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Abstract

Understanding how neural networks generalize on unseen data is crucial for designing more ro-
bust and reliable models. In this paper, we study the generalization gap of neural networks using
methods from topological data analysis. For this purpose, we compute homological persistence
diagrams of weighted graphs constructed from neuron activation correlations after a training
phase, aiming to capture patterns that are linked to the generalization capacity of the network.
We compare the usefulness of different numerical summaries from persistence diagrams and
show that a combination of some of them can accurately predict and partially explain the gener-
alization gap without the need of a test set. Evaluation on two computer vision recognition tasks
(CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against
state-of-the-art methods.

1. Introduction

Understanding the generalization capacity of a neural network is one of the most important ques-
tions in deep learning. Unfortunately, while the fundamental procedures of training neural net-
works are well understood, being able to tell why one network is better at generalizing than
another still poses a great challenge. Good performance of a deep neural network (DNN) de-
pends fundamentally on its architecture and its neuron functions and parameters. These yield
an approximation of the desired function (prediction or regression) based on neuron interactions
—the better the approximation, the better the generalization. However, with the high quantity
of neurons and connections of deep neural networks (sometimes of the order of millions), un-
derstanding which interactions between neurons are improving or damaging a model is a hard
problem. Developing new mathematical tools that capture the effect of these interactions on the
output of the networks is key for increased understanding of network generalization.
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A DNN that generalizes will perform well on test data on which it has not been trained. This
is usually measured by the generalization gap, which is defined as the difference between the
accuracy in training vs. test datasets. Although the two accuracies are correlated to a certain
extent, studying training performance alone can be misleading. Several papers show how neural
network performances on unseen examples can differ with respect to their training performances
due to many reasons [1, 2, 3]. To what extent is it possible to predict the generalization gap
without testing a model? In a practical sense, a measure of generalization that does not require
a testing dataset eliminates the responsibility of maintaining and curating such a dataset. + The
main goal of this paper is to design a theoretical framework for the analysis of DNN neuron
interactions and to obtain a generalization measure by approximating the generalization gap
without the need of a testing set.

The issue of finding a generalization measure has been explored extensively and a recent
challenge on the topic provides an excellent framework for algorithmic benchmarking [4]. How-
ever, the most competitive participant methods rely on internal representations of independent
layers, discarding more global structures that may be created across the network [5, 6] or even
discarding structure altogether [7].

An alternative approach is provided by topological data analysis (TDA), an applied branch
of algebraic topology that studies the shape of sets of points endowed with a metric structure.
Such shapes are described by means of persistence diagrams [8], which are built on homological
features of simplicial complexes constructed from the given dataset.

In this paper we present an approach to analyze persistence diagrams based on neuron in-
teractions in deep neural networks. For this purpose, we use weighted graphs computed from
activation correlations between neurons after training a network with a dataset. We compare
the performance of different topological summaries from which the generalization gap can be
regressed, and we find that a suitable combination of such summaries yields competitive results
on measuring the generalization gap. Moreover, we show that topological summaries separate
neural network architectures into clusters related with their generalization capacity.

The paper is structured as follows: in Section 2 we discuss related work; in Section 3 we
define functional graphs and describe their topological summaries; in Section 4 we present and
discuss experimental results, and conclusions are written down in Section 5. Supplemental ma-
terial is provided in an appendix.

2. Related Work

Predicting generalization. Methods to predict the capacity of a model to generalize can be
based on the following.

Theory. Bounds on the generalization gap fall in this category [9, 10, 11, 12]. Examples include
the Vapnik—Chervonenkis dimension [13], measures based on spectral norms [14] or other norms
of the weight tensors [15]. Generally, these methods rely on coarse-grained details about the
networks that are not usually enough to obtain optimal performances.

Optimization. They might take into account the amount of epochs until a desired loss function
[16, 17] or gradient noise is reached during training [18, 19, 20]. Unfortunately, both of these
require knowledge of the training process, which might not be readily available.

