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Abstract— Camera–based Advanced Driver Assistance Sys-
tems (ADAS) have concentrated many research efforts in the
last decades. Proposals based on monocular cameras require the
knowledge of the camera pose with respect to the environment,
in order to reach an efficient and robust performance. A
common assumption in such systems is considering the road as
planar, and the camera pose with respect to it as approximately
known. However, in real situations, the camera pose varies
along time due to the vehicle movement, the road slope, and
irregularities on the road surface. Thus, the changes in the
camera position and orientation (i.e., the egomotion) are critical
information that must be estimated at every frame to avoid poor
performances. This work focuses on egomotion estimation from
a monocular camera under the ADAS context. We review and
compare egomotion methods with simulated and real ADAS-
like sequences. Basing on the results of our experiments, we
show which of the considered nonlinear and linear algorithms
have the best performance in this domain.

I. INTRODUCTION

Currently, many research efforts are being done towards

the use of cameras to develop Advanced Driver Assistance

Systems (ADAS). The richness of the information provided

by images (texture, color, etc.) as well as their high resolution

and relevant issues such as ease of integration (even in

small vehicles), low cost and low power consumption, make

cameras a very appealing option for sensing the driving envi-

ronment. However, the application of computer vision tech-

niques to develop ADAS systems like active cruise control

or collision avoidance is challenging, due to their stringent

time-response requirements. The problem commonly comes

from the computation required to process images, which

is very high when generic strategies are applied. Hence,

when transferring computer vision techniques to the ADAS

domain, it is essential to employ prior knowledge of the

driving context for the sake of efficiency. In practice, what

many proposals do is taking advantage of the fact that the

road is commonly planar, and that the camera pose with

respect to it is approximately known. In tasks such as vehicle

and pedestrian detection, this allows to discard the processing

of a significant image part (e.g., the sky region), and then

to inspect the remaining part taking into account perspective

effects. The main drawback of this approach is that, despite

the road can be assumed planar in most cases, the camera

pose with respect to it is not constant over time. Indeed, due

to the vehicle movement, the road slope, and irregularities

on the road surface, the geometric relation between the

camera and the road varies every frame. Hence, considering

it constant leads to suboptimal image analysis, and therefore
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to poor system performances. A principled solution to tackle

this problem is estimating the camera pose at every frame.

There exist several proposals to do it that are based solely

on the information available in images, avoiding the need

of installing additional sensors on the vehicle. For instance,

a stereo ADAS system is proposed in [1] to estimate the

change in camera pose over time by aligning the 3D data

recovered from stereo-vision at consecutive time instants. In

a different way, in [2] the camera pose with respect to the

road is directly recovered at each instant by fitting a plane

to the recovered 3D data. The normal of that plane encodes

implicitly the pose of the stereo camera with respect to it.

For monocular systems, recovering the camera pose is far

more challenging. One possibility is to take advantage of

knowledge of some structure present in the image. This is

the approach followed in [3], where by fitting a 3D model

of the road lane markings to the image, the camera pose

is recovered. However, the requirement of observing known

structures strongly limits the applicability of this strategy. A

convenient way to avoid this requirement is using general

methods for determining the camera pose variation along

time. This is, in fact, a classical problem in computer vision,

commonly referred as the camera egomotion estimation

problem. Different proposals exist in the literature, and in this

paper we evaluate the performance of some representative

algorithms in ADAS-like sequences. This is important since

the performance of egomotion algorithms vary significantly

depending on the structure of the observed scene. An alter-

native to general egomotion estimation methods is applying

structure from motion algorithms, as in [4]. However, in our

case we want to estimate the egomotion avoiding an explicit

reconstruction of the observed scene.

The paper is organized as follows. Section II formalizes

the egomotion estimation problem, and describes the main

strategies proposed to solve it. The experimental work to

assess their performance is described in Section III, where

the results obtained are also discussed. Finally, the paper

presents the conclusions of our work.

II. PROBLEM STATEMENT

The egomotion problem concerns the estimation of the

3D rigid motion (rotation and translation) of a camera from

an image sequence acquired by it. That is, determining the

variation of the six degrees of freedom (DOF) corresponding

to the camera extrinsic parameters. Based on the kind of

information used, we distinguish three strategies for ego-

motion estimation: discrete, continuous, and direct methods.

