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Pedestrian detection for autonomous driving has gained a lot of prominence during the last 

few years. Besides the fact that it is one of the hardest tasks within computer vision, it involves 

huge computational costs. The real-time constraints in the field are tight, and regular 

processors are not able to handle the workload obtaining an acceptable ratio of frames per 

second (fps).  Moreover, multiple cameras are required to obtain accurate results, so the need 

to speed up the process is even higher.  Taking the work in [1] as our baseline, we propose a 

CUDA implementation of a pedestrian detection system.  Further, we introduce significant 

algorithmic adjustments and optimizations to adapt the problem to the GPU architecture. The 

aim is to provide a system capable of running in real-time obtaining reliable results. 
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Pedestrian detection for autonomous driving is one of the hardest tasks within computer vision, and involves huge computational costs. Obtaining acceptable real-time performance, measured in frames per second (fps), for the most 

advanced algorithms is nowadays a hard challenge. Taking the work in [1] as our baseline, we propose a CUDA implementation of a pedestrian detection system that includes LBP and HOG as feature descriptors and SVM and Random 

forest as classifiers. We introduce significant algorithmic adjustments and optimizations to adapt the problem to the NVIDIA GPU architecture. The aim is to deploy a real-time system providing reliable results. 
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Results  

 Intel i7-5930K – 3.5 GHz 

12 threads 

 NVIDIA GTX 960 

8 SMs (Maxwell) 

 NVIDIA DrivePX – Tegra X1: 

2 SMs (Maxwell) 

Single socket 
 

Conclusions & future work 
 Our CUDA system is capable of running on real time obtaining accurate results. 

 There is computational power left to integrate multiple cameras and additional ADAS systems such 

as lane departure warning, traffic signs recognition and 3D vision. 
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Kernels 

Speed-Up versus CPU 

NVIDIA
GTX 960

NVIDIA
DrivePX

LBP + SVM 𝐹𝑃𝑆 𝐹𝑃𝑆
𝑊𝑎𝑡𝑡  

Intel i7-5930K  3,7 0,03 

NVIDIA GTX 960 89 0,75 

NVIDIA DrivePX 19 2,1 

The lower the better 

HOG + SVM 𝐹𝑃𝑆 𝐹𝑃𝑆
𝑊𝑎𝑡𝑡  

Intel i7-5930K  3,2 0,02 

NVIDIA GTX 960 32 0,22 

NVIDIA DrivePX 10 1,1 


