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Abstract

Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of
Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the
potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to
significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by
which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on
individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the
movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of
protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results
provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in
agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a
region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased
macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three
ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the
available experimental data on aggregate localization in the cells. Taken together, our results strongly support the
hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of
passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the
importance of ‘‘soft’’ intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in
E. coli.
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Introduction

While aging is a fundamental characteristic of living systems, its

underlying principles are still to be fully deciphered. Recent

observations of ageing in unicellular models, in absence of genetic

or environmental variability, have paved way to new quantitative

experimental systems to address ageing’s underlying molecular

mechanisms [1,2]. Further, the notion of aging was extended

beyond asymmetrically dividing unicellular organisms such as the

budding yeast Saccharomyces cerevisiae or the bacterium Caulobacter

crescentus -where a clear morphological difference and existence of

a juvenile phase distinguishes between the aging mother cell and

its daughter cells [3,4] - to symmetrically dividing bacteria. This

pushed aging definition to demand functional asymmetry as

minimal requirement for a system to age [5]. Specifically,

Escherichia coli and Bacillus subtilis were shown to age as observed

by loss of fitness at small generation scale (,10) [6–8 (for B.

subtilis),9–11] and increased probability of death at larger

generation scale (up to 250 generations) [12]. Age in this system

was defined as the number of consecutive divisions a cell has

inherited the older cellular pole [7]; the sibling that inherits the

older cell pole was shown to grow slower than the newer pole

sibling.

From a cellular viewpoint, aging is arguably due to the

accumulation of damage over time that degenerates cellular

functions, ultimately affecting the survival of the organism [1,2]. In

the case of E. coli, a significant portion of the age-related fitness loss

is accounted for by the presence of protein aggregates that

accumulate in the bacterial older poles [7,9,10]. Such accumula-

tion is reminiscent of many known age-related protein folding
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diseases [1]. Preferential sequestration of damaged proteins is also

observed in S. cerevisiae between the bud and the mother cell [13–

15] and between specific intracellular compartments in yeast and

mammalian cell [16,17]. Therefore spatial localization, as non-

homogeneous distribution of damaged protein aggregates in the

cytoplasm, has been postulated to be an optimized strategy

allowing cell populations to maintain large growth rates in the face

of the accumulation of damages that accompany metabolism

during cell life [14,18,19]. These results suggest that spatial

localization of damaged protein aggregates could present an

ageing process conserved across different living kingdoms. Given

the documented link between protein aggregation and ageing, the

short life-span, ease of quantification of large number of

individuals, molecular biology and genetics accessibility of E. coli

may make this bacterium into a relevant model system to elucidate

protein aggregation role in a ageing.

A first obstacle along this path is to understand the mechanisms

by which cells can localize protein aggregates at specific locations

within their intracellular space. Generally, thermal agitation and

the resulting diffusion (Brownian movement) of proteins forbid

localization in space on long timescale, since diffusion is a mixing

process that will render every accessible position equiprobable.

Inside eukaryotic cells, active mechanisms such as directed

transport or sub-compartmentalization by internal membranes

permit to counteract the uniforming effects of diffusion. It is

however known since the 1952 seminal paper by Alan Turing [20]

that subtle interactions between chemical reactions and diffusion

can spontaneously lead to steady states with non-uniform spatial

extension. This is also true for bacteria, as exemplified by the

spatial oscillations in the minCDE system [21] or in the case of

diffusion-trapping coupling [22]. Recently, the importance of

precise sub-cellular localization of proteins within bacteria has

become apparent [23–25]. In absence of a general cytoskeleton-

based directed, active transport mechanism nor internal mem-

branes, this would favor diffusion-reaction based localization

within bacteria (see however [26–28]).

Specifically it is still unclear whether for single-cell organisms,

preferential localization mechanism of damaged proteins is based

on active directed transport or passive Brownian diffusion. In S.

cerevisiae, initial reports incriminated a role for active directed

transport (actin cytoskeleton) or sub-compartmentalization (mem-

brane tethering) in the segregation of molecular damages

(damaged proteins, episomal DNA) in the mother cell [13,29].

Yet, more recent reports contradict the need for directed

transport, e.g. on the actin cable, and favor diffusion-based

localization [16,30,31].

In E. coli, protein aggregates have consistently been reported to

localize in the cell poles and in the middle of the cell [7,9,10]. The

number of distinct aggregates per cell seems to depend on the

cellular environment. In non-stressed conditions, at most one

aggregate per cell is observed with rare cases (,4%) of two foci per

cell detected [6]; under heat shock, most cells contain two or three

aggregates [8,9]. In heat-shock conditions, Winkler et al. [9]

concluded in favor of a Brownian passive motion of the protein

aggregates. This study also pointed out that one simple possible

passive aggregate localization mechanism may be based on

spatially non-homogeneous macromolecular crowding. Indeed,

in healthy cells, the bacterial chromosome spontaneously conden-

sates [32] thus delineating a restricted sub-region of the cell called

‘‘nucleoid’’, where molecular crowding is much larger than in the

rest of the cytoplasm [33]. Macromolecular crowding then

alternates along the cell long axis between low intensity zones

(cytosol) and large intensity ones (nucleoid). Monte-Carlo dynam-

ics modeling suggests that such non-homogeneous spatial distri-

bution of the molecular crowding may be sufficient to localize

large proteins to the cell poles [34]. In line with this proposal are

experimental reports that the observed aggregates preferentially

localize in the nucleoid-free regions of the cell [7,9], i.e. precisely

in the regions of alleged lower macromolecular crowding. In spite

of these hints though, whether the transport of the aging-related

protein aggregates in E. coli is of a directed active nature or purely

passive Brownian origin remains elusive, since contradictory

results indicate that this process would include ATP-dependent

stages [9].

Here, our aim is to determine whether the movement of aging-

related protein aggregates in E. coli is purely diffusive (Brownian)

or includes some active process (ATP-dependent, directed

transport or membrane tethering). To this aim, we devised an

integrated approach combining time-lapse fluorescence microsco-

py of E. coli cells in vivo, open-source automated image analysis,

and individual-based modeling. Our results strongly indicate that

purely diffusive pattern of aggregates mobility combined with

nucleoid occlusion underlie their accumulation in polar and mid-

cell positions.

Results

Trajectory analysis of single protein aggregates
In vivo analysis of individual trajectories of proteins of interest (or

aggregates thereof) is a powerful method to determine whether the

movement of the target protein is of Brownian nature or

additionally exhibits further ingredients (active directed transport,

caging or corralling effects, transient trapping, anomalous sub-

diffusion) [15,35–40]. Here, we focused on naturally forming

protein aggregates tethered with the small heat-shock protein IbpA

in E. coli whose spatio-temporal dynamics have been implicated in

aging of the bacteria [7,13].

To characterize the motion of IbpA-tethered aggregates in

single E. coli cells, we monitored intracellular trajectories of single

foci of IbpA-YFP fusion proteins [7,41] in non-stressed conditions

(37uC, in LB medium, see Materials and Methods). For the

automatic quantification of the resulting time-lapse fluorescence

microscopy movies, we developed dedicated image analysis and

tracking software tools (see Materials and Methods). This software

Author Summary

Localization of proteins to specific positions inside bacteria is
crucial to several physiological processes, including chromo-
some organization, chemotaxis or cell division. Since bacterial
cells do not possess internal sub-compartments (e.g., cell
organelles) nor vesicle-based sorting systems, protein local-
ization in bacteria must rely on alternative mechanisms. In
many instances, the nature of these mechanisms remains to
be elucidated. In Escherichia coli, the localization of aggre-
gates of misfolded proteins at the poles or the center of the
cell has recently been linked to aging. However, the
molecular mechanisms governing this localization of the
protein aggregates remain controversial. To identify these
mechanisms, we have devised an integrated strategy
combining innovative experimental and modeling approach-
es. Our results show the importance of the increased
macromolecular crowding in the nucleoids, the regions
within the cell where the bacterial chromosome preferen-
tially condensates. They indicate that a purely diffusive
pattern of aggregates mobility combined with nucleoid
occlusion underlies their accumulation in polar and mid-cell
positions.