Discrete methods rely on information extracted from a sparse

set of feature correspondences between two distinct camera
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viewpoints, both related by a rotation R and translation

t [5]. This information is described through the so-called

epipolar constraint [6], which is encoded into the well-

known essential matrix E [7]. Specifically, if q = [qx, qy, 1]
and q′ = [q′x, q

′

y, 1] are the homogeneous coordinates of

2D matched points between two different views, then the

following relationship holds

q′TEq = 0 , (1)

where E = R [t]
×

is the essential matrix relating such views.

With [t]
×

we denote the skew symmetric matrix of t. Al-

though both R and t have 3 DOF, the essential matrix E has

only 5 DOF, since there is a scale ambiguity in the magnitude

of the translation t. R and t are computed by decomposing

E once it is estimated, existing different proposals in the

bibliography to do that. When the camera calibration is

unknown, a relation analogous to (1) is described through

the fundamental matrix [8].

The epipolar constraint does not take into account any

prior information about the relation of the two views put

into correspondence. However, as it happens in the case of a

video sequence, if these two views are the result of camera

motion during a small time interval, the change of the camera

pose can be considered as theoretically infinitesimal. From

that, a continuous version of the epipolar constraint can be

formulated.

Given a static 3D point p = [px, py, pz] in the scene, the

relative movement of the camera with respect to it can be

described by its linear velocity ṫ = [ṫx, ṫy, ṫz] and its angular

velocity vector ω = [ωx, ωy, ωz]. If we denote the projection

of p in the image plane by q (in homogeneous coordinates),

the change of this projection due to the camera motion

(ṫ,ω) corresponds to q̇ = [q̇x, q̇y, 0], whose components are

determined by the following expression1





q̇x

q̇y



=











ṫx − ṫzqx

pz
+ (ωy − ωzqy − ωxqxqy + ωyq

2

x)

ṫy − ṫzqy

pz
+ (−ωx + ωzqx + ωyqxqy − ωxq

2

y)











. (2)

The aim of continuous methods [9] is hence determining

(ṫ,ω) from the relation between view points and their image

flow. Since the image flow field is an ideal concept, it is

approximated either by densely computing the optical flow

in consecutive frames (i.e., the apparent motion perceived

from the changes in image intensity) or, by tracking some

sparse interest points [10].

In order to estimate motion parameters, continuous meth-

ods apply different manipulations on (2) to annihilate its

dependency on depth (i.e., pz). The following bilinear con-

straint on ṫ and ω can be achieved by algebraic operations

on (2)

(ṫ× q)T (q̇− (ω × q)) = 0 . (3)

Note that (3) does not depend on the position of the point

in space, but only on its projection and the motion parame-

ters. This bilinear constraint is used by different linear and

1Without loss of generality, here we assume a unit focal length.

nonlinear methods to compute egomotion from optical flow.

By simple algebraic manipulations, (3) is rewritten as

q̇T
[

ṫ
]

×
q+ qT [ω]

×

[

ṫ
]

×
q = 0 . (4)

This is the so-called differential epipolar constraint [11], due

to structural similarity with the constraint (1) of the discrete

case.

In contrast to the above methods, direct methods [12]

are based on the image brightness constraint to directly

recover the motion parameters. These methods integrate the

information provided by all the pixels to recover egomotion,

without explicitly matching between views as an intermediate

step. For this purpose, most of them presuppose a strong

assumption with respect to the image brightness constancy,

i.e., that there should be no changes in intensities between

consecutive images, which is not valid in outdoor scenes

where inter-frame brightness variations are significant and

time-varying illumination changes are present. However,

recently in [13], lighting changes are handled via a proposed

photogeometric modeling to explain the illumination varia-

tions as an evolving surface. All parameters of such model

are simultaneously estimated by a second-order optimization

procedure. This model can be used to overcome limitations

above mentioned.

Our study is focused just on discrete and continuous

methods, which are also denoted in the bibliography as

feature-based and optical flow-based methods.

A. Discrete Methods

The basis for feature-based approaches lies in the early

work of Longuet-Higgins [6]. Based on the epipolar geom-

etry, it shows how to estimate the relative camera motion

between two views from at least eight point correspondences.

The method estimates the essential matrix E relating a pair of

calibrated views by solving an overdetermined homogeneous

system of linear equations using a least-squares approxi-

mation. This eight-point algorithm is linear, fast and easy

to implement, but very sensitive to noise (which leads to

poor results). However, Hartley [14] shows that, by simply

prenormalizing (translation and scaling) point coordinates,

the performance significantly improves. By adding extra

constraints to the original eight-point formulation, solutions

requiring just seven, six, and five point correspondences have

been developed [15].

