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Abstract

In this paper we propose a novel method for continuous visual event recognition
(CVER) on a large scale video dataset using max-margin Hough transformation
framework. Due to high scalability, diverse real environmental state and wide
scene variability direct application of action recognition/detection methods such
as spatio-temporal interest point (STIP)-local feature based technique, on the
whole dataset is practically infeasible. To address this problem, we apply a
motion region extraction technique which is based on motion segmentation and
region clustering to identify possible candidate “event of interest” as a prepro-
cessing step. On these candidate regions a STIP detector is applied and local
motion features are computed. For activity representation we use generalized
Hough transform framework where each feature point casts a weighted vote for
possible activity class center. A max-margin frame work is applied to learn
the feature codebook weight. For activity detection, peaks in the Hough voting
space are taken into account and initial event hypothesis is generated using the
spatio-temporal information of the participating STIPs. For event recognition a
verification Support Vector Machine is used. An extensive evaluation on bench-
mark large scale video surveillance dataset (VIRAT) and as well on a small scale
benchmark dataset (MSR) shows that the proposed method is applicable on a
wide range of continuous visual event recognition applications having extremely
challenging conditions.

Keywords: Continuous visual event, Large scale, Max-margin Hough
transform, Event detection

1. Introduction

Visual event recognition i.e. recognition of semantic spatio-temporal visual
patterns such as “waving”, “boxing”, “getting into vehicle” and “running” is
a fundamental Computer Vision problem. An enormous amount of work on
this topic can be found in literature survey [1–4]. Recently, research in this
field is directing towards continuous visual event recognition (CVER) where the
goal is to both recognize an event and to localize the corresponding space-time
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volume from large continuous video [5] like in object detection in images where
only spatial location is important. This area is more closely related to the real
world video surveillance analytics need than the current research which aims to
classify a prerecorded video clip of a single event. Accurate CVER would have
direct and far reaching impact in surveillance, video-guided human behaviour
analysis, assistive technology and video archive analysis.

Figure 1: Examples of 6 scenes present in the VIRAT dataset [5] for large scale activity
detection which explains different challenges: realism and natural scenes, diversity, quantity
and wide range of scene resolution.

The task of CVER, i.e. the activity detection on large scale real world video
surveillance dataset, is an extremely challenging task and current state-of-the
methods for 2D small scale action recognition become infeasible to apply. One
of the main challenges for CVER is the scalability, e.g. a CVER dataset like
VIRAT dataset [5] contains 23 event types distributed throughout 29 hours of
video. The other difficulties are due to i) natural appearance since the events
are recorded in a real world scenario, ii) huge spatial and temporal coverage
which affects the video resolution, e.g. the human heights within videos range
25 ∼ 200 pixels constituting 2.4 ∼ 20% of the heights of the recorded videos
with an average being about 7%, iii) diverse event types and iv) huge variability
in view-points, scenes and subjects (See Figure 1).

Among all these above mentioned difficulties, action detection in video (both
small and large scale) is a challenging problem mainly due to the scalability of
its search space. Without knowing the location, temporal duration and the
spatial scale (spatial resolution of the activity) of the action, an exhaustive
search is a NP-hard problem. For example, a one minute video sequence of size
160 × 20 × 1800 contains more than 1014 spatial sub-volumes of various sizes
and locations [6]. To solve this issue there are methods like discriminative sub-
volume search [6], unsupervised random forest indexing [7]. Although promising,
these works always use small scale video datasets like KTH1 and MSR action

1http : //www.nada.kth.se/cvap/actions/
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datasets [6] where the challenges present in CVER, mentioned above, are absent.
To solve the search space complexity of CVER, it is necessary to apply a

motion region identifier to roughly detect the motion region of interest where the
events to be searched may appear. Oh et al. [5] apply a multi-object tracking
using frame difference, and the obtained tracks are divided into detection units
resulting over 20K units, as a preprocessing step. This division of detection unit
by a fixed amount always misses some events that are having different duration.
On the other hand, in our approach first a motion segmentation method similar
to [8] is applied to obtain the primary candidate region set. The obtained regions
are further joined using a region clustering technique based on action heuristics.
Finally, we obtain on an average 3K candidate regions as opposed to 20K by
[5] with a greater recall rate. This has a major impact towards the search space
reduction and on achieving faster event detection in large scale.

Our method for event detection is related to several ideas recurring in the
literature. Firstly, we use STIP detector which is successfully applied in 2D
action recognition problems [9–13]. Several local features are computed such as
histogram of oriented optical flow (HOF) [14], histogram of oriented gradient
in 3D (HOG3D) [15] and extended SURF (ESURF)[16] at the detected STIPs.
We use the idea of local appearance codebook [17] including bag-of-word approach
[18, 19] to group the detected features into a set of visual words that represent
an event class.

The next idea is to use the generalized Hough transformation (GHT) frame-
work for object detection in images into event detection in videos. Originally
developed for detecting straight line [20], Hough transforms are generalized to
use for detecting generic parametric shapes [21]. Recently, GHT scheme is suc-
cessfully used for detecting object class instances tracking and action recognition
[22–27].