Output. As a matter of example, competitive results were obtained in [21] with measures based
on the distribution of the decision margin.



Sharpness. The key idea is to test the robustness of the network’s accuracy with respect to weight
perturbation. There are a number of methods in this family, depending on whether the effect of
perturbation is measured on average or in the worst case scenario, whether the perturbations
are additive or multiplicative, and how the effect of perturbation is interpreted to predict gener-
alization [22]. A variant is to test the robustness to input perturbations that preserve semantic
content [7].

Internal representation. They deal with representations of input data in concrete layers of the
network [5, 6]. The generalization gap is predicted by checking the robustness of the internal
representations to separate the input data according to its labels.

Our approach obtains state-of-the-art performance when predicting generalization gap com-
pared with methods in [4, 23]. Moreover, our procedure does not require a strong knowledge
about the training process nor the dataset at hand.

Topological Data Analysis. TDA has had a number of applications in deep learning, such as
studying the evolution of the input data’s topology through a network [24], or the topology of
neuron activations themselves [25]. It has also been used as a method to reduce the size of the
training resources without much loss in performance [26]. The use of TDA techniques for the
analysis of weighted networks was also proposed in the context of network embeddings [27].

Along others such as [28] or [29], our work falls in the category of building and understanding
relationships between neurons with the intent of predicting generalization. More specifically, we
follow the steps initiated in [30] by formally defining the mathematical elements provided therein
and studying more in depth their significance in terms of persistence summaries as well as their
interpretability. This consolidates a technique that is general enough to study any network.

Other topological approaches have been used to gain insights with respect to model gener-
alization. In [31], the authors perform a similar, more restrictive, construction of a graphical
activation structure of neural networks to obtain persistent homology features of dimension 0.
They show that these features are descriptive enough to undertake classification tasks and to
detect adversarial examples using SVM models. Additionally, they use similar techniques to dis-
tinguish between adversarial and unaltered inputs when fed to a DNN [32]. Later research [33]
based on [31] uses similar constructions to define a topology-based metric called fropological un-
certainty, that measures how similarly an unseen example activates DNN neurons with respect to
the training dataset. Then, they use this metric to successfully perform model selection, outlier
detection and shifted input detection.

We include a comparative analysis of a number of topological summaries with respect to
their capacity to predict the generalization gap. This allows us to select the more robust, better-
performing summaries with the objective of determining which properties of persistence dia-
grams are most relevant to a DNN’s generalization capacity.

3. Methodology

In this paper, we are interested in gleaming information about the dynamic behaviour of a trained
neural network, i.e., the internal representations, structures and relationships between neuron
activations during classification. In our context, the network behaves dynamically only in the
presence of input data, forming a graph of neuron activations.
Our first goal is to define a mathematical structure describing the activation of a network
when fed with a specific dataset D consisting of pairs (x, y) where x and y represent inputs and
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ground truth annotations respectively. To do so, we use a complete weighted graph whose set
of vertices is in bijective correspondence with the set of neurons of the given network. Each
vertex in this graph is represented by an activation vector of dimension |D| where the vector
components are the activations for all (x,y) € D corresponding to the neuron associated with
the vertex via the bijection. Edges are weighted by a correlation distance between the activation
vectors that they are connecting.

From this weighted graph we build a filtered simplicial complex computed from the edge
weights. The topological features of this filtered simplicial complex are described by a per-
sistence diagram, from which we extract suitable summaries with the purpose of explaining the
generalization gap. The accuracy of a trained network is the percentage of correctly classified in-
puts, and the generalization gap is defined as the difference between the accuracy on the training
dataset and the accuracy on the test set.

3.1. Network functional graphs

Let V = {vy,...,v,} be the set of non-input nodes of a neural network N trained with a dataset
D = {(x,y)}, where x denotes inputs and y denotes corresponding values from a set of labels.
For a node v € V, we denote by N, (z) the activation of v on some input z, and define the
activation vector of v as

Ay (D) = (Nv (‘r))(x,y)GD'
The set An(D) = {A,(D) | v € V} of activation vectors is meant to capture the role of each
node of N during inference.
A distance between two nodes v;, v; € V is defined as

d(vi,vj) = 1 —[corr(A,, (D), Ay, (D))], (3.1)

where corr is the Pearson correlation coefficient. Although this function d does not satisfy the
axioms in the definition of a metric, it is perfectly suitable for the application of techniques from
TDA; see Appendix A for a discussion of this fact.