Localization of Protein Aggregates in E. coli

PLOS Computational Biology | www.ploscompbiol.org 2 April 2013 | Volume 9 | Issue 4 | e1003038



Figure 1. Localization of the detected aggregates in the cells. (A) In each image on the time-lapse fluorescence movies, the bacterial cells are
automatically isolated (each individual cell is given a unique random color). The aggregates appearing during the movie are automatically detected
and their trajectory within the cell quantified (internal trajectories). (B) By convention, we referred to the projection of the aggregate location on the
long axis of the cell as the x-component and that along the short axis as the y-component. (C) Histogram of the x-component of the initial position of
the trajectories (total of 1,644 trajectories). Since the cell length at the start of the trajectory is highly variable, the x-component was rescaled by
division by the cell half-length. After this normalization, the cell poles are located at locations 21.0 and 1.0 respectively, for every trajectory. (D)
Experimentally measured positions of the aggregates detected in the poles (both poles pooled, n = 9,242 points). The green-dashed curves in (D–F)
locate the 2d projection of the 3d semi-ellipsoid that was used to approximate the cell pole. (E) Synthetic data for bulk positions: 10,000 3d positions
were drawn uniformly at random in the 3d semi-ellipsoid pole. The figure shows the corresponding 2d projections. (F) Synthetic data of membranary
positions: 10,000 3d positions were drawn uniformly at random in the external boundary (membrane) of the 3d semi-ellipsoid pole. The figure shows
the corresponding 2d projections. (G) To quantify figures D–F, the correlation function r(s) was computed as the density of positions located within
crescent D(s) (gray). See text for more detail. (H–I) Local density of aggregate positions r(s) in the synthetic (H) and experimental (I) data shown in E
(bulk, blue), F (membranary, red) and D (experimental, orange). The dashed black line shows the local density computed for 10,000 synthetic 2d
positions that were drawn uniformly at random in the 2d semi-ellipse resulting from the 2d projection of the 3d pole ellipsoid (green dashed curve in
D–F).
doi:10.1371/journal.pcbi.1003038.g001

Localization of Protein Aggregates in E. coli
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suite performs automatic segmentation and tracking of the cells

(Fig. 1A). Moreover, it automatically detects the fluorescence

aggregates foci and monitors their movements relative to the cell

in which they are located, with sub-pixel resolution.

Localization of protein aggregates is non-homogeneous

along the cells. Detectable protein aggregates (in the form of

localized fluorescence foci) were observed in half of the cells

monitored (54%; Ncells = 1625 recorded in 72 independent

movies), in agreement with previous experimental reports [7,13].

No further foci were detected by doubling exposure time (see

materials and methods). This suggests that smaller undetected

aggregates that may exist either diffuse faster than the acquisition

time and are therefore not recorded as ‘‘localized’’, or alterna-

tively, that they merge into bigger, detectable aggregates before

full maturation of the fluorophore (#7.5 min). [42]. Cells in non-

stressed conditions tend to exhibit smaller copy numbers of distinct

protein aggregates than in heat-shocked conditions (compare e.g.

[7] with [9,10]). Accordingly, in our hands, nearly all the foci-

containing cells (98.8%) displayed a single fluorescence focus

within the imaging time, while the remaining cells had at most two

foci. The distribution of the (initial) spatial localization of the

aggregates is displayed in Fig. 1. As a convention, we denote the

long axis of the bacteria cell as its x-axis and the short one as its y-

axis (Fig. 1B). In this figure, we express the aggregate position

relative to the cell center of mass, and rescale to [21, +1]2 range.

Thus the two bacterial poles correspond to x = 21 and x = +1 in

this relative scale.

The histogram of the location of the aggregate at the starting

point of each trajectory is shown in Fig. 1C. The distribution is

highly non-homogeneous, with most of the aggregates predomi-

nantly localized at one of the two poles, and the others mainly

around the middle of the cell. This distribution is similar to the

results obtained in [7] (Fig. 2-E-F in [7]), except that here, since we

do not differentiate between old and new poles, the amplitude of

the polar modes in Fig. 1C are roughly symmetrical. Similar

distributions were also obtained in heat-shock conditions [9,10].

The marked localization of the aggregates suggests they might

be tethered to the membrane at the poles (and center) at some

point of the aggregation process, thus restricting their motion.

Fig. 1D shows the location of the polar aggregates at first detection

(both poles were pooled). Because these experimental results are

two-dimensional projections of three-dimensional positions, one

cannot directly determine whether the aggregates are bound to the

cell membrane or spread in the three dimensional cytoplasmic

bulk. To this aim, we generated 104 aggregate positions

(uniformly) at random in a volume of the same shape and

dimensions than the cell pole. Fig. 1E shows the two-dimensional

projection of these positions when the proteins were randomly

located in the three-dimensional bulk whereas Fig. 1F shows the

two-dimensional projections when the proteins were randomly

located on the cytoplasmic membrane enclosing the bulk.

To quantify these plots, we analyzed the local density of protein

positions in the two-dimensional projections. Assuming the 2d

projection of the pole is a semi-ellipse of radii ax and ay (green

dashed shapes in Fig. 1 D–G), its area is 1/2paxay. The area of the

elementary semi-elliptic crescent Ds (gray in Fig. 1G) delimited by

the semi-ellipse of radii sax and say (0,s,1) and that of radii

(s+ds)ax and (s+ds)ay is thus A(Ds) = paxay ds(s+ds/2). Varying s

between 0 and 1, we counted the number of aggregate positions ns

found within the semi-elliptic disk Ds and computed the

corresponding density (correlation function) r(s) = ns/A(Ds). There-

fore, when s approaches 1, r(s) represents the local density of

aggregate positions close to the external boundary of the pole

(green dashed shapes in Fig. 1 D–F) whereas for small s values, r(s)

gives the local density of aggregate positions close to center of the

pole (i.e. the center of the semi-ellipse). To validate the approach,

we generated random aggregate positions directly in two

dimensions (uniform distribution inside the 2D semi-ellipse) and

checked that the density r(s) exhibits a constant value with s

(Fig. 1H, dotted black line).

When r(s) was used to quantify the data of Fig. 1E (aggregates in

the bulk), the density was roughly constant up to s,0.3 then

decayed smoothly for larger values (Fig. 1H, blue line), in

agreement with the slight decay of the aggregate density close to

the semi-ellipse boundary that is already visible in Fig. 1E. By

contrast, with the data shown in Fig. 1F (aggregates in the

membrane around the bulk), r(s) increased first slowly with

increasing s, then very abruptly close to 1 (Fig. 1H, red line), in

agreement with the accumulation of aggregate locations close to

the semi-ellipse boundary that is already visible in Fig. 1F.