The concept of GHT usually refers to any detection process based on an
additive aggregation of evidence, Hough votes, coming from local image/video
elements. Such aggregation is performed in a parametric space called as Hough
space, where each point corresponds to the existence of an instance in a particu-
lar configuration. The Hough space may be a product set of different locations,
scales and aspects etc. The detection process is then reduced to finding maxima
peaks in the sum of all Hough votes in the Hough space domain, where the lo-
cation of each peak gives the configuration of a particular detected object/event
instance.

The implicit shape model of Leibe et al. [23] and the max-margin hough
transformation of Maji et al. [25] serve a baseline for our work. These works
mainly focus on object detection. During training, they augment each visual
words in the codebook with the spatial distribution of the displacements between
the object center and the respective visual word location. Using max-margin
setup the weights of each visual words are learned. At the detection time,
these spatial distributions are converted into Hough votes withing the Hough
transformation framework. The weights of the visual words are also used for
extra information to the Hough votes.

To incorporate this idea into CVER, we need to extend the dimensionality of
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the voting space since now each STIP will vote for a parallelepiped center i.e. the
event center. To make it easier to understand, we scale each candidate event into
a normalized cube and during training the interest point (feature) distributions
along the cube center is learned for each event class. The scale information is
also saved so that by using a simple reverse conversion the normalized cube can
be transformed into the actual event parallelepiped. After obtaining a set of
visual words from detected event features, a max-margin frame work similar to
[25] is applied for learning weights of each visual words for each event class. For
a test candidate region, the detected interest points (features) are matched with
the event class visual words and weighted votes for the possible event center are
obtained in the Hough voting space. The votes corresponding to the peaks of
Hough space reveal the possible hypothesis of the detected events in the actual
video. Finally, a verification Support Vector Machine (SVM) designed for the
particular event class is used to obtain the recognition score.

The main advantage of using a GHT framework is, it avoids the need of
exhaustive search like in sliding window technique, which is infeasible to apply
in CVER. GHT directly works on the STIPs and the local features that are
extracted from the candidate motion regions. An instant probabilistic score can
be obtained on the activity center and based on which an activity hypothesis
can be generated. By using a verification SVM a more robust recognition is
obtained, once the activity hypothesis is generated by GHT.

To test our approach we use large scale CVER dataset, VIRAT, proposed
by [5]. Our result shows the state-of-the-art performance. To show the wise
applicability of our method, we choose small scale video search dataset MSR [6]
and also obtained above state-of-the-art result.

2. Related work

Action categorization/recognition and detection are important research top-
ics and a large number of work have been found in the literature [1–4]. One type
of approaches uses motion trajectories to represent actions and it requires tar-
get tracking [28, 29]. Another type of approaches uses background subtraction
to obtain a sequence of silhouettes or body contours to model actions [2, 30].
Recently, action categorization use local spatio-temporal features computed on
the detected spatio-temporal interest points (STIPs) to characterize the video
and perform classification over the set of local features using a bag-of-word
(BoW) approach [9–13, 16, 31]. Different shape and motion features are also
applied to improve the action recognition [14, 15, 32–36]. Also, motion segmen-
tation methods [37, 38] are sometimes used prior to local feature based methods
[39, 40].

For action localization/detection, methods such as [41–44] apply a spatio-
temporal template matching technique where actions are represented as a spatio-
temporal template such as motion history[45] and space-time shapes[46]. Other
methods employ multiple instance learning framework to obtain rough annota-
tion [47], sub-volume search [6] using branch and bound method [48], Gaussian
mixture model [49] and Random forest indexing [7] for action detection. Most
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of these methods use STIP for action representation. In our method also a STIP
detector, as described in [9], with 3 local features HOF [14], HOG3D [15] and
ESURF [16] computed on each STIP is used for action representation. Hav-
ing inspired by the success of the Hough transform-based methods in object
detection [23–27, 50], methods like [22, 51] use Hough transform-based voting
framework for action classification and localization where dense features are first
computed and then a Hough forest is built to train the actions.

Although great success have been achieved in action recognition and detec-
tion, research towards large scale action detection (CVER) from video is less
explored. Few works like [5, 49] show some progress in this area. For example,
in the work of Cao et al. [49] result on TRECVID 2008 dataset [52] only using
one action type, “running”, is presented.
Our contribution: To address this gap, in this paper, we present a novel
approach for large scale action detection. We propose

i) A generalized max-margin Hough transformation framework for activity
detection which extends a similar framework [23, 25] applied to object de-
tection to spatio-temporal domain.

ii) To reduce the initial search space we apply a region clustering based motion
segmentation algorithm, which performs better than the tracking based
region extraction technique proposed by Oh et al. [5].

iii) We propose a verification action recognition SVM to boost the final score
of the detected event by the Hough transformation

iv) Finally, we test our approach on large scale video benchmark dataset [5]
as well as on small scale video benchmark dataset [49]. The result shows
state-of-the-art performance and validates the robustness of our method.

Figure 2 shows an overview of our proposed system.
The rest of the paper is structured as follows. We present an overview of

the region clustering based motion segmentation in Section 3. In Section 4 the
max-margin Hough transformation framework for event detection is described.
We present our experiments in Section 5 and conclude in Section 6.