Iterative methods to estimate E have also been proposed

[16]. They rely on determining the essential matrix that min-

imizes a cost function relating the distance between points

and epipolar lines. While these methods are, in general, more

accurate, they are also time-consuming, requiring a good

initialization and coping with outliers.

The existence of mismatches in point correspondence

between views can significantly affect the performance of

the previous methods. To avoid that, they have been applied

in conjunction with methods for outlier rejection [17].

B. Continuous Methods

Based on the image flow field, different methods have been

derived to compute ṫ and ω. From (3), Bruss and Horn [9]

1416



estimate ṫ by numerical optimization techniques, subjected

to be unitary since, as previously stated, translation can only

be estimated up to a scale factor. Once ṫ is determined, ω

is computed by solving a linear system.

Based also on the bilinear constraint, Heeger and Jepson

[18] developed the so-called linear subspace method. From

the optical flow sampled at N discrete points in the image, a

set of constraint vectors orthogonal to the camera translation

velocity ṫ is built. This allows defining an overdetermined

linear system to estimate ṫ with N −6 constraints. Note that

for N image velocity samples, N bilinear constraints could

be defined over ṫ and ω, but only a subset of linear con-

straints is used. Once the direction of translation is computed,

ω is obtained by also solving a linear system of equations. In

spite of the linearity, the main disadvantage of this method is

that it does not use all the available information to estimate

the motion parameters. Similar approaches are followed by

Soatto et al. [19], and Zhang et al. [20].

Different algorithms based on the differential epipolar

constraint in (4) have also been defined. In [21] Kanatani

estimates ṫ and ω from an overdetermined system of equa-

tions, which is solved by a least-squares minimization. Since

this solution is shown to be systematically biased, Kanatani

then proposes to apply a “renormalization” step to subtract

an estimate of the output bias from the solution. Based

on a study of the differential essential matrix, Ma et al.

[22] propose a method conceptually similar to [21], which

recovers the 3D velocity of the camera in a more natural form

by eigenvector-decomposition. The performance of these

and other additional resolution schemes based on this con-

straint have been evaluated in [16], being the “normalized”

Kanatani's proposal [21] the best performing one.

III. EXPERIMENTAL ASSESSMENT

In this section, we report the experiments done to quantify

the performance of the more relevant methods described in

Sec. II using synthetic sequences as well as real sequences.

Our objective is to evaluate different algorithms in ADAS-

like sequences in order to determine the best performing one.

First, we select a set of methods taking into account the

characteristics of the dominant camera motion in our con-

text. In normal driving conditions, a vehicle moves mainly

forward, and the most important variations in the camera

orientation are in the yaw and pitch angles. According to

that, and considering methods available on the toolbox given

in [23] and others, the egomotion algorithms compared here

are selected due to the following reasons:

• Regarding the discrete epipolar constraint, the compar-

ative study fulfilled by Nistér [15] indicates that for

sideway motion the five-point algorithm leads to the

best estimation with respect to linear, iterative, and

robust tested methods. However, for forward motion

normalized eight-point algorithm (8pts) [14] overcomes

all the methods. Thus, we include just the 8pts algorithm

in our study.

• As the representative of the linear algorithms using the

differential essential matrix, we test the infinitesimal

TABLE I

INTRINSIC PARAMETERS OF THE USED PINHOLE AND REAL CAMERA.

Parameter Simulated Camera Real Camera Unit

Focal length 810.81 820.428 pixels
Image width 640 640 pixels
Image height 640 480 pixels
Optical center (320,320) (305.278,239.826) pixels

eight-point algorithm (KA) and its renormalized version

(KB) of Kanatani's proposal [21], since these algorithms

are shown, in [16], as the best performing methods of

this sort.

• We test the linear subspace method of Jepson and

Heeger (J&H) [18] because it deals with the bilinear

constraint in a linear fashion, showing comparable re-

sults with respect to other linear and nonlinear methods

in egomotion estimation [22], [16].

• The optimization-based method of Bruss and Horn

(B&H) [9] is selected because in the tests of [23]

it exhibited the best performance of all (linear and

nonlinear) methods.

A. Evaluation with synthetic data

To quantify the performance of selected algorithms, we

adopt a methodology similar to the ones proposed by Tian

et al. [23] and Ma et al. [22]. They generate random clouds

of 3D points and compute their 2D projections and the

image flow vectors corresponding to a particular 3D motion.