Therefore, these simulated data show that the distortions due to

the projection in two dimensions are expected to manifest as

strongly increasing r(s) values close to s = 1 if the aggregates are

tethered to the membrane versus smoothly decreasing r(s) if the

aggregates are randomly spread in the 3d bulk. Finally, we used

this approach to quantify the experimental data described above

(Fig. 1I). The local density r(s) exhibits a non-monotonous

behavior. Close to the pole boundary, r(s) clearly shows an almost

linear decay, which is very similar to the behavior observed at

large s for bulk simulations (Fig. 1H). For small s values however,

r(s) increases with s, thus indicating a phenomenon that hinders

aggregate location close to the cell center. To conclude, these

results plead in favor of a 3d bulk distribution of the aggregates in

the poles, thus rejecting the hypothesis that they would be tethered

or attached at the cell membrane.

Polar protein aggregates exhibit Brownian motion. We

next quantified the displacements of the polar aggregates. To this

end we used two temporal regimes in our time-lapse fluorescence

microscopy. Low sampling frequency (LF; 0.33 Hz) over long time

scale (LT; 5 minutes) was used to assure that we monitor entirely

the range of displacements (n = 1149), whereas high frequency

sampling (HF; 1.67 Hz) was used to increase the temporal

resolution of the linear initial regimes observed in mean-squared

displacements. These conditions were optimized considering the

trade-off between extensive exposure leading to bleaching of the

foci and satisfactory temporal resolution.

The resulting mean displacements along the x or y-axis are

shown in Fig. S1. For both sampling frequencies, the mean

displacement along the y-axis is roughly stationary and fluctuates

around a close-to-zero value. In order to analyze the fluctuations,

we rescaled the mean displacement along the y-axis so that it

fluctuates around exactly zero.

The mean displacement along the x-axis displays a close-to-

linear increase with time (Fig. S1) with a slope of around 0.05 mm/

min, a value that corresponds to the linear approximation of the

cell elongation rate under our experimental conditions (doubling

time around 30 minutes, during which the cell half-length grows

from <1.0–2.0 to <2.0–3.5 mm). Therefore, the raw movement of

the aggregates along the x-axis is dominated by ballistic

displacement toward the pole under the effect of cell elongation.

We corrected for this passive transport by subtracting the increase

rate of the cell elongation.

The corrected mean displacements (Fig. 2A) are stationary and

slightly fluctuate around zero, for both HF and LF trajectories.

This is a typical characteristic of Brownian motion (‘random

walk’). To confirm this hypothesis one has to study higher-order

moments of the displacement, in particular the second one. The

resulting mean-squared displacement u tð Þ{u 0ð Þð Þ2
D E

is dis-

Localization of Protein Aggregates in E. coli
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played in Fig. 2B. The LF and HF data here again are in very

good agreement, with the HF data nicely aligned on the LF ones.

This agreement is an important test of the coherence and quality

of our measurement and analysis methodology. The inset of the

figure shows a magnification of the HF data until time t = 30 sec.

For the first 10 to 15 seconds, the HF data exhibits a clear linear

behavior. As expected from an unbounded Brownian motion the

same slope was observed for both the x- and y-axis. The non-zero

intercept with the y-axis is typically due to the noise in the

experimental determination of the aggregate position [43]. Such a

linear dependence of the mean-squared displacement (MSD) is a

further indication that the movement of the aggregates is

Brownian diffusion, as one expects h u tð Þ{u 0ð Þð Þ2i~2Dut in

the case of

a random walk (where Dx or Dy are the diffusion constant in the

x- or y-direction, respectively). Using the first 15 seconds of the

HF data, our estimates yield Dx<5.161024 mm2/s and

Dy<4.061024 mm2/s. Note that these values are at best rough

estimates since the data are averaged over aggregates of very

variable initial sizes (whose mobility is expected to vary

accordingly; see below). Nevertheless, the fact that the values for

the x- and y-axes are similar is another indication of the isotropy of

the Brownian motion that seems to govern the movement of the

aggregates. These values are compatible with previous experi-

mental reports of the diffusion constants of large multi-protein

assemblies in bacteria, such the origin of replication in E. coli

(around 1024 mm2/s [40]) but are significantly smaller than the

values reported for single fluorescent proteins such as mEos2 or

GFP (1 to 10 mm2/s [39,44]).

Altogether the analysis of the first 15 seconds of the HF data

pleads in favor of the hypothesis that the aggregates’ motion is due

to diffusion, thus excluding directed transport due to some active

Figure 2. Single-aggregate tracking analysis inside E. coli cells. Coordinates along the x and y-axis are shown in red and black, respectively.
Low frequency sampling trajectories (LF) are displayed using full lines and high frequency ones (HF) using open symbols. Light red and black swaths
indicate + and 295% confidence intervals for the x- and y-axis data, respectively (for clarity, 2 and + intervals for the x- and y-axis data, respectively,
are omitted) (A) Corrected mean displacement h u tð Þ{u 0ð Þ{uc tð Þð Þ2i where uc(t) is the applied correction. For the y-component, the correction is
the time-average of the y-coordinate. For the x-component, the applied correction is cell growth : ux(t)~ L tð Þ{L 0ð Þð ÞDt where L(t) is the cell half-
length at time t and Dt is the time interval between two consecutive images. (B) Corresponding mean squared displacements

MSDc~h u tð Þ{u 0ð Þ{uc tð Þð Þ2i. The inset shows a magnification of the HF results and their close-to-linear behavior for the first 10–15 seconds

(dashed line).
doi:10.1371/journal.pcbi.1003038.g002

Localization of Protein Aggregates in E. coli
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mechanisms. In order to further quantify the diffusive character of

the aggregates at hand, we divided the LF data into 5 classes of

increasing initial median fluorescence (table 1), so as to average

data over aggregates of more homogeneous size. As depicted in

Fig. 3A & B, the initial slope of the MSD vs. Time curves increases

when the average intensity in the class decreases. Assuming that

the initial median fluorescence is proportional to the initial size of

the aggregate, this result further supports a diffusive behavior, for

which the diffusion constant is expected to decrease as the

molecular size increases. Plotting the data in log-log scale (Fig. 3C

& D) evidences initial slopes (i.e. exponents of a possible power

law) of 1.04+/20.14 and 0.83+/20.08 (on y and x direction

respectively; mean slope, excluding the highest fluorescent class,

see discussion). Note that the data for the y-direction are expected

to be less noisy because they were not subjected to correction for

cell growth, unlike the data for the x-direction. Moreover, in the x-

direction, the aggregate movements appear to be restricted by a

‘‘soft’’ boundary (i.e. not a membrane, see below), which is

expected to hinder interpretations of the MSD curves. Even so, the

value of the exponent in the x-direction (0.83) is not significantly

smaller than 1.0 (one-tailed t-test, 0.01 significance level).

Therefore, we conclude from this data that the MSD at short

times (before saturation) evolves linearly with time (MSD,ta with

a= 1), as expected from a Fick-like normal diffusion. This is in

contrast with recent reports where anomalous diffusion was

recorded (a in [0.40,0.75]) for RNA-protein assemblies [45,46]

and further supports our conclusion favouring passive pure

diffusion mechanism of protein aggregates in E. coli. In our results,

anomalous diffusion can be excluded except for the largest

aggregate class (black circles in fig. 3A–D); however, the

movement amplitude of these very large aggregates is too low to

allow precise quantification. We further controlled for growth rate

and cell-length effects on the diffusion pattern observed. Among

the different cells we imaged, the variations in cell growth were

very small, whereas cell length varied appreciably. However, the

initial slopes showed no significant differences when the data were

clustered into sub-classes of cell lengths (Fig. S2).