3. Region clustering based motion segmentation

To tackle the scalability issue of CVER it is important to reduce the action
search space. Towards this goal, we apply a motion segmentation technique to
identify roughly the motion regions where the event of interest may appear.

This step is important as it is reducing the search space. Due to the higher
video resolution it is practically infeasible to apply any state-of-the-art STIP de-
tector like [9–13, 16, 31]. But after the region extraction process, the candidate
activity regions are usually smaller (∼ 300 × 300 × 100) and direct application
of the STIP detector can be done easily.
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Figure 2: Large scale activity detection framework. Candidate activity regions are identified
from the test video. STIPs and local features are computed and each candidate activity is
represented by a normalized cube where each STIP (feature) votes for activity class center.
Peaks of the Hough voting space are used for activity class recognition.

3.1. Background subtraction

As the first step of motion segmentation a background segmentation tech-
nique is applied as in [8]. In this method, each image pixel is modeled as a
mixture of Gaussians and use an on-line approximation to update the model.
The Gaussian distributions of the adaptive mixture model are then evaluated to
determine which are most likely to result from a background process. Each pixel
is classified based on whether the Gaussian distribution which represents it most
effectively, is considered part of the background model. We apply background
segmentation (See Algorithm 1) and after obtaining the result of background
subtraction, a connected component algorithm [53] is applied to obtain motion
regions per frame.

Algorithm 1 Background segmentation using mixture of Gaussian model. This
function performs a GMM based background subtraction and calls standard
connected component analysis, connectedComponent which returns region in-
formation and number of connected component.
Require: imStack: Having N frames of size (H × W ).
Ensure: Motion regions (foreground) per frame.
1: Initialize Gaussian parameters, gP .
2: for i ∈ N do

3: if (i == 1) then

4: bgModel = cvCreateGaussianBGModel(imStack(:, :, i), gP ).
5: else

6: cvUpdateBGStatModel(imStack(:, :, i), bgModel).
7: fG = bgModel.foreground
8: connectedComponent(fG,&regionInfo,&noComponent).
9: save(regionInfo, noComponent).
10: end if

11: end for

12: cvReleaseBGStatModel(bgModel).
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3.2. Region clustering and candidate event identification

Motion regions obtained by using the above step contain a large number of
broken parts. To join these parts to a valid candidate region, a region clustering
method is applied as described in Algorithm 2. In this approach, we first sort
the obtained initial broken regions based on their Y-axis coordinate. Different
broken parts are joined if they are within a horizontal and vertical thresholds,
τx, τy, respectively. These thresholds are average bounding box dimensions of
the human or (human, object) that are participating in the event of interest,
which can be obtained from the training. We use the values (τx, τy) = (80, 70) in
our experiments. These values are obtained by computing the average bounding
box sizes of the ground truth data of MSR and VIRAT datasets.

Algorithm 2 Region clustering algorithm
Require: regionInfo, noRegion: Region information per image frame.
Ensure: Pruned motion region of each image frame.
1: regionInfo = sort(regionInfoY ).
2: repeat

3: clusterNo = 0.
4: for regCurr ∈ regionInfo do

5: clusterNo = clusterNo + 1.
6: [xC , yC ] = getCenter(regCurr).
7: regCurr.cluster = clusterNo.
8: for regNext ∈ (regionInfo \ regCurr) do

9: [xCN
, yCN

] = getCenter(regNext).
10: xD = fabs(xC − xCN

).
11: yD = fabs(yC − yCN

).
12: if (xD ≤ τx) ∧ (yD ≤ τy) ∧ (∼ regNext.cluster) then

13: regNext.cluster = regCurr.cluster.
14: end if

15: end for

16: end for

17: Initialize flag.
18: for clusterInd ∈ clusterNo do

19: for reg ∈ regionInfo do

20: if ∼ flag(clusterInd) then

21: [xL, yL, xR, yR] = getCoordinate(reg)
22: flag(clusterInd) = 1
23: else

24: [xL, yL] = min([xL, yL], getCoordinateL(reg))
25: [xR, yR] = max([xR, yR], getCoordinateR(reg))
26: end if

27: end for

28: clusterInfo.clusterNo = clusterInd.
29: clusterInfo = putInfo([xL, yL, xR, yR]);
30: end for

31: regInfo = clusterInfo.
32: if clusterNo == noRegion then

33: CONVERGENCE = TRUE.
34: end if

35: noRegion = clusterNo.
36: until CONV ERGENCE ∨ MAXITER

After the region joining, a candidate region extraction as described in Al-
gorithm 3, 4 is applied. Candidate region extraction is based on the action
heuristics. The event of interest in VIRAT and MSR datasets are not moving
in consecutive frames, since the actions are of type, “getting inside car”, “open
the trunk of a car” and “loading objects in the car” etc. or “clapping”, “waving”
and “boxing”. So if these events are occurring along with other moving actions
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like “walking” and “running” we are guaranteed to obtain fixed regions, corre-
sponding to events of interest, along with some moving regions , corresponding
to the moving actions, in consecutive frames. Based on these heuristic, identi-
fying motion region is simply to identify region having some permissible region
overlap in consecutive frames. To realize this goal, we apply a region search