Then, for each algorithm, egomotion is estimated in one

thousand trials, quantifying its accuracy from the dissimi-

larity observed with respect to the ground truth motion. In

our case, instead of random clouds of points, we generate

random point configurations similar to the ones obtained

from a camera mounted in a car, moving in a typical driving

environment. The scene contains approximately 700 points

randomly placed on the road, objects, and a plane at infinite.

The road length is about 500 meters (m), and over it, we

generate very few points, because, in real situations, a road

does not have sufficient texture where many points can be

detected. We generate the most number of points in objects

of different random sizes located on both sides of the road,

according to what we experimentally observed. A small

number of points are generated in a plane perpendicular to

the road, which is placed at infinity, emulating the distant

structures observed in real sequences above the horizon

line. Occlusions between different elements in the scene are

managed by the z-Buffer algorithm.

Once the scene is generated, it is projected onto an image

plane by using a pinhole camera model with the intrinsic

parameters indicated in Table I. The image flow vectors

are produced by a rigid body motion of the camera with a

translation of 1 m/frame on Z axis and a rotation of 2◦/frame

on the X axis. Assuming a frame rate of 25 frames/s,

these magnitudes correspond to a real-life situation with a

car moving at 90 km/h (i.e., driving in a fast road), with

some oscillations in the camera pitch angle, which commonly

occurs due to the effect of the suspension system. In Fig. 1
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Fig. 1. 3D Scene projection and image flow resulting of the camera motion.

an example of image flow caused by a translational motion

over Z axis is shown.

Zero-mean Gaussian noise of various amounts is added

to each image flow vector, to simulate errors in the optical

flow computation. The considered standard deviations of the

Gaussian noise are 0.05, 0.15, 0.25, 0.5, and 0.7 pixels. These

values can be seen as the localization accuracy of the point

tracked between frames. We selected the maximum noise

level as the mean of corner delocalization suffered by the

Plessey corner detector [24] in several experiments done.

The generic evaluation criteria proposed in [23] is adopted

to absolutely quantify the algorithms accuracy. For each

algorithm, we measure the mean error of the estimates in

one thousand different scenes. The mean error µ
ṫ

in the ṫ

estimation is quantified as the angle (in degrees) between the

true translation direction ṫ, and the average of the translation

direction t̄ of all trials, that is

µ
ṫ
= cos−1(t̄T ṫ) ,

since the dot product is t̄T ṫ = |t̄||ṫ|cos(α), and |ṫ| = |t̄| = 1
because the estimated translation is only recovered up to a

scale factor.

To quantify the mean rotation error, we use the difference

angle between the true rotation ω and the mean of estimated

rotations ω̄. For this purpose, rotation matrices R and R̄ for

both ω and ω̄ are built. The product between RT and R̄ is

an identity matrix when both are equal. Thus, the difference

between both matrices is defined as △R = RT R̄. △R can

be characterized by an unit axis vector and an angle µR. This

angle is used as the mean rotation error. Since trace(R) =
1 + 2cos(α), then the angle is equal to

µR = cos−1

(

1

2
(trace(△R)− 1)

)

.

We choose these metrics because they provide a compact

error measure that facilitates the evaluation of the algorithms,

i.e., a scalar error value for ṫ and ω, respectively. Another

option could be the mean of each component vector of the

estimated ṫ and ω, but this would make more difficult the

performance analysis.

Our results in synthetic ADAS-like sequences are shown

in Fig. 2. We can see that the best result is achieved by B&H

probably because it entails an iterative optimization process

to estimate the parameters. With respect to the remaining

linear methods, KB overcomes all other linear approaches

because it deals with the bias in the translation direction. KA,

J&H and 8pts are more affected by noise. The 8pts algorithm

does not have good results —especially notice its poor

results in rotation estimation—, since it is based on discrete

epipolar constraint, which works better when the motion

between the two images is relatively large, and in the ADAS

context the camera motion is small. In our experiments,

algorithms show a better performance than the one reported

in comparative study done by Tian et al. [23]. This is because

in that study motion corresponding to sideway translation

was considered, and apparently motion parameters can be

more robustly estimated when translation is along Z-axis,

which is consistent with the sensitivity analysis done in [25].

B. Evaluation with real sequences

Once compared methods in synthetic data, the next step

is checking their performance on sequences acquired by a

vehicle moving in a real-world scenario.