Protein aggregates exhibit passive confinement within

bacterial polar region. Following the short, approximately

15 seconds linear regime, the MSD change with time decelerates

(inset, Fig. 2B) and reaches full saturation after about 40 seconds

(LF data, Fig. 2B). MSD Saturation occurs in both x- and y-data at

values of 0.030 and 0.040 mm2, respectively. This corresponds to a

restriction of the movements of the aggregates in a sub-region of the

bacterial interior, with characteristic size <400 nm. To understand

these results, one has to take into account the size variability of the

monitored aggregates. Indeed, when considering the 5 sub-classes of

aggregates (Table 1), the observed saturation levels are not constant

but clearly decrease when the initial total fluorescence increases.

This suggests that the size of the large aggregates is of the same order

than the cell dimension, so that the intracellular space available for

an aggregate of size r is in fact L-r,,L (where L is the cell size). In

turn, this enables us to estimate the actual size of the foci,

independent of the microscope resolution.

To this end, we used the data in Fig. 3A and C to obtain reliable

estimates of the sizes of the aggregates and that of the intracellular

subregion in which they are confined. We used an automatized

procedure based on parameter optimization by an evolutionary

strategy of the parameters of an individual-based simulation for

constrained diffusion (see Materials and Methods for full descrip-

tion). In short, our strategy can be seen as an automatized fit of the

values of 12 parameters: the dimensions LX and LY = LZ of the

intracellular subregion in which the aggregates are confined and the

average radius ri and diffusion constant Di of the aggregates

belonging to class i (i = 1..5). We start by setting these parameters to

initial guess values. We then simulate the confined diffusion of 5,000

spherical molecules per class that are endowed with the corre-

sponding values of ri and Di (i = 1..5) and diffuse in a spatial domain

which size is given by the initial guess values of LX and LY = LZ. The

values of the MSD (averaged over each class) in the x and y

directions are then sampled during the simulation at the same

frequency (0.33 Hz) as in the LF data of Fig. 3A and C. We then

compute the distance between the resulting curves for the simulated

data and those for the experimental LF data. This distance

represents the least-square error between the MSD predicted by the

simulations using the initial values of the parameters. To minimize

this error automatically, we used an evolutionary strategy called

CMA-ES (see [47] and Material and Methods). CMA-ES

automatically finds the values of the parameters that yield the

smallest distance between experimental and simulation data. Note

that because the correction procedure (that removes the effect of cell

elongation) for the x-data is strong (i.e. the aggregate motion in this

direction is originally dominated by cell elongation), it is difficult to

apply this fitting procedure on the experimental MSD data for the x-

and y-axis simultaneously. This obliged us to fit the parameters

separately on the x and y-data. The numerical values indicated in

table 1 represent the average of these two fits (the ‘‘6’’ values

indicate the total variation range).

The class-averaged MSD corresponding to the optimized

parameters are shown in Fig. 3A&C as lines and are in agreement

with the experimental data. The best-fit values for the cell

dimension parameters are LX = 650 nm and LY = LZ = 750 nm.

Considering our pixel size (64 nm), we conclude that the value of

the space available to the aggregate in the y and z directions is

close to the whole space available in this direction (around

900 nm). Therefore the aggregate motion in the y and z directions

seems to be constrained only by the inner cell membrane. In

strong contrast, while the total intracellular space in the x-direction

ranges from 2 to 5 mm (depending on the cell elongation), our

fitting procedure indicates that the aggregates do not move beyond

650 nm in this direction. As they are initially located in the cell

pole, this shows that the aggregates remain in the pole, where a

passive mechanism hinders their free movement and keep them

from leaving a subregion spanning <1/4th to 1/9th of the total

cell length. This is coherent with the positioning of the nucleoids,

hindering the diffusion of the aggregates (see below).

The experimental relation between the aggregate radius and

diffusion constant, as determined by the fitting procedure above

(listed in table 1), shows a good fit to a Stokes-Einstein relation:

D(r) = C0/r where one expects C0 = kT/(6pg) (describing simple

sphere diffusion in a liquid of viscosity g) (Fig. 3E). We obtain a

remarkable fit to the experimental data with C0 = 47230 nm3/s.

Note that a power-law fitting D(r) = C0/rb gives b = 0.89+/20.14

(thus that does not exclude b = 1.0) with a similar quality of fit (chi-

square values). In the inset of Fig. 3E, the experimentally

determined values of D are plotted as a function of 1/r. The

relation is linear except perhaps for very large values of r, thus

emphasizing the very good agreement with the Stokes-Einstein law.

These results confirm that some passive mechanism hinders the

free movement of the aggregates along the long axis. They also

show that the aggregates follow the Stokes-Einstein law even for

large sizes since the diffusion constant of the aggregates simply

decays as the inverse of its radius.

Simulation of aggregation, Brownian diffusion, and
molecular crowding reconstitutes the observed patterns

If the spatial dynamics of protein aggregates in E. coli is indeed

based exclusively on Brownian motion and aggregation, we should

Localization of Protein Aggregates in E. coli
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Figure 3. Size-dependence of the diffusion constants. Trajectories from the LF movies (Fig. 2) were clustered into 5 classes of increasing initial
median fluorescence (Table 1) and the corresponding MSD were averaged in each class. Symbols (open circles) show the MSD for the x- (A) and y-
directions (B) for each class. Curve colors correspond to the classes from Table 1(with median fluorescence increasing from top to bottom). The
corresponding full lines show the results of the fitting procedure for each class (see text and Material and Methods). Panels (C) and (D) show the
corresponding log-log plots, to explore for possible anomalous diffusion. The straight lines are linear fits over the initial regimes (first 21 seconds),
before movement restriction starts saturating the MSDs. The slopes of these lines are the anomalous exponents as defined by MSD(t),ta. Each panel
indicates the average (+/2 s.d.) of the exponents determined for the 4 smallest aggregates classes (thus excluding the largest class, represented by
black circles). The resulting values of the diffusion constant D are plotted against the radius r in (E), keeping the same color code as in (A–D). Full
circles indicate the values determined from fitting the MSD in the x-direction, while full squares show the values from the fit in the y-direction. The full
line is a fit to a Stock-Einstein law D(r) = C0/r, yielding C0 = 47.236103 nm3/s. The inset replots these data as a function of 1/r.
doi:10.1371/journal.pcbi.1003038.g003
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be able to reproduce by computer simulations the observed spatial

patterns of the aggregates described here and in previous

experimental reports [7,9,10]. In particular, given the relative

simplicity of these two ingredients (diffusion+aggregation), indi-

vidual-based modeling is a very convenient tool in this framework.

Here, we used an individual-based model in which proteins diffuse

via lattice-free random walks in a 3D domain that has the size of a

typical E. coli cell (see Material and Methods and Fig. 4A). When

two molecules meet along their respective random walks, they

form a single aggregate with probability pag. The size of the

resulting aggregate is updated according to the size of its

constituting molecules and its diffusion constant is updated as a

function of the aggregate size using a simple Stokes-Einstein law.

In turn, such aggregates can combine to form bigger aggregates.

The above experimental finding suggests that the aggregate’s

Brownian motion is restricted in the x-direction over a distance

that is comprised between 1/4th to 1/9th of the cell long axis.

These numbers are in agreement with the hypothesis that the

physical structures that hinders aggregate diffusion are the

nucleoids, i.e. the subregion of the bacterial cytoplasm where the

chromosome condensates, thus increasing molecular crowding and

diffusional hindrance [33]. In a typical E. coli culture in

exponential phase, most cells contain two nucleoids [48] and the

free space between each nucleoid and the closest pole end is

around 500–600 nm (deduced from [49]). We thus tested the

hypothesis (already pointed out in [7] or [10]) that the restriction

to the free movement of the obstacles along the long axis of the

bacteria is caused by an increased molecular crowding in the

nucleoids. To simulate this increased molecular crowding in our

individual-based model, we added immobile non-reactive obsta-

cles to represent the densely packed nucleoids (Fig. 4A, see

Materials and Methods).