Algorithm 3 Find candidate event/video of interest
Require: pRegInfo, noPReg: Pruned region information per image frame.
Ensure: Candidate event/video of interest.
1: for imC ∈ N do

2: for reg ∈ pRegInfoimC ∧ notChecked(reg) do

3: checked(reg).
4: [xC , yC ] = getCenter(pRegInfoimC ).
5: putInfo(regTack, getInfo(pRegInfoimC )).
6: for imNC ∈ (N \ imC) do

7: flag = 0.
8: for regN ∈ pRegInfoimNC ∧ notChecked(regN) do

9: [xCN
, yCN

] = getCenter(pRegInfoimNC ).
10: if dist([xC , yC ], [xCN

, yCN
]) ≤ τd then

11: checked(reg).
12: flag = 1
13: putInfo(regTack, getInfo(pRegInfoimNC )).
14: end if

15: end for

16: if flag == 0 then

17: extractCandidates(candidate, regTrack).
18: break.
19: end if

20: end for

21: if flag == 1 then

22: extractCandidates(candidate, regTrack).
23: end if

24: end for

25: end for

26: for reg ∈ candidate do

27: for regN ∈ (candidate \ reg) do

28: if overlap(reg, regN) then

29: if (abs(reg.End) − regN.Start) ≤ τl) then

30: candidate = merge(reg, regN).
31: end if

32: end if

33: end for

34: end for

35: saveCandidate(candidate)

Algorithm 4 Extract candidate event/video of interest
Require: regTrack: Information of motion region in consecutive frames having some permissible

overlap.
Ensure: Candidate event/video of interest.
1: for reg ∈ regTrakc do

2: regNext = getNext(regTrack, reg).
3: if overlap(reg, regNext) ≤ τa then

4: merge(reg, regNext).
5: end if

6: candidate = getInfo(reg).
7: end for

technique to first obtain a chain of motion region that have a permissible region
overlap within a threshold, τd. In our experiment, τd is in between 15%. This
chain of motion region may contain some false alarm like, a person walking
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at a slow rate. To avoid such outliers, we apply a second method (Algorithm
4) which takes only the regions having higher overlapping (τa) in consecutive
frames. As a final step, we apply a region merging by putting a considerable
frame gap (τl). With this, two candidate regions having τl frame gap and over-
lapping area withing τa are merged together. We use τa = 45% and τl = 5 in
all our experiments.

(a)

(b)

(c)

(d)

(e)

Figure 3: Output of the region clustering based segmentation algorithm. (a) Actual frames,
here frame number 375, 376 & 405 are shown. (b) Corresponding motion segmentation regions.
(c) & (d) The regions that have motion due to moving cars and moving human. (e) False
region extraction due to sudden illumination change. Note that false motion regions where
very little or no motion is present, no STIP is detected. But, motion regions due to moving
cars or humans contain STIPs.

The proposed algorithms generate many motion regions from a video. Due
to the use of background subtraction algorithm, it may suffer from illumination
changes and may result in extracting several false motion regions. In our case,
this limitation is automatically handled by the next phase of STIPs detection
and motion features extraction. Since all the extracted motion regions obtained
from the proposed preprocessing step are passed through a STIP detector and
feature extraction phase, false motion regions due to sudden illumination change
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would automatically be removed due to low number of detected STIPs on them.
Figure 3 shows some example of the region clustering based motion segmenta-
tion technique. Here we present actual frames, corresponding motion segmen-
tation region and candidate motion regions with detected STIPs (Figure 3.a-d).
Note that the false motion detections due to illumination changes or low motion
component do not contain any STIPs (Figure 3.d) and are automatically dis-
carded. Figure 4 shows the regions containing an activity “person getting out

(a)

(b)

(c)

(d)

Figure 4: Output of the region clustering based segmentation algorithm with proper activity.
(a) Actual frames, here frame number 659, 682 & 725 are shown. (b) Corresponding motion
segmentation regions. (c) Person getting our of the car activity region (d) Detected STIPs.

of the car”. Figure 4.a-d presents 3 samples of the actual frames, corresponding
region segmentations, actual activity region and the detected STIPs.

4. Max-margin Hough transform framework for event detection

The general idea to apply a Hough transformation framework [23] into an
action detection problem is to compute the probabilistic score which is obtained
by adding up the votes from D-dimensional feature vectors extracted from a
candidate video event in a Hough space H ⊆ R

H . In our case we apply a
spatio-temporal interest point (STIP) detector [9] on candidate event (Figure
5) and the feature vector is the concatenation of HOF, HOG3D and ESURF.