Nodes with constant activations can be safely regarded as not affecting the behaviour of the
model, but rather its structure as a bias. Therefore, nodes with zero variance are discarded.

The complete weighted graph with vertices the nodes in V' with nonzero variance and weights
d(v;, v;) on the edges will be called the functional graph of the trained neural network N. This
graph encodes the functional behaviour of N. In this article we use Vietoris—Rips filtrations
associated with the distance matrix (d(v;,v;)) from the functional graph for a homological per-
sistence study, as defined in the next section.

3.2. Topological Data Analysis
3.2.1. Persistence diagrams
An abstract simplicial complex, a basic tool of algebraic topology, is a finite collection of sets S
such that if « € S and 8 C « then 8 € S. Each abstract simplicial complex K determines a se-
quence of homology groups H,,(K) for n > 0, generated by linearly independent n-dimensional
cycles modulo boundaries. In this article coefficients of homology groups are meant in the field
IF5 of two elements.

If V is a finite set equipped with a distance function d, then for each subset &« C V' we may
consider the diameter diam(a) = max; jeq d(i, j) of crelative to d. The Vietoris—Rips complex
of V' at a parameter value r > 0 is an abstract simplicial complex defined as

VR, (V) ={a CV :diam(a) < 2r}.
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The set {VR,(V)},>0 is a nested collection of simplicial complexes, as VR,.(V) C VR4 (V)
if 7 < s. Each such filtration yields a persistence diagram for every integer £ > 0, which
contains a point (7, s) for each homology generator of dimension & born at a parameter value r
and vanishing at s, where r < s. Further details about persistence diagrams can be found in [8].

3.2.2. Persistence summaries

There is a variety of numerical or vector-valued functions defined on persistence diagrams avail-
able for statistical analyses. We refer to such functions as persistence summaries or descriptors.
In this subsection we present the summaries that have been used in our work.

Average births and average deaths. Since birth parameters and death parameters of homol-
ogy generators do not yield linear models in general, different combinations of them have been
explored, including their squares and the transformation 1/2 + In x applied element-wise. The
variance of births and deaths is also related with the generalization capacity of a network.

Average life and average midlife. The life or lifetime of a point (b, d) in a persistence diagram
is defined as d — b, while the midlife is (b + d)/2. Average lives and average midlives yield
good results when predicting generalization gap using linear extrapolations. These summaries
have been used previously with a similar purpose in [34]. Other statistical descriptors such as
standard deviation or variance of lives and midlives work equally well or better.

Lives and midlives yield nonlinear models too. For this reason, we have used lives and
midlives directly and as a vector concatenation of them with their squares. This technique is
based on the heuristic that the generalization gap of a network is highly influenced by the average
position and dispersion of the points in a persistence diagram.

Persistent entropy. The definition of persistent entropy is an adaptation of the concept of entropy
used in information theory, which, according to [35], provides a measure of the uncertainty of
some random variable. The entropy of a persistence diagram P is defined as

e(P)=~ > ((d=1b)/L)logy((d—1b)/L)), 3.2)

(b,d)eP

where L = 37, jcp (d — D). If one defines a discrete random variable that picks points (b, d)
from P weighted according to their life, then the persistent entropy corresponds to the entropy
of this random variable. This choice of weights is based on the assumption that points near the
diagonal carry less information. Further details about persistent entropy can be found in [36].