Each simulation is initiated by positioning Np single proteins at

random inside the cells. The simulation then proceeds by moving

the proteins via random walks and letting them aggregate (with

resulting update of the aggregate radius and diffusion constant)

when they encounter. The initial number of proteins Np was varied

in order to account for different experimental conditions. We used

Np = 100 to emulate experiments in non-stressed conditions (as in

this work) where one does not expect the presence of large

numbers of proteins in the aggregates. For experiments where

aggregation is intensified using for example heat shock treatment

[9,10], one generally expects to recover more proteins in the

aggregates. In such conditions, the number of proteins in the

aggregates was evaluated to be between 2,000 and roughly 20,000

molecules [10]. Here, to account for these data, we used at most a

total of Np = 7,000 molecules in the simulations.

In the experiments, protein aggregates are detected by

fluorescence microscopy when their size is large enough; though

we have currently no means to quantify this threshold size, we

estimate our detection limit to contain about 10–50 YFP copies,

based on the detection of slow mobile particles [50]. Therefore, in

the simulations, we had to arbitrarily fix a threshold for the

number of proteins per aggregate above which the aggregate is

considered large enough to be detected. In non-stressed conditions

(Np = 100), we used a detection threshold of 30 proteins per

aggregate, whereas with Np = 7,000 total molecules per cell, we

varied the detection threshold between 30 and 1750 monomeric

proteins per aggregates.

We first focused on the distribution of the position of the

aggregates at their first detection along the bacterial long axis. The

corresponding distribution is shown in Fig. 4B. In non-stressed

conditions (Np = 100), the distribution of the aggregate position is

qualitatively very similar to our experimental results (see Fig. 1C):

most of the aggregates are located in the poles, the rest being

mainly located in the cell center. This result is largely robust to the

value of the detection threshold of the aggregates. For very large

values of the detection threshold, the distributions of the aggregate

location tend to decay inside the nucleoids and to increase in the

poles. However, outside such extreme ranges, the spatial

distribution of the aggregates is qualitatively robust to the

detection threshold. In Fig. 4B, for instance, the full lines

correspond to aggregate detection thresholds ranging from to 5

to 50 proteins per aggregate. The resulting spatial distributions are

however similar and match all well with the experimental result

(dashed line histogram). This robustness is also observed when the

initial locations of the proteins are taken inside or immediately

around the nucleoids (Fig. S3A & C). Importantly, in agreement

with experimental reports, the nucleoids in the simulations are not

fully impermeable to the aggregates, since the probability to

observe large aggregates in the nucleoids is not null. Rather, the

presence of the largest molecular crowding in the nucleoids

reduces the probability that large aggregates form in the nucleoids.

In addition, starting the simulation with a non-homogeneous

distribution of proteins, such as confinement to the nucleoid area

or just englobing it, does not change the aggregate number per cell

and distribution outcome, though a short delay in the accumu-

lation of aggregates in observed (Fig. S3, compare e.g. B & D with

Fig. 4C & E, respectively). This is dictated by the crowded

nucleoid model we adopted with realistic mesh size that does not

prohibit diffusion of monomeric proteins within the nucleoid

crowded area.

Another intriguing experimental result is that the number of

aggregates simultaneously present in a cell depends on the

experimental conditions. In non-stressed conditions only 1.2% of

the observed cells presented more than a single aggregate within

the observation time [7] whereas in heat-shocked conditions a

majority of the cells present two distinct aggregates, and the rest is

roughly equally distributed between one and three protein

aggregates per cell. These observations are faithfully reproduced

by diffusion-aggregation mechanisms. Indeed, in our simulations

emulating non-stressed conditions (100 proteins), a vast majority of

the simulations develop a unique detectable aggregate within the

simulation time (Fig. 4C). Despite the increase with time of the

probability for a simulation to feature two detectable aggregates

per cell, the probability to observe only one aggregate remains

largely higher, even at the end of the simulations.

In simulated heat-shock conditions (see Fig. 4D, total of 7,000

proteins) with a very low aggregate detection threshold, virtually

all simulations display at least 4 distinct detectable protein

aggregates per cell from the very beginning of the simulation.

Table 1. Comparison of the estimated radius and diffusion
constants of protein aggregates depending on their initial
median fluorescence.

Intensity classes # aggregates r (nm) D (nm2/s)

I,1459 128 5462 837638

1459,I,2015 115 105611 55062

2015,I,2905 128 141633 437626

2905,I,4727 129 174610 26164

I.4727 128 273612 92626

Data are averages of the fits on the MSDx- and MSDy-data and +/2 values
locate min-max.
doi:10.1371/journal.pcbi.1003038.t001
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Figure 4. Individual-based models of chaperone protein diffusion and aggregation. (A) Geometry of the 3D model used in individual-
based models for E. coli intracellular space. Numbers indicate distances in mm. The blue boxes inside the bacteria locate the nucleoids, where
increased molecular crowding is modeled by the insertion of bulk immobile obstacles. (B) Comparison between simulations and experiments of the
localization at first detection of the protein aggregates along the long axis (x-axis). The full lines show the spatial distributions extracted from the
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These results are comparable with the experimental data obtained

in [7], where the addition of streptomycin was shown to strongly

increase the size and number of detected aggregates per cell (to 5

or more). When we increased the aggregate detection threshold

(illustrated by a detection threshold of 1750 aggregates in Fig. 4E)

the simulations showed very different behavior. For short

simulation times, we mainly observed cells with a unique detected

aggregate. As simulation time increases, the probability to detect a

unique aggregate decays in favor of the probability of detect 2 and

3 aggregates simultaneously in the cells. Eventually, most of the

simulations (around 60%) display two aggregates, and the others

are roughly evenly shared between 1 and 3 detected aggregates per

cell, in agreement with the experimental results reported in [10]

that employ heat-shock triggered aggregation.

These simulations predict that the number of detected

aggregates in the cell is crucially dependent on two main factors:

the aggregate detection threshold and the total number of

aggregation-prone proteins. Therefore they suggest that the

discrepancy observed concerning the number of aggregates per

cell between non-stressed and heat shock conditions is due to the

larger quantity of aggregate-prone proteins resulting from the heat

shock. Taken together, our results show that the three basic

ingredients we considered in our simulations (passive Brownian

motion, aggregation, increased molecular crowding in the

nucleoids) are sufficient to reproduce several experimental

observations on the spatial distribution and number of protein

aggregates in E. coli. Therefore, they confirm the conclusion drawn

from our experimental results above that the movement of the

chaperone protein aggregates in E. coli is driven by passive

diffusion (Brownian motion). They moreover indicate that the

observed non-homogeneous spatial distribution is not due to active

or directed aggregate movement but is a mere result of the

interplay between Brownian diffusion and molecular crowding.

Discussion

Our objective in this work was to decipher the mechanisms by

which protein aggregates in E. coli localize to specific intracellular

regions, i.e., cellular poles.

Using single-particle tracking of protein aggregates marked with

the small heat shock chaperone IbpA (inclusion-proteins Binding

Protein A) translationally-fused to the yellow fluorescence protein

(YFP), our results indicate that protein aggregate movements are

purely diffusive, with coefficient constants of the order of

500 nm2/s, depending on their size. Noteworthy, recent quanti-

fication of the movements and polar accumulation in the poles of

MS2 multimeric RNA-protein complexes and fluorescently-

labelled chromosomal loci concluded a high degree of anomalous

diffusion, as reflected by slopes of 0.4–0.75 in log-log plots of time-

MSD relationships [45,46]. This suggests that unlike pure protein

aggregates, these complexes have further significant interactions

with cellular components.