So formally, let A be a candidate event having center at r = {x, y, t, s} where
{x, y, t} is the coordinate of the center and s is the scale of the detection and
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(a) (b)

Figure 5: Detected STIPs on the two events (a)“loading” and (b)“getting into vehicle” activity
of the VIRAT dataset..

fi is the feature vector computed at a location li. li is basically associated with
a STIP {xi, yi, ti, si}. So, the probabilistic score S(A, r), i.e. the confidence
value that the center r is associated to the candidate event A, can be obtained
following [23, 25]

S(A, r) =
∑

j

p(A, r, fj , lj) (1)

=
∑

j

p(fj , lj)p(A, r|fj , lj) (2)

Let Ci denotes the ith codebook entry of the vector quantized space of fea-
tures f . Assuming a uniform prior over features, fj, local patches, lj together
with codebook entries, Ci, the score we get:

S(A, r) =
∑

j

p(A, r|fj , lj) (3)

=
∑

i,j

p(Ci|fj , lj)p(A, r|Ci, fj, lj) (4)

This equation can further be simplified using the argument that p(Ci|fj , lj) is
equivalent to p(Ci|fj) since the codebook entries, Ci, are based only on the fea-
tures, fj. Furthermore, the term p(A, r|Ci, fj , lj) depends only on the matched
codebook Ci and lj ,

S(A, r) ∝
∑

i,j

p(Ci|fj)p(A, r|Ci, lj) (5)

=
∑

i,j

p(Ci|fj)p(r|A, Ci, lj)p(A|Ci, lj) (6)
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The first term, p(Ci|fj) is the likelihood that the feature fi is associated
with the codebook entry Ci. This we define as,

p(Ci|f) =

{

1
Z
exp(−γsim(Ci, f)) if sim(Ci, f) ≤ t

0 otherwise
(7)

where Z is the constant of the probability distribution p(Ci|f) and sim(Ci, f) =
1

d(Ci,f)
where d(Ci, f) is the distance between feature f and the codeword Ci.

γ and t are positive constant.
The second term, p(r|A, Ci, lj) is the probabilistic Hough vote for the activity

center r which is estimated in the training phase by observing the distribution
of the location of the codebooks relative to the activity center. The third term,
p(A|Ci, lj) is the weight of the codebook entry emphasizing the confidence of the
codebook Ci at location lj that matches the activity A. Final term, p(A|Ci, lj),
can further be simplified by assuming that the probability p(A|Ci, l) is indepen-
dent of the location,

p(A|Ci, l) = p(A|Ci) ∝
p(Ci|A)

p(Ci)
(8)

While applying this framework in CVER (large scale activity detection) the
computation of the second term, p(r|A, Ci, lj), becomes complicated due to the
in-feasibility to apply any state-of-the-art STIP detector or feature extraction
method directly on the large scale video. We must work on the possible can-
didate regions either obtained from the ground truth or by applying a motion
segmentation method (see Section 3) to extract motion regions where the can-
didate event of interest may appear. Then p(r|A, Ci, lj) is the collection of
distances {dxj

, dyj
, dtj , dsj} between the STIP {xj, yj , tj , sj} associated to lj

and the activity parallelepiped center r. These distances are the votes of ljs for
r.

4.1. Learning the codebook weight using max-margin framework

The Equation 6 can further be simplified as a weighted vote for event video
location over all codebook entries Ci. The key idea, as described in [25], is
to observe that the score S(A, r) is a linear function of p(A|Ci) (Equation 8).
Using this idea Equation 6 can be expressed as,

S(A, r) ∝
∑

i,j

p(r|Ci, lj)p(Ci|fj)p(A|Ci, lj) (9)

=
∑

i,j

p(r|Ci, lj)p(Ci|fj)p(A|Ci) (10)

=
∑

i

p(A|Ci)
∑

j

p(r|Ci, lj)p(Ci|fj) (11)

=
∑

i

λi × qi(r) = λTQ(r) (12)
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where λi = p(A|Ci) is the probability of the activity A given the codebook Ci.
This is considered as a codebook weight. QT = [q1q2 . . . qk] is the activation
vector and qi is given by,

qi =
∑

j

p(r|Ci, lj)p(Ci|fj) (13)

For a given event and identity the summation over j is constant and is
only a function of the observed features, locations (STIPs) and the estimated
distribution over the centers for the codebook entry Ci.

To learn the weight vector λ, a max-margin optimization approach as de-
scribe in [25] is used. Starting from a set of training examples, {(qi, yi)}

L
i=1,

where yi ∈ {+1,−1} is the label and qi is the ith training activity, we compute
the activations Qi = Q(qi) for each example by adding up the votes for each
feature fj extracted at location STIP lj according to the Equation 13. So, the
score assigned by the model to the instance i is λTQi. Weights are learned by
maximizing this score on correct classification of events over the incorrect ones.
This is done by using a max-margin frame work ([25]),

minλ,b,ξ

1

2
λTλ + K

M
∑

i=1

ξi (14)

s.t. : yi(λ
TQi + b) ≥ (1 − ξi) (15)

λ ≥ 0, ξi ≥ 0, ∀i = 1, 2, . . . L (16)

This optimization is similar to the optimization problem of a linear Support
Vector Macine [54], with an additional positive constrain on the weights. We
use a traditional optimization package, CVX 2 [55], for solving this problem.

4.2. Overall detection technique

The proposed max-margin GHT frame work is run on the each extracted
candidate region by the region extraction algorithm proposed in Section 3. After
obtaining the votes in our Hough space H ⊆ R

4, a mean shift based clustering
algorithm [56] is used to identify the location of the peaks in H. By using these
peaks, initial hypothesis of the event in actual video coordinate is obtained.
This is computed based on the information of the participating STIPs in the
peaks of H.

From this initial hypothesis, the test candidate region is extracted and by
using a verification SVM its class label is identified. This verification SVM is
similar to the action recognition SVM approach in [9]. This is learned using the
training activity features. In our experiment, we follow a leave-one-video out
technique.