Persistence pooling vectors. Persistence pooling vectors were introduced in [37] in order to
improve a max-pooling procedure using TDA. This approach consists of analyzing only the most
important points in a given persistence diagram, where importance is weighted according to the
difference d — b. We define the n-th persistence pooling vector as the vector in descending order
of the n maximum life values. If the persistence diagram has less than n points, then the void
vector components are set to 0. We selected the highest 10 life values. This number has been
chosen experimentally in view of the lack of score performance observed when selecting a larger
number of vector components.

Complex polynomials. The topological summary introduced in [38] transforms persistence
diagrams into polynomials with coefficients in the field C of complex numbers whose roots are
the images of persistence diagram points under a well-chosen R? — C mapping. In our study
we used the transformation 7" defined in [38], although the choice of an optimal function remains
a matter of study.
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Task dataset Dimension i Summary j Dimension i Summary j Dimension i
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Figure 4.1: Experimental evaluation pipeline. Here PD and NN stand for persistence diagram and neural network, respec-
tively. (1) Using sampling in CIFAR10/SVHN datasets and in the vertices of functional graphs to generate k different
persistence diagrams per DNN and dimension; in our case, & = 20. (2) Computation of topological summaries using
each persistence diagram of dimension ¢; in our experiments, ¢ takes values 0 and 1. (3) Bootstrapping per each group of
summaries computed from the same DNN per each dimension (bootstrapping of each box for each different summary).
(4) For each summary we generate X values concatenating dimensions. (5) For each combination of dimensions, we
train a linear regression to predict the generalization gap taking 70% of the summaries randomly for the training set and
computing R? with the other 30% of the dataset. We repeat these experiments 10 times and we assign the average of the
10 experiments as the final R? score.

4. Results

In the first part of this section we describe experimental setups and comment on computational
complexity (Subsection 4.1). In the second part we evaluate our approach and discuss results
(Subsection 4.2).

4.1. Experiments

Datasets. To compare performance, we use the dataset of trained DNNs provided by a NeurIPS
2020 competition [4]. The dataset is divided into nine tasks, each one composed by several neu-
ral network architectures trained to provide different generalization gaps on a particular dataset.
We focus on the first two tasks, which were public when the competition was launched. The
first task is composed of 96 VGG-like [39] neural networks, with a varying number of convo-
lutional and dense layers (i.e., between 2 and 6 per layer type), trained on the CIFAR10 dataset
[40]. The CIFARI1O0 dataset consists of 60,000 32 x 32 color images (3 channels) in 10 classes,
representing vehicles (airplanes, automobiles, ships and trucks) and animals (birds, cats, deers,
dogs, frogs and horses). The second task is composed of 54 neural networks with network in
network architectures [41], with a varying number of blocks, trained on the SVHN dataset [42].
The SVHN is a digit classification benchmark dataset that contains 600,000 32 x 32 color images
(3 channels) of printed digits (from O to 9, 10 classes) cropped from pictures of house number
plates.

In all our experiments in each task, we randomly split the networks into 70% training and
30% test sets and repeat the experiment 10 times and average the scores.
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Evaluation metrics. We use R? scores to evaluate how well the generalization gap is predicted
by persistence summaries. As explained in Appendix B, the determination score R? can take
negative values on a test set if a regression model works worse than a horizontal line. This
indicates that a model adjusted with a set of training data is definitely wrong when applied to an
unexplored dataset.

Experimental procedure. We generate for each neural network 20 persistence diagrams —see
Section 4.1.1 for sampling details— of dimensions 0 and 1. Persistence summaries are computed
per dimension and network using bootstrapping on each group of 20 persistence diagrams, ex-
tracted from the same network, of the given dimension. The bootstrapping process is performed
with a sample size of 20 elements with replacement and 5 iterations directly over the different
summaries computed from the 20 persistence diagrams. Then, to predict the generalization gap,
we tune a linear regression on the training set per summary and task. Finally, we compute the
R? score on the test set. The experimental evaluation pipeline is illustrated in Fig. 4.1.