We use image sequences from the Environment Percep-

tion and Driver Assistance dataset2. These sequences have

been captured with a calibrated stereo pair (see Table I

for its intrinsic parameters) in driving scenarios including

highways, urban and rural roads (see [26] for more details).

They contain between 250 and 300 frames, and car velocity

and yaw rate is provided by an inertial sensor from which

an approximation of ṫ can be computed. Fig. 3 shows some

frames of the sequence and the trajectory followed by the

vehicle.

Since the dataset just partially provides the ground truth of

the camera motion, we need to complete it by providing the

camera rotation information. To this end, we use a stereo ego-

motion estimation approach similar to the one proposed by

Badino [1] to compute the camera motion along a sequence.

The interest points are detected by using Shi and Tomasi

[27] corner detector applied to the current and previous left

image. These points are matched in successive frames by a

KLT tracker [28], which determines their optical flow along

the sequence. Stereo is computed by triangulation with the

tracked points for every frame obtaining 3D points of the

environment. Parameters t and R are obtained by matching

the clouds of 3D points in consecutive frames, using a

least-squares closed-form solution based on unit quaternions.

Since errors in point correspondences, tracking and/or stereo

can generate flow vectors representing inconsistent motion,

2From the enpeda project: http://www.mi.auckland.ac.nz/.
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(a) Translation estimation. (b) Rotation estimation.

Fig. 2. Results of translation and rotation estimation with synthetic sequences.

Fig. 3. Frames of the real sequence and the trajectory followed by the vehicle which is measured with an inertial sensor.

Left image

Tracking Stereo

Tracked
points 3D points

+
Flow

Vectors

Motion
Computation

Left + Right images

Motion
Parameters

Fig. 4. Stereo egomotion framework proposed by Badino [1] and used to
recover motion parameters from stereo sequence.

a robust egomotion estimate is obtained using RANSAC.

Then, we take both rotation estimates made with this stereo

method and translation estimates from the inertial sensor

as a baseline to compare the accuracy of the considered

monocular egomotion algorithms. A diagram of this stereo

egomotion strategy is shown in Fig. 4.

Fig. 5 summarizes our results along a 300 frames se-

quence. Table II reports estimation errors using the format

of “error mean ± error standard deviation”. From our

observations, B&H notably achieves the best results since

it entails an iterative optimization process to estimate the

parameters. This is in accord with our previous analysis

under simulated environment. However, in contrast to the

synthetic experiments, the remaining algorithms show very

similar performance in egomotion estimation. Notice that the

performance of the 8pts algorithm remains on par with the

differential ones, which is probably due to the fact that noise

in this sequence is proportional to the amount of performed

motion (as have been proved in [29]). We also note that

the noise in flows affects the performances of all algorithms

TABLE II

EGOMOTION ESTIMATION IN A REAL DRIVING SCENARIO.

Algorithms Translation Error Rotation Error

8pts 6.89◦ ± 4.62◦ 0.28◦ ± 0.25◦

KA 6.46◦ ± 4.34◦ 0.24◦ ± 0.25◦

KB 6.86◦ ± 5.15◦ 0.24◦ ± 0.26◦

J&H 6.82◦ ± 4.54◦ 0.15◦ ± 0.26◦

B&H 3.28◦ ± 2.02◦ 0.17◦ ± 0.23◦

(especially in translation direction, which is affected by a

bias), what can be improved by a subsequent step of bundle

adjustment to refine the pose estimate.

IV. CONCLUSIONS

In this work, we review several relevant camera egomo-

tion estimation methods in the literature, and evaluate their

performance in the ADAS context. This study is motivated

by the relevance, for monocular ADAS systems, of knowing

the camera pose with respect to the environment, in order to

achieve a reliable and efficient performance. To this end, we

compare egomotion methods on synthetic and real ADAS-

like sequences to determine those that have better perfor-

mance. As a conclusion of our synthetic experiments, we

show that the best nonlinear and linear performing methods

are B&H and KB, respectively. Regarding real sequence

experiments, the best performance is reached by B&H while

other algorithms perform less accurately and at a similar

level. Unexpectedly, we observe that 8pts behaves similar
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(b) Rotation estimation.

Fig. 5. Results of translation and rotation estimation in real sequences.

to continuous methods, probably because the noise in flows

is proportional to the motion in the analyzed sequence. Also,

we note that translation estimation is affected by a bias. Our

current work focuses on a deeper study of these two last

aspects.
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