2http://standford.edu/∼boyd/cvx
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Let V = {v1, v2, . . . , vn} be the n videos where r activity classes are dis-
tributed as A = {a1, a2, . . . , ar}. Each activity class ai contains ki number of
training samples. So to perform the activity detection in the video vi, all the
activity regions in vi is removed from S to obtain a reduced activity set Â :

Â = {aj\ARvi} (17)

where ARvi stands for the activity region in the video vi. Using this set Â, r ac-
tivity SVMs are learned by using [9]. To this end, first the features are grouped
from each training activity regions in A. General k-means clustering algorithm
in applied to this feature group to obtain the initial vocabularies. These vocabu-
laries are compressed by using an Agglomerative Information Bottleneck (AIB)
technique as described in [57] to obtain a compact activity visual codewords.
Each sample activity is represented by using a histogram of these compact ac-
tivity visual codewords as histaij

, where aij denotes jth training sample of the

activity ai. For each activity class i, a SVM is trained by using the histai
. As

mentioned above, after obtaining the initial hypothesis of the test activity re-
gion atest from the proposed max-margin GHT technique, it is represented as a
histogram of compact activity visual codewords as histatest

. We apply this his-
togram to the activity class SVM to obtain the final score of the activity region.
In our experiment, we use intersection kernel for the SVM. The score obtained
from the verification SVM is used as a final score of the detected region. This
score is later used to compute ROC curves and average precision (AP) values.

Note that, in our approach max-margin Hough transformation is very im-
portant step since it gives actual activity location in a space-time domain, i.e.
the start frame, end frame and the spatial location of the activity. So, Hough
transformation is actually detecting the activity. For a robust recognition, the
activity SVM is proposed. In the experimental result section (Section 5), we
present the results of both with and without the SVM based verification and
we obtain a significant gain in the AP values by using the proposed verification
classifier.

5. Experimental results

To validate our proposed approach, experiments on two benchmark datasets
are performed: VIRAT dataset [5] is used for large scale event detection and
Microsoft Research Action (MSR) Dataset II 3, [6, 49] is used for small scale
activity detection.

VIRAT video dataset: In our experiments we use the Release 1.0 4 of
the dataset which was publish in the CVPR’11 activity recognition challenge
5. It contains 66 videos as training set with available ground truth annotation

3http : //research.microsoft.com/en− us/um/people/zliu/actionrecorsrc/default.htm
4http : //www.viratdata.org/virat/viratarchive1.html
5http : //www.umiacs.umd.edu/conferences/cvpr2011/ARC/
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and scoring software. The training set contains 3 scenes. Besides, in the above
mentioned activity recognition challenge, 128 videos were latter released as test
videos where total 6 scenes are present, three same scenes like in training set
with three additional scenes (see Figure 1). The test set does not have scoring
software or ground truth annotations. These videos are captured by station-
ary HD cameras (1080p or 720p). Some of them contains slight jitter due to
environmental condition. Heights of humans within videos range 25 ∼ 200 pix-
els, constituting 2.3− 20% of the heights of recorded videos with average being
about 7%. There are total 6 activities, i) person loading an object to a vehicle,
ii) person unloading an object from a vehicle, iii) person opening a vehicle trunk,
iv) person closing a vehicle trunk, v) person getting inside into a vehicle and vi)
person getting out of a vehicle. This dataset is extremely challenging.

MSR action dataset II: This is an extended version of the Microsoft
Research Action Data Set. It consists of 54 video sequences recorded in a
crowded environment. The video resolution is 320 × 240 and frame rate is 15
fps. Each video sequence consists of multiple instances of the three actions:
hand waving, hand clapping, and boxing multiple actions. There are in total 203
action instances of these three actions distributed in all the 54 video sequences.
This dataset is a small scale activity recognition dataset compared to the VIRAT
video dataset.

5.1. Large scale activity detection

For this experiment 66 videos are used where the ground truth annotation
and scoring software are available. To prune the search space we apply the
region extraction algorithm (Section 3). Region pruning algorithm (Algorithm
2) extracts ∼ 3K candidate regions from each video. To validate the candidate
region we perform a “recall test”. To this end, the region extraction algorithm
is applied to each of the 66 videos of VIRAT. If there is a overlap of 75% be-
tween a candidate region and the ground truth, it is considered as hit. Table
1 shows the number of hit w.r.t the ground truth. We obtain quite high recall
in each category (See Table 1). Our method extracts 60% more ground truth
regions compared to the tracking based region extraction algorithm [5], where
first tracking is used and then tracks are divided into units of 3-4 seconds seg-
ments (with 2 seconds overlap) each, resulting more than 20K detection units.
This approach fails to detect the activity that are happening during longer du-
ration than the detection units. On the other hand, as mentioned above, our
region pruning method extracts on an average 3K regions per video and obtains
a high recall rate (0.9680). Note that this recall test is very important to show
the robustness of the region extraction algorithm. The purpose of the region
extraction algorithm is to prune the initial search space. Recall test gives us a
clear a idea of how good is the region extraction algorithm. Recall close to 1.0
means all the extracted region obtained by using the region extraction algorithm
contains at least the ground truth activity regions along with the other motion
regions.
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Table 1: Comparison of recall test performed in the VIRAT dataset. Proposed region extrac-
tion algorithm outperforms the tacking based method of [5] to identify initial motion regions
where activity of interest may present. Events categories are, (1) loading, (2) unloading, (3)
opening trunk (4) closing trunk, 5 getting into vehicle and (6) getting out of vehicle. The
numbers are presented as: recall value (# Ground truth region extracted / # Ground truth)