4.1.1. Reducing computational complexity

Computational complexity. If |D| denotes the number of input samples for a dataset D and
|V| is the number of nodes in a neural network N, then the set of activation vectors of nodes
in N for the dataset D has cardinality |Ayx (D)| = |D| x |V| (see Section 3.1 for details). To
obtain weights on functional graphs, activation vectors have to be computed. These computa-
tions require either a huge quantity of memory or huge computational resources. Additionally,
the complexity of algorithms for computing persistent homology is O(n?) if n is the number of
simplices of the Vietoris—Rips complex and Gaussian elimination is used to find ranks of matri-
ces of boundary operators, or O(n*) where w is the exponent of matrix multiplication (currently
2.3729) if sparsity of boundary matrices is taken into account, as in [43]. In its turn, the number
of simplices n depends cubically on the number |V| of vertices of the functional graph if persis-
tence diagrams are drawn in homological dimensions 0 and 1 only, which requires determination
of simplices up to dimension 2. In practice, this limits persistence diagram computations to a
few thousand vertices. In order to alleviate these problems in neural networks with millions on
neurons, we introduce sampling strategies of both the input space and the functional graphs.

Sampling the input space. We compute activation vectors A, for a fixed subsample D’ C D.
In order to justify that this subsampling does not affect the results of the analysis, it is enough
to verify that corr(A,,(D’), A,; (D)) is sufficiently close to corr(A,, (D), Ay, (D)), and that
small variations in the correlation coefficients produce small changes in the persistence diagrams.
Arguments to prove this are indicated in the Appendix. In practice, |D’| is fixed to 2,000, an
experimentally selected size that is large enough to obtain sufficient precision.

Sampling the functional graph. Because of computational limitations, in the case of modern
DNN s less than 1% of the nodes —a priori, a statistically insignificant sample size— can be
included in the persistent homology calculation. To alleviate this, we sample nodes according
to a notion of importance, following ideas introduced in [44] adapted to neurons on a neural
network instead of inputs of the dataset. Thus, let D’ be some selected subsample of the training
dataset. The importance score of anode v € V' is defined as

I,(D') = {z € D' : Ny(x) = max{N,,(z) : v; € V}}|, 4.1)

i.e., the amount of inputs from D’ for which the activation of v is the largest (or tied-to-largest)
among the rest of the nodes. Note that a majority of nodes v will have I,,(D’) = 0. This is
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equivalent to excluding these nodes from analysis, which is undesirable —not only because it is
unclear how this will affect the application of TDA, but also because the amount of nodes with
I,(D') # 0 might be low enough to severely constrain the size of a subsample. Thus, from I we
construct a probability distribution P on V/, artificially inflated to make sure that every element
of V appears with nonzero probability. This probability P(v) is defined as

I,(D) 1

)i 1,(D) > 0, and therwise. (4.2
D1 P> 0 e e e v L) =y Ohervie (42

Specifically, we sample 3,000 nodes (without repetition) according to this probability distribu-
tion, and restrict our analysis to these nodes. This sampling is non-deterministic, and thus can
be repeated a number of times to obtain n different subsamples V1, ..., V,,. Applying the same
transformations on the n resulting functional graphs we obtain n different persistence diagrams
per network. Then, we use bootstrapping over the n summaries (see 3.2.2) combining them into
a single one. This last representation aims to approximate the persistence summary that would
be obtained without sampling.

Table 1: Top three TDA summaries per task according to their respective R? values. Summary 1: Average and stan-
dard deviation of births and deaths. Summary 2: Average and standard deviation of births and deaths, and squared.
Summary 3: Average births and deaths and squared plus average lives and midlives and squared.

Task 1
Top TDA summaries Best dim  R? score
Summary 2 Oand 1 0.8663
Summary 1 Oand 1 0.7707
Summary 3 Oand 1 0.7317
Task 2
Top TDA summaries Best dim  R? score
Summary 3 0 0.9115
Summary 1 Oand 1 0.9109
Summary 2 0 and 1 0.9073

4.2. Discussion

Explainability. The TDA summaries that yielded the top three R? scores for the generalization
gap prediction experiment are shown in Table 1. Basic statistical descriptors related to births and
deaths of homology generators obtained highest scores overall. In particular, the vectors com-
posed of averages and standard deviations of births and deaths (and their squares) were the ones
that obtained best R? scores in both tasks. Figure D.1 in the Appendix shows the performance
of the whole list of summaries. These results suggest that the generalization gap is mostly linked
with the average position and dispersion of points in persistence diagrams. Summaries based on
alleged predominance of larger lifetime values, such as persistent entropy or persistence pooling
vectors, showed a lower predictive value.

A reason why the distribution of points in persistence diagrams of functional graphs is related
with performance of networks could be the following. Generators of the 0-homology group of
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a Vietoris—Rips simplicial complex at filtration level ¢ correspond to groups of neurons in the
functional graph in which every edge has a weight smaller than or equal to ¢, hence a correlation
coefficient of 1 — ¢ in absolute value among the neurons in the group. Thus, the distribution of
points in a 0-dimensional persistence diagram describes the degree of isolation vs. cooperation
of active neurons in the network. Diagrams with a concentration of points with low death values
represent trained networks where neurons are highly correlated overall.

We found that the trend of the association between activation groups of neurons and gener-
alization gap may depend on the architecture of the network. After training a network with a
dataset, persistence summaries computed from samples of the same data or from similar datasets
show a consistent association with the generalization gap in the same network or in networks
with a closely related architecture. Yet, the sign of the correlation can be different when using
other network models.

Task 1
=% A
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Figure 4.2: Standard deviations and averages of deaths for persistence diagrams in dimension O (first two columns) and
1 (last two columns) for tasks 1 and 2. For task 1, points represent 96 VGG-like neural network trained on the CIFAR10
dataset. For task 2, points correspond to 54 network in network architectures trained on the SVHN dataset.

The explainability capacity of TDA is further demonstrated in Fig. 4.2. For both task 1 and
task 2, the different network architectures used in the experiments visibly fall into well-defined
clusters. Hence, persistence summaries may serve to distinguish between types of networks in
terms of their generalization gaps.

The patterns observed in Fig. 4.2 are cluster-wise consistent: the relationship between gener-
alization gap and averages of deaths is inverse within each cluster, while the relationship between
generalization gap and standard deviations of deaths is direct in a majority of clusters. This pro-
vides a possible explanation of the fact that averages and standard deviations of births or deaths
were not found to be consistently correlated with the generalization gap, since some of the direct
or inverse associations depicted in Fig. 4.2 reverse their sign when the separation into clusters is
not taken into account.

We further analyzed if persistence diagrams for individual labels in a classification task were
different between them to gain insights about what was influencing TDA methods and functional

9



graphs the most. We computed persistence diagrams in dimensions 0 and 1 per different neural
network and per label. The datasets used to recreate functional graphs were restrictions of the
test set to each label. Similar results were seen when comparing these persistence diagrams with
the original ones. The majority of class-dependent persistence diagrams whose DNNs obtained
extreme accuracies, i.e., highest and lowest, were analogous to the diagrams in the corresponding
class-independent case. This shows that functional graphs are robust to unbalanced datasets in
terms of the number of samples per label. Details and figures can be found in Appendix E.

Table 2: Average R? for task 1 and task 2. Comparing our best performing summaries with state of the art.

Task 1 Task 2
Interpex —0.1439 0.9776
Always Generalize 0.9715 0.8888
BrAlIn 0.4079 0.6169
Ours 0.8663 0.9115

Topological summaries. Results show that linear models of persistence summaries can predict
the generalization gap without the need of using multivariate models. We obtained competitive
results in both tasks, as seen in Table 1 and Table 2. However, the fact that a summary based on a
combination of non-linear transformations of persistence features yielded the best score for task 2
suggests that more complex models can have better capacity to relate persistence summaries with
the generalization gap.

When it comes to ranking summaries, persistence pooling and persistent entropies produced
the lowest R? scores overall. In fact, the features described by these summaries are fundamen-
tally different from those of the other summaries, as both methods rely only on persistence values
of points in the corresponding diagrams. Our results indicate that these values are not capable
of accurately predicting generalization gap, in contrast with summaries based on location and
distribution of points in persistence diagrams.

State-of-the-art comparison. Table 2 shows a comparison of the results of our best performing
linear models based on persistence summaries with state-of-the-art methods. In this table, the
R? scores describe the capacity of each method to predict the generalization gap with respect to
the coefficient of determination. Our results are stable across both tasks while providing a more
flexible framework to explain generalization.

5. Conclusions

We have defined a framework that can be used to explore interpretability of DNNs based on
topological properties of their functional graphs. This relaxes the problem of understanding
the internal representations of a neural network to, in a broad sense, understanding their shape.
Regarding generalization, we have shown examples of how one can interpret DNN neuron inter-
actions based on their correlations by means of persistence diagrams. Moreover, we proved that
the generalization gap can be consistently predicted using topological persistence summaries ex-
tracted from functional graphs, with a competitive prediction accuracy on two different computer
vision problems. The most successful summaries were those related with the average location
and dispersion of points in persistence diagrams. Hence, it is not true in our case that points
10



near the diagonal in persistence diagrams are irrelevant. A more fine-grained analysis of TDA
summaries would be needed to fully grasp the information provided by persistence diagrams.

Limitations. A practical limitation of persistent homology comes from its computational com-
plexity —sampling methods are not necessarily optimal and information might be lost in sam-
pling processes for datasets and for neurons. Transformations of persistence diagrams into sum-
maries may also cause a loss of information; however, this seems unavoidable if one wants to
obtain easy-to-compute generalization measures.

Future work. Although we found strong patterns relating persistence summaries with general-
ization gaps (Fig. 4.2), broader experimentation is required to see if these patterns are consistent
among other kinds of networks and machine learning tasks, and also to make more explicit which
features of the networks are involved in the TDA-driven clustering effect that we have observed.

Moreover, the mere definition of functional graphs raises a question: which is the optimal
metric to compare neurons given an architecture? There might be better alternatives to linear
correlation; for instance, Spearman correlation was used in co-activation graphs for a similar
purpose in [45].

Another problem is to find an optimal neuron sampling strategy. This is related with the
problem of finding the most relevant neurons in a DNN graph. Persistence summaries suggest
that grouping neurons in terms of their activation structure is feasible for DNNs. However,
understanding which functional phenomena are being captured into such communities of nodes
needs further study. This could lead to the discovery of new architectural properties useful to
develop better networks.
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Appendix

This appendix contains additional explanations and analyses related with some parts of the paper.
In Appendix A we comment on the distance used to build functional graphs. In Appendix B we
define and explain the coefficient of determination R2. In Appendix C we address the conver-
gence of a sample correlation with respect to the number of elements in the sample —this is done
in order to justify that the input space subsampling performed in the experiments does not affect
the results of the analyses if the sample is big enough. In Appendix D we present results for the
full collection of samples by means of a heatmap, and Appendix E contains an analysis per label
of persistence diagrams in dimensions 0 and 1. Technical details about computer resources used
in our study are provided in Appendix F.

Appendix A. Correlation distance in functional graphs

In Section 3.1 we defined functional graphs as unoriented weighted graphs whose edge weights
are defined as

d(vi,v;) = 1 — [corr(A,, (D), Ay, (D))| (A.1)

for a training dataset D, where corr denotes the Pearson correlation coefficient. This function d
is not a metric, since it can take a zero value on distinct nodes and the triangle inequality need not
hold. However, Vietoris—Rips filtrations can be associated with arbitrary functions X x X — R
where X is any set, and a form of stability holds in such generality [46, 47]. In our case, the
suitability of (A.1) is implied by the next remarks.

1. Although d does not necessarily satisfy that d(x,y) # 0 whenever 2 # y, this does not
affect persistent homology, since the matrix (d(v;,v;)) yields a Vietoris—Rips filtration
homotopy equivalent to the one obtained by identifiying two nodes z and y if d(z,y) = 0.

2. While d does not satisfy the triangle inequality, the following transformation does:

dvi,v5) = 1= (1= d(vi,07)) (A2)
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Since the function ~(t) = /1 — (1 — £)2 is strictly monotonic on [0, 1], d and d produce
the same Vietoris—Rips filtrations, albeit at different thresholds. From this fact it follows
that continuity of persistence diagrams under small displacements in the space of func-
tional graphs holds for d. This is proved using persistence stability for metric spaces [46]
together with the uniform continuity of -y on [0, 1].

Appendix B. Determination score

In Section 4.1 we used the coefficient of determination R? as the evaluation metric of our exper-
iments. It is defined as
n )2
Zi=1 (yz - yz)

i —y)*’
where y is the ordered set of actual values, g is the ordered set of predicted values, and § denotes
the mean of y. This coefficient ranges from 0 to 1 on the training dataset but can be outside that
range on unseen data. When the score is 1, our model perfectly predicts the values of y. On the
other hand, if R?(y, §) = 0 then

Ry, 9)=1— (B.1)

n n

Z(yz —0i)° = Z(yz -9

=1 i=1

This score is obtained when one uses a horizontal line at the average of the set of y-values as a
model. If a model performs worse than this (which usually indicates that the choice of model
itself was ill-advised), then the numerator of (B.1) can grow arbitrarily large, and thus R? can
be negative. If an R? value is negative, then the prediction is worse than ignoring the input and
predicting the average of the sample. This can actually happen when the training set yields a
model that does not generalize in the test set.

Appendix C. Convergence of sample correlation

In 4.1.1 we stated a way to sample the input space and claimed that corr(A,, (D’), A, (D’)) is
sufficiently close to corr(A,, (D), Ay, (D)) when taking large samples. To justify this claim, let
X and Y be two random variables with non-null variance, and, for eachn € N, let X" and Y"
denote sequences of n samples from X and Y, respectively. Then the sample correlation of X ™
and Y” converges in probability to the correlation between X and Y by the law of large numbers

and the continuous mapping theorem [48].

Appendix D. Complete results for experiments

Complete results for the whole set of topological summaries used in the experiments of Sec-
tion 4.1 can be found in Fig. D.1. These summaries consist of vectors obtained by applying
transformations from 3.2.2 or a concatenation of them. Each summary was computed for dimen-
sions 0 and 1, and linear models were trained for the same dimensions or for a concatenation of
summaries of both dimensions. The chosen summaries were the following: (0) Persistence pool-
ing of 10 elements. (1) Average lives and midlives. (2) Average lives and midlives, original and
squared. (3) Average births and deaths. (4) Average births and deaths with a logarithmic model.
(5) Average births and deaths, original and squared. (6) Combination of features (2) and (5).
14



(7) Persistent entropies. (8) Averages and standard deviations of births and deaths. (9) Averages
and standard deviations of births and deaths, original and squared. (10) Complex polynomials of
10 coefficients.

Heatmap of R? scores for task 1

-1.0
Dim. 0 0.36 [ os
0.6
Dim. 1 -0.25 0.17
0.4
Dims' 0’ 1 02
- 0.0
Heatmap of R? scores for task 2

-1.0
Dim. 0 0.32 0.85 0.78 0.81 H 0.91 0.83 0.86 -~ 08
0.6

Dim. 1 0.47 0.8 0.84 0.78 0.82 0.85 0.83 0.29 0.79
0.4
Dims. 0, 1 ﬂ 0.81 0.8 0.91 0.2
' ' 0 ' 0.0

(0) @ @ (6) @ (8) (@) (10)

Figure D.1: Average R? scores for task 1 and task 2 from persistence diagrams of dimensions 0 and 1. Each column
represents a topological summary: (0) Persistence pooling of 10 elements. (1) Average lives and midlives. (2) Average
lives and midlives, original and squared. (3) Average births and deaths. (4) Average births and deaths with a logarithmic
model. (5) Average births and deaths, original and squared. (6) Combination of