proposed by (Iskakov et al., 2019) on Human3.6m. Backbone: Resnet 152 with pretrained weight (Iskakov et al., 2019).

Net shlder elb wri hip knee ankle root neck nose belly head Avg
Learning
triangulation Backbone 7.84 8.00 7.40 7.55 7.45 9.70 5.75 5.86 6.46 6.47 6.57 7.18

Mview-Joints
(ours)

Backbone +
Multi-view 7.88 6.73 7.08 7.62 6.82 9.19 5.24 6.05 5.29 6.15 3.25 6.48

used for trained the proposed approach; while sub-
jects 9 and 11 are used just for testing. Images from
all the cameras are used during the training and test-
ing process.

3.2.2 Metrics

The metric to be used to evaluate the performance
of the obtained results is an important factor. In the
human pose estimation problem, the Joint Detection
Rate (JDR) is generally used. The JDR measures the
percentage of success f ully detected joints, assuming
as a successful detection those joints where the dis-
tance between the estimated and the ground truth joint
is smaller than a given threshold; in the current work
this threshold has been defined as half of the head
size, as proposed in [2]. In the current work, in ad-
dition to the JDR, the Euclidean distance error for
every estimated joint with respect to the correspond-
ing ground truth has been also computed. These Eu-
clidean distance error values help to determine the ac-
curacy of each joint of the estimated human pose.

4 EXPERIMENTAL RESULTS

As mentioned above, the multi-view approach is pro-
posed to tackle challenging scenarios where self-
occlusions of joints happen resulting in difficult 2D
human pose estimation. This section presents de-
tails on the experimental results by training the pro-
posed multi-view scheme with Human 3.6m dataset
(Ionescu et al., 2014). The proposed approach was
implemented with Pytorch and trained with NVIDIA

Titan XP GPU and Intel Core I9 3.3GHz CPU. Adam
optimizer is used to train the network with a learn-
ing rate of 10−5 and batch size of 32 (i.e., eight hu-
man poses simultaneously captured from four differ-
ent points of view).

4.1 Training of Multi-View Scheme

The CNN backbone used in the proposed architecture
was initialized with the weights of Resnet-152 pre-
trained by (Iskakov et al., 2019). The network ar-
chitecture was trained on Human 3.6m dataset. As
pre-processing dataset, the images were cropped ac-
cording to the bounding box of the person and resized
to 384x384 pixels; then, the mean value of intensity
of pixels was computed and subtracted from the im-
ages. For the training process, a set of 60k images
were used to feed to the network, which was trained
until 20 epochs; it takes about 120 hours. The pre-
processing mentioned above has been also used dur-
ing the evaluation phase. In the evaluation a set of 8k
images have been considered.

4.2 Results and Comparisons

Experimental results obtained with the proposed ar-
chitecture are presented in Table 1, which shows some
joints and compare them with state-of-the-art CNN-
based methods by using the JDR metric. The pro-
posed approach referred to as Mview-Joints outper-
forms the previous works on most of body joints. The
improvement is most significant for the shoulder, el-
bow, and ankle joints, which increment from 96.44%
to 99.65%, from 95.00% to 97.31% and from 96.62%



Figure 3: Challenging poses, the multi-view scheme takes advantage from the additional view with respect to the backbone—
single view—proposed by (Iskakov et al., 2019).



Figure 4: Comparison of Euclidean distance errors between the backbone approach (Iskakov et al., 2019) and the proposed
Mview-Joints for six different body joints.

to 97.45%, respectively. The average JDR of body
joints obtained by Mview-Joints improves the results
of Epipolar transformer (He et al., 2020) about 1%,
and with respect to Cross-View fusion (Qiu et al.,
2019) about 3% approximately.

Additionally, median Euclidean distance error is
used to evaluate the accuracy of prediction of the pro-
posed multi-view scheme with respect to the CNN
backbone proposed by (Iskakov et al., 2019), whose
results are shown in Table 2. The body joints that
improvement significant the accuracy are the elbow,
wrist, knee, nose, head. The median Euclidean dis-
tance errors for these joints improve by 15.88%,
4.32%, 8.46%, 18.11% and 50.53% respectively the
results obtained with CNN backbone proposed by
(Iskakov et al., 2019). Some challenging poses are
shown in Fig 3 where the multi-view scheme takes
advantage of the different views. The histograms of
accuracy of obtained body joints are shown in Fig. 4.
Most of the predicted 2D positions of body joints are
in the ranges [0-4] pixels and [4-8] pixels by using
Euclidean distance error for the proposed approach,
compared with the approach presented in (Iskakov
et al., 2019).

5 CONCLUSIONS

This paper addresses the challenging problem of the
human pose estimation when the joints are occluded.
A monocular network architecture that takes advan-

tage of multi-view scheme is proposed to accurately
estimate the human pose. This scheme is moti-
vated by the reduced information to predict more pre-
cisely occluded joints when only one view is used.
Experimental results and comparisons are provided
showing improvements on the obtained results. The
manuscript shows how estimated joints of other views
can help to estimate occluded joints more accurately.
The obtained precision of body joints is the base to
solve others related problems as 3D human pose es-
timation, action recognition among others. Future
work will be focused on extending the usage of multi-
view environments to leverage the geometry of the
scene, and thus, improve the 3D human pose.
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