Event category # Ground truth
Recall

Our approach Oh et al. [5]
1 11 0.9090(10/11) 0.5454(6/11)
2 16 0.9375(15/16 0.5(8/16)
3 18 0.8888(16/18) 0.4444(8/18)
4 19 1.0(19/19) 0.4736(9/19)
5 61 0.9836(60/61) 0.2950(18/61)
6 63 0.9841(62/63) 0.2222(14/63)

Total 188 0.9680(182/188) 0.3351(63/188)

5.2. Detection scores

To evaluate the performance of our generalized Hough transform approach
we use the scoring software and generate ROC curves for different activities
by varying a threshold on the detection scores. In our experiment, we use a
leave-one-video out cross validation technique to obtain the AP values for each
activity. Figure 6 shows the obtained ROC curves and Table 2 presents the AP
values of the 6 activity classes. We obtain best scores in “getting out of vehi-

Table 2: Comparison of the AP values obtained from max-margin GHT + SVM and only
max-margin GHT based activity detection in VIRAT dataset.

Activity class Max-margin GHT + SVM Max-margin GHT
Loading 0.0939 0.0345

Unloading 0.1380 0.0875
Opening trunk 0.0641 0.0548
Closing trunk 0.0515 0.0479

Getting in 0.1660 0.1035
Getting out 0.1784 0.1295

cle”, “getting into the vehicle” and “unloading” activity classes. Our method
outperforms the detection score of [5] where the score of only one activity class,
“getting into the vehicle” is presented. The AP value of the activity class “get-
ting into the vehicle” presented by Oh et al. [5] is ∼ 0.007, where as in the same
class we obtain an AP value 0.1660.

The main reason to obtain low detection rate in all the activity classes is the
small number of activity samples in each class. For example, in all 66 videos
there are only 11 samples for “loading” activity class, 18 and 19 samples for
“opening trunk” and “closing trunk” activity classes respectively. Moreover,
often the activity samples are highly occluded by other objects and the visible
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Figure 6: ROC curves of the all six activities obtain from 66 videos. The activities are (a)
loading (b) unloading (c) opening trunk, (d) closing trunk (e) getting into vehicle and (c)
getting out of vehicle. We obtain best result in “getting out of vehicle” activity.

area is quite small (See Figure 7). Due to this problem enough motion features
are not obtained and affects the performance of max-margin GHT and verifi-
cation SVM. Note that, the activity classes contain higher number of samples
like “getting into the vehicle” (61 samples) and “getting out of vehicle” (63
samples), the AP values are higher compared to other classes.

In Table 2, we also show the AP values without verification SVM. We gain
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Figure 7: Activity “getting into vehicle”, where the human is occluded by other cars and the
activity is hardly visible. Due to this occlusion not enough motion features are obtained and
hence, overall detection performance suffers.

∼ 4 − 6% in AP values for all the 6 activity classes by using the verification
SVM. Figure 8 shows sample frames with detection of “getting into vehicle” and
“getting out of vehicle” activities.

5.3. Computational time

For large scale activity detection the computational time is an important
factor. We present a thorough analysis of the computational time of different
phases of our overall activity detection system. The computational time of the
region clustering based motion segmentation algorithm (Section 3) is highly de-
pend on the total number of frames per video. The region extraction algorithm
takes ∼ 2.5hours per video, for the videos with more than 10K frames. For the
videos with less than 10K frames, the algorithm takes ∼ 1.8hours per video.
The computation time of the feature computation is ∼ 15mins per candidate
region. The max-margin GHT takes ∼ 7mins per candidate region for the
hypothesis generation.

5.4. Activity detection in small scale

To perform experiments on small scale dataset we use MSR action dataset
II. Most state-of-the-art approaches like, [6, 7, 49] use this dataset as cross-data
action recognition where KTH 6 is used as training dataset and MSR is used as
test dataset. All these methods apply model adaptation to perform the cross-
dataset action detection. Note that although the work of Cao et al. [49] is
about cross-data action recognition, the final detection score is obtained after
the ground truth adaptation.

Since our approach does not design to perform cross-dataset action detection
rather our goal is to present max-margin GHT framework on action detection,

6http : //www.nada.kth.se/cvap/actions/
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(a) Getting into vehicle

(b) Getting out of vehicle

Figure 8: Sample frames with detection bounding box of two activity classes, (a) getting into
vehicle and (b) getting out of vehicle.

we split MSR action dataset II into two groups: first 16 videos as training set
and rest 38 videos as test set. Ground truth annotations are used to separate
actions in the training set. We first apply our motion segmentation approach
described in Section 3 and apply recall test using ground truth annotation to
validate the proposed region extraction method. We obtain 100% recall in all
three actions, hand waving, hand clapping and boxing, present in test set.