Applying evolutionary strategy for parameters estimation under

the hypothesis of confined diffusion, we used our experimental

data to estimate the average size and diffusion constant of the

aggregates and the distances over which their movement is

confined. As expected, the aggregate diffusion constant decreases

with increasing aggregate sizes, but, more surprisingly, we find that

the relation between the aggregate diffusion constant and their size

is in very good agreement with the Stokes-Einstein law, thus

strengthening the demonstration of pure Brownian motion. The

agreement with the Stokes-Einstein law, that predicts a decay of

the diffusion constant as the inverse of the radius, D,1/r, was

found valid for all the estimated aggregate radii, even as large as

250–270 nm.

Recent experimental tests of the validity of this law in E. coli

were more ambiguous. Kumar and coworkers [51] quantified the

diffusion of a series of 30–250 kDa fusion proteins (some of which

contained native cytoplasmic E. coli proteins) in E. coli cytoplasm

and found very strong deviation from the Stokes-Einstein law -

even for small proteins- with very sharp decay of the diffusion

constant D,1/r6. However, using GFP multimers of increasing

sizes, Nenninger et al. [52] found very good agreement with

Stokes-Einstein law from 20 to 110 kDa, i.e. up to tetramers, while

the diffusion constant for pentamers (138 kDa) was found smaller

than Stokes-Einstein prediction. Moreover, deviations from the

Stokes-Einstein law was suggested an indication of specific

interactions of the diffusing protein with other cell components.

A tentative interpretation of our observation that even large

cytoplasmic protein aggregates in E. coli do follow Stokes-Einstein

law, would be that these aggregates actually have limited

interactions with other cell components. This hypothesis would

match very well with the putative protective function of the

aggregates as scavengers of harmful misfolded proteins, allowing

their retention within large, stable objects [1].

A second major finding of our study is the demonstration that

the Brownian motion of the aggregates is restricted by the cell

membrane in the section plane of the cell, while, along the cell

long axis, the aggregates are confined to a region that roughly

corresponds to the nucleoid-free space in the pole, thus confirming

the importance of hindered diffusion in the nucleoids. In further

support to this hypothesis, we used 3D individual-based modeling

to show that these three ingredients are sufficient to explain the

most salient experimental observations. Our simulations exhibit

spatial distributions of the aggregates that are similar to those

observed in non-stressed as well as heat-shock conditions. They

also explain the differences in the number of distinct aggregates

per cell as a mere difference in the total number of aggregation-

prone (misfolded) proteins. Therefore, our results strongly support

the hypothesis that the localization of aging-related protein

aggregates in the center and poles of E. coli is due to the coupling

of passive diffusion-aggregation with the spatially non-homoge-

neous macromolecular crowding resulting from the localization of

the nucleoid(s).

Our computational approach can be further extended to

address asymmetric division of cellular components in dividing

cells. Due to computation time limitations inherent to individual-

based models, a valid approach to pursue would be to derive a

mean-field model of the diffusion-coagulation process, using e.g.

integro partial differential equations with position-dependent

properties for the diffusion constant or operator (Laplacian)

combined with a coagulation operator [53]. This approach would

allow to reach simulated times large enough to account for several

cell generations and focus on the location of the larger aggregates

along the lineage.

simulations with different detection thresholds (an aggregate must contain at least 5, 10, 20 or 50 monomeric proteins, respectively, to be detected).
Total number of proteins in the simulations Np = 100. The dashed line is an histogram showing the distribution of the experimental data. (C–E) Time-
evolution of the probabilities to observe exactly 1 (red), 2 (green), 3 (blue) or more than for 4 (brown) distinct aggregates simultaneously in the
simulations. The simulations emulated non-stressed conditions (C), with Np = 100 total proteins and aggregate detection threshold = 30 or heat-shock
triggered aggregation, with Np = 7,000 total proteins and aggregate detection threshold = 30 (D) or 1750 (E).
doi:10.1371/journal.pcbi.1003038.g004
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As a whole, our results emphasize the importance for diffusion-

based protein localization of the ‘‘soft’’ intracellular structuring of

E. coli along the large axis due to increased macromolecular

crowding in the nucleoids. In addition to this implication in the

localization of aging-related protein aggregates, the structuring

effect of the nucleoids has very recently been evidenced in the

accurate and robust positioning of the divisome proteins (that

mediate bacterial cytokinesis) [54] or the non-homogeneous spatial

distribution of the transcription factor LacI [55].

Wild-type E. coli cells (e.g., without any expression of fluorescent

proteins) exhibit qualitatively and quantitatively the same ageing

phenotype in terms of gradual fitness as those expressing

fluorescent markers (as the IbpA-YFP fusion) [7]. Yet, in previous

studies, limited to very few ageing generations (typically less than

8), visible aggregates in wild-type ageing cells were seldomly

detected, probably because of the phase contrast detection

threshold (typically 500 nm) [7]. To ensure that polar accumula-

tion of aggregates is indeed a phenotype of wild-type cells, we used

the recently developed ‘mother machine’ microfluidics system [12]

to grow ageing wild-type E. coli through .150 generations. Under

these conditions, many of the ageing cells indeed accumulate

clearly visible aggregates (Fig. S4), pointing to the validity of our

approach to use the IbpA-yfp system for better detection [7]. The

mechanism described here for IbpA-yfp tethered aggregates can

be generalized as ample evidence exist for polar localization of

aggregates resulting from heterologous over-expression of proteins,

streptomycin treatment [7 and ref therein], large protein

assemblies of fluorescently-labelled protein fusions (due to avidity

of low multimerization propensity of some fluorescent proteins and

independent of the diffusive positioning of the native proteins

studied [13]), large RNA-protein assemblies [45,46]. In all cases,

given the non-specific nature of hydrophobic interactions govern-

ing aggregate assembly, it is unsurprising that co-localization may

occur amongst different aggregated polypeptides and chaperones,

based on the common diffusive mechanism of polar accumulation

described here. Moreover, our recent work demonstrates that

large engineered RNA assemblies accumulate as well in the cells’

poles [56, (electron microscope images therein)]. Therefore, the

polar localization pattern of low diffusive elements in bacteria is

not limited to large purely protein assemblies. We propose that it

might be a more general process concerning other cell constitu-

ents, such as nucleic acids.

Materials and Methods

Bacterial strains
The sequenced wild-type E. coli strain, MG1655 [57] was

modified to express an improved version of the YFP fluorescent

protein fused to the C terminus of IbpA [35] under the control of

the endogenous chromosomal ibpA promoter resulting in the

MGAY strain. E. coli strains were grown in Luria-Bertani (LB)

broth medium half salt at 37uC. For more information about the

cloning, see [7], S.I.

Fluorescence time-lapse microscopy setup
After an overnight growth at 37uC, MGAY cultures were

diluted 200 times. When the cells reached an absorbance 0.2

(600 nm), they were placed on microscope slide that was layered

with a 1.5% agarose pad containing LB half salt medium. The

agarose pad was covered with a cover-slide, the boarder of which

was then sealed with nail polish oil.

Cells were let to recover for 1 hour before observation using

Nikon automated microscope (ECLIPSE Ti, Nikon INTENSI-

LIGHT C-HGFIE, 1006objective) and the Metamorph software

(Molecular Devices, Roper Scientific), at 37uC. Phase contrast and

fluorescence images (25% lamp energy, 1 second illumination LF

movies and 600 milliseconds for HF movies) were sampled at two

different time-scales. For low-frequency (LF) movies, images were

taken every 3 seconds for a total of 5 minutes, while for high-

frequency (HF) movies, fluorescence images were taken about

every 0.60 seconds for a total of 2 min (and phase contrast images

were sampled about every 7 fluorescence images). Fluorescence

excitation light energy level used here is 5-fold higher than

previously described [7] to allow proportional decrease of

exposure time, enabling a higher temporal resolution. Under

these conditions, doubling the exposure time did not result in

further detection of fluorescent foci yet resulted in accelerated

bleaching that prevented consecutive time lapse imaging of the

observed foci.

Image analysis and aggregate tracking
Phase contrast images were analyzed by customized software

‘‘Cellst’’ [58] for cell segmentation and single cell lineage

reconstruction. Phase contrast images were denoised using the

flatten background filter of Metamorph software for long movies

or a mixed denoising algorithm [58] for fast movies. The mixed

denoising algorithm combines two famous image denoising

methods: NL-means denoising [59], which is patch-based and

Total Variation denoising [60,61], which is used as regularization.

The Cellst software was used to automatically segment the cells on

most of the images, albeit when necessary, manual corrections

were applied. At the end of the whole segmentation and tracking

process, Cellst also calculates the lineage of every cell in the movie.

The fluorescent protein aggregates were detected by another

customized software. Detection of each spot was realized using the

a contrario methodology based on a circular patch model with a

central zone of detection and an external zone of context. The

patch radius was then optimized to optimally match the spot. The

energy of each spot was computed in the following way: the total

image was modeled as a sum of a constant background and 2D

circular Gaussian curves, centered on the maximal intensity pixel

of the detected spots with a deviation of 3 pixels. The quadratic

minimum deviation between the image and the model enabled to

calculate the Gaussian coefficients. These coefficients were

considered the energy values of each spot. The coordinates of

the detected spots were then refined to subpixel resolution. This

was achieved by computing a weighted average of the coordinates

of the pixels in a circular neighborhood of the detected spot. The

weights were given by the intensity values of the pixels to which

the local background is subtracted. The local background was then

computed as the median value of the pixel intensity in the

neighborhood. Only pixels having intensity bigger than the

median value were considered in the weighted average. This

algorithm has been tested on both synthetic and real image and it

shown a precision of 1/10 of a pixel on very poor contrasted spots.

After detection and localization, the movements of the

fluorescent aggregates were tracked and quantified by a third

customized software named ‘‘aggtracker’’ based on the cell lineage

and the detected spots. The algorithm uses the lineage and cell

information to ensure that an aggregate is consistently tracked

through points with points that are inside the same cell.

The output of this software are time-series for the coordinates x

and y (in pixels) of each fluorescence spot as well as the affiliation

of the spot to the cell it is in. The last step consisted in the

projection of the coordinates of the fluorescence spot from their

initial absolute values in the image (in pixels) to their value along

the long and short axes of the 2d image of the cell. To this aim, we

used active skeletons. A skeleton represents an object by a median
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line (the center line in the case of a tubular bacteria). Here we used

one active skeleton for each cell, providing the long axis of the cell

image (the median line) and its short axis (along the skeleton

width). Active skeletons were adapted to bacteria in order to

optimize the position of the skeleton in the image of the cell. The

coordinates of the fluorescence spots were then expressed as the

coordinate of the center of the fluorescence spot in the basis

composed of the active skeletons that localize the cell long and

short axes. We exploited the simple shape of the skeleton to

estimate the total cell width and length as that of the respective

skeleton. As a convention, we refer below to the aggregate

coordinate along the long axis as the x-coordinate and that along

the short axis as the y-coordinate.

In order to improve precision, aggregate trajectories made of

less than 10 successive images in the movies were not further taken

into account. In total, we obtained 1644 aggregate trajectories.

Individual-based modeling of protein aggregation
To simulate the diffusion and aggregation process of proteins in

a single cell, we used a 3d individual-based lattice-free model.

Each protein p was explicitly modeled as a sphere of radius rp
centered at coordinates (xp, yp, zp) in the 3d intracellular space of

the cell. We simulated protein diffusion in the cell and aggregation

as they encounter using as realistic conditions as possible. In

particular, the radius and diffusion coefficient of the protein

aggregates explicitly increased as they grow. Moreover, we

explicitly modeled the larger molecular crowding in the nucleoids.

Details of the simulations are as follows.

The bacterial cell was simulated as a 3d square cylinder with

width and depth 1.0 mm [62] and length 4.0 mm (chosen to

correspond to a bacterial cell just before division) and reflective

boundaries. Note that we also ran simulations with more realistic

cell shapes (i.e. spherical caps at cell ends) and did not find

significant differences compared to square cylinders (except for the

much higher computation cost with spherical caps).

Within each cells, we also explicitly modeled the larger

molecular crowding found in the nucleoids. Indeed, in healthy

cells, the bacterial chromosome condensates into a restricted sub-

region of the cell called ‘‘nucleoid’’, where molecular crowding is

much larger than in the rest of the cytoplasm [33]. To model this

increased molecular crowding in the nucleoids, we placed at

random (with uniform probability) 50,000 bulky immobile,

impenetrable and unreactive obstacles (radius 10 nm) in the

region of the cell where a nucleoid is expected. Because cell cycle

and DNA replication in E. coli are not synchronized, roughly 75%

of the cells in exponential phase contain two nucleoids [48]. We

thus explicitly positioned two nucleoids within the cell. The

location and size of the two nucleoids were estimated from DAPI-

stained inverted phase contrast images of the nucleoids found in

[49]. Both nucleoids were 3d square cylinders of length 1220 nm

(along the cell long axis) and width and height 532 nm. Each

nucleoid started at 540 nm from each cell pole and was centered

on the cell long axis. The volume occupied by the two nuclei area

thus formed is about 12%, which is consistent with literature

[63,64].

Each simulation was initialized by positioning Np individual

IbpA-YFP proteins (monomers) at non-overlapping randomly

chosen (with uniform probability) locations in the free intracellular

space of the cell (i.e. the whole interior of the cell minus the space

occupied by the obstacles in the nucleoids). At each time step, each

molecule is independently allowed to diffuse over a distance d that

depends on the protein diffusion constant Dp, according to d = (6

Dp Dt)1/2, where Dt is the time step, in agreement with basic

Brownian motion. Note that Dp itself depends on the aggregate

size rp (see below). The new position of the protein (x9,y9,z9) was then

computed by drawing two random real numbers, h and c, uniformly

distributed in [0, 2p] and [21,1], respectively, and spherical

coordinates: x9 = x(t)+d sin(acos(c)) cos(h); y9 = y(t)+d sin(acos(c)) sin(h)

and z9 = z(t)+d c where (x(t),y(t),z(t)) is the initial position of the

protein. If the protein in this new position (x9,y9,z9) overlaps with any

of the immobile obstacles (i.e. if there exists at least one obstacle such

that the distance between the obstacle center and (x9,y9,z9) is smaller

than the sum of their radii) the attempted movement is rejected

(x(t+Dt),y(t+Dt),z(t+Dt)) = (x(t),y(t),z(t)). This classical approximation of

the aggregate reflection by the static obstacles is not expected to

change the simulation results significantly, but it drastically reduces

the computation load. If no obstacle overlaps, the movement is

accepted, i.e. (x(t+Dt),y(t+Dt),z(t+Dt)) = (x9,y9,z9).

After each molecule has moved once, the algorithm searches for

overlaps between proteins. Two proteins are overlapping when-

ever the distance between their centers is smaller than the sum of

their radii. Each overlapping pair was allowed to aggregate with

(uniform) probability pag (irrespective of their size). In our

simulations, pag was varied between 0.1 and 1.0 (limited at the

lower band by simulation time needed to score enough aggrega-

tion events). To model the aggregation from two overlapping

proteins, we could not, for computation time reasons, keep track of

the shape of the aggregates (i.e. the individual location of each

protein in the aggregates). Instead, we used the simplifying

hypothesis that all along the simulation, the aggregates maintain a

spherical shape with constant internal density. It follows that the

radius of an aggregate C, born out of the aggregation of two

aggregates A and B of respective size rA and rB is rC = (rA
3+rB

3)1/3.

Upon aggregation, we thus remove the aggregates A and B from

the cell, and add a new aggregate with size rC, centered at the

center of mass of the two former aggregates A and B.

Finally, to set the diffusion constant of the aggregates, we used

the classical Stokes-Einstein relation for a Newtonian fluid, where

the diffusion constant is inversely proportional to its radius. In our

case, this leads to Dp = D0r0/rp where r0 and D0 are the radius and

diffusion constant, respectively, of individual (monomeric) IbpA-

YFP molecules. Note that this relation could be violated for large

molecules in the cytoplasm of E. coli [52,53]. In a subset of

simulations, we used power law relations, such as Dp/rp
26, as

suggested in [51], without noticeable change in our results (except

that the time needed to reach a given threshold aggregate size was

increased). Note that aggregation was considered irreversible in

our model (i.e. aggregates do never breakdown into smaller

pieces). This is in agreement with our experimental observations,

where we never measured decay of foci fluorescence.

The diffusion constant of the 26-kDa GFP (radius 2 nm) in E.

coli cytoplasm is around 7.0 mm2/s and that of the GFP-MBP

fusion (72 kDa) around 2.5 mm2/s [37]. Using this data and the

Stokes-Einstein relation combined to our constant spherical

hypothesis, led to estimates of the radius and diffusion coefficient

of the individual (monomeric) 39 kDa IbpA-YFP fusion of

r0 = 3 nm and D0 = 4.4 mm2/s.

The value of the time step Dt has to be small enough so that

proteins cannot jump over each other during a single time step,

meaning that the distance diffused during a single time step is

limited by d,4r0. Using the definition for d above, one then has

Dt,8/3 r0
2/D0<5 ms. Here, we used Dt = 1 ms yielding d = 5 nm

for monomeric proteins.

Every simulation was run for a total of 26106 time steps. The

translation of this value into real time is hardly possible since we

have no indication of the experimental value of the aggregation

probability per encounter pag (see above) even less so of its

dependence on the aggregate size. A lower bound can be
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estimated to 2 seconds real time (for 26106 time steps) if the

aggregation is always diffusion limited (i.e. pag = 1). On general

grounds however, the experimental value of pag can be expected to

be smaller, so that the 26106 simulation time steps would

correspond to more than this 2 seconds real time minimal value.

For the results to be statistically significant, we ran nrun simulations

for each parameter and condition, with different realization of the

random processes (initial location, random choice of the positions

or of the aggregation events) and averaged the results over these

nrun simulations. In the results presented here we used nrun = 103.

Fitting procedure for the aggregate radius, diffusion
constant and cell dimensions

The data from the LF movies were partitioned into 5 classes

based on the aggregate fluorescence intensity at the beginning of

the measured trajectory, yielding 5 pairs of experimental curves for

the mean-squared displacement, h x
exp
i (t){x

exp
i (0)

� �2i~fx(t) and

h y
exp
i (t){y

exp
i (0)

� �2i~fy(t) where i = {1,…,5} indexes the inten-

sity class. Corresponding theoretical values were obtained by

individual-based simulations of confined random walks similar to

those described above but modified as follows: the cells, of

dimensions LX (length), LY = LZ = LYZ (height and width) were

devoid of nucleoids or aggregation (aggregation probability pag = 0)

and we used N = 5,000 IbpA-YFP proteins. Each 12-uplet of

parameters {LX, LYZ, ri, Di} yields two theoretical curves

h xthe
i (t){xthe

i (0)
� �2i~gx(t) and h ythe

i (t){ythe
i (0)

� �2i~gy(t).

The aim of the fitting procedure is to minimize the distance

between the experimental and theoretical curves, ie to minimize

the cost function:

F~
X5

i~1

XN

j~1

h x
exp
i (t){x

exp
i (0)

� �2i{h xthe
i (t){xthe

i (0)
� �2i

h xthe
i (t){xthe

i (0)
� �2i

0
@

1
A

2

z
h y

exp
i (t){y

exp
i (0)

� �2i{h ythe
i (t){ythe

i (0)
� �2i

h ythe
i (t){ythe

i (0)
� �2i

0
@

1
A

2

where the indices j are over the N time steps. The formulation of

this cost function corresponds to the traditional least squares, so

that the optimization procedure actually looks for best fits in the

least-square sense (minimization of the squared residuals between

the theoretical predictions and experimental observations). To

minimize automatically the cost function F, thus adjusting the

theoretical to the experimental curves, we used the C++
implementation of the evolutionary strategy algorithm CMA-ES

[39] with population size 12 and 400 generations.

Supporting Information

Figure S1 Mean displacements of single-aggregates.
The figure shows the time evolution of the mean displacement,

u tð Þ{u 0ð Þh i, where u~x or y (brackets denote averaging over

the trajectories). Coordinates along the x and y-axis are shown in

red and black, respectively. Low frequency sampling trajectories

(LF) are displayed using full lines and high frequency ones (HF)

using open symbols. The inset schematizes the increase of the cell

half-length during growth that dominates the movement along the

x-axis.

(EPS)

Figure S2 Diffusion measurements clustered by cell
length. Trajectories from the LF movies (Fig. 2) were clustered

into 4 classes corresponding to the cell size at the time of

measurement: L#3.4 mm (light blue), 3.4 mm,L#4.0 mm (red),

4.0 mm,L#4.8 mm (lilac) or L$4.8 mm (green). The correspond-

ing MSD were averaged in each class for the x- (A) and y-directions

(B).

(EPS)

Figure S3 Simulation of aggregate formation dynamics
and location for protein initializations in or around the
nucleoids. The positions of the proteins monomers were

initialized (uniformly) at random inside the nucleoids (A–B) or

around (i.e. within a layer of 20 nm) around them (C–D). For each

initialization type, the graph shows the distribution of the

localization at first detection of the protein aggregates along the

long axis (x-axis) (A,C) and the time-evolution of the probabilities to

observe exactly 1 (red), 2 (green), 3 (blue) or more than for 4

(brown) distinct aggregates simultaneously in the simulations (B,D).

In A and C, the different curves correspond to different detection

thresholds. For both initial locations inside the nucleoids (A,B), the

simulations corresponded to non-stressed conditions (100 proteins,

detection threshold = 30) and aggregation probability pag = 1.

(EPS)

Figure S4 Aggregate formation in ageing wild type E.
coli cells. E. coli wild-type K12 MG1655 cells were inoculated

into the microfluidics ‘‘mother machine’’ device (see [12]) and

grown at 37uC in LB media. Briefly, the dead-end part of channels

maintains the old pole cell (top of images, white arrows); at the

opposite side the channels are open to flow that washes away the

progeny. Cells were followed by time-lapse phase contrast

microscopy for 32 hours. As can be seen, protein aggregates

(yellow arrowheads) are formed within the old-pole of the ageing

cells.

(EPS)
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