To evaluate the the detection results of our algorithm, we follow the same
technique as proposed by Cao et al. [49]. Let Qg be the ground truth instances,
Qg = {Qg

1, Q
g
2, . . . , Q

g
m}, and Qd be the instances detected by the algorithm,

Qd = {Qd
1, Q

d
2, . . . , Q

d
n}. H(Qg

i ) denotes whether a ground truth instance Qg
i is
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detected and T (Qd
j ) denotes if a detected instance Qd

j is properly matched with
the ground truth set Qg. These values can be calculated as,

H(Qg
i ) =

{

1 if ∃Qd
k, s.t.

|Qd
k∩Q

g
i
|

|Qg
i
|

> δ1

0 otherwise
(18)

T (Qd
j ) =

{

1 if ∃Qg
k, s.t.

|Qg

k
∩Qd

j |

|Qd
j
|

> δ2

0 otherwise
(19)

where | · | denotes the area of the video instance and δ1, δ2 use to judge the
overlapping ration. δ1 and δ2 are set to 0.125 as proposed by Cao et al. [49].

Given a set of detected instances the precision and recall can be computed
using the values of H and T ,

Precision =

∑m

i=1 H(Qg
i )

n
(20)

Recall =

∑n

j=1 T (Qd
j )

m
(21)

Table 3: Comparison of the average precision value using max-margin GHT + SVM and only
max-margin GHT based activity detection in MSR dataset.

Methods Boxing Hand clapping Hand waving
Max-margin GHT + SVM 0.4571 0.2327 0.4938

Max-Margin GHT 0.3325 0.2217 0.3555

Varying the threshold on the detection score ROC curve can be obtain for
three actions in MSR dataset (See Figure 9). We compare average precision
(AP) of the three actions in MSR with other state-of-the-art approaches in Ta-
ble 4. We obtain higher AP in boxing and hand waving actions. The AP value
for hand clapping is low compared to the other state-of-the art approach. This
due the low number of samples in this category and often clapping action is
performed together with waving and boxing. Because of this the over all per-
formance of this action suffers. In Table 3 the average precision values obtained
from only generalized Hough transformation and by using verification SVM are
shown. We obtain significant improvement of the precision value when a verifi-
cation is SVM is used. In particular, we gain ∼ 14% and ∼ 12% precision values
in hand waving and boxing actions respectively, where as in hand clapping the
gain is ∼ 1%.

Figure 10 shows true detection of different actions in MSR along with some
failure cases. Detection bounding boxes are presented for boxing, clapping and
waving actions as a true detections (Figure 10.a-c). In the Figure 10.d & e two
failure cases are shown where only one of the two actions are detected. This is
due the the closeness of the two actions where the STIPs contributing more to
one actions gets higher detection score.
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(c) Hand waving

Figure 9: ROC curves of the three actions, (a) boxing, (b) hand clapping and (c) hand waving
of MSR dataset.

6. Conclusion

In this paper we present a novel approach for event detection in large scale
activity dataset using max-margin Hough transformation framework. We tackle
the large search space by applying a region extraction algorithm which is based
on motion segmentation and region clustering. This algorithm is simple, fast
and obtains better recall compared to tracking based approaches. For activ-
ity detection, generalized Hough transformation technique is applied which is
popular in the field of object recognition. We apply a max-margin framework
for learning the weights of the visual vocabularies. Finally, a verification action
classifier is used to obtain the overall score of the detected event hypothesis ob-
tained from Hough transformation framework. The proposed algorithm avoids
the need of exhaustive search which is infeasible for activity detection problem.
It works directly on the computed features and generates activity hypothesis.
A significant gain in AP values is obtained by using the final verification action
classifier.

To evaluate our approach, large scale activity detection dataset, VIART is
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Table 4: Comparison of average precision (AP) values of the three actions of MSR dataset
with other state-of-the-art approaches. Note that both Yu et al. [7] and Cao et al. [49] use
cross-data action detection approach with full set of MSR, instead we train on first 16 videos
of MSR and test on the rest 38 videos to comply with our proposed algorithm setup. Note
that the detection score of [49] is obtained after groundtruth adaptation.

AP Boxing Hand clapping Hand waving
Our approach 0.4571 0.2327 0.4938
Yu et al. [7] 0.3029 0.3155 0.4923

Cao et al. [49] 0.1748 0.1316 0.3671

(a) Boxing (b) Hand clapping (c) Hand waving

(d) Detection of waving (e) Detection of boxing

Figure 10: Activity detection in MSR dataset. First row shows the true detection of (a)
boxing, (b) clapping and (c) waving action in MSR. Next row presents some failure cases.
(d) Only waving action is detected although boxing is present. Similarly, in (e) only boxing
action is detected.

used. We obtain so far the best result on this dataset by achieving ∼ 16% higher
detection score compared to the state-of-the-art. To show the effectiveness of
our method, similar test on small scale benchmark dataset is also performed
with state-of-the-art result. We gain ∼ 10% more in detection score than the
current state-of-the-art. More number of tests on the large scale videos would
be one of the next steps. Usage of more motion features and improving the
vitrification action classifier by adding pyramid level and boosting would also
be an interesting area to explore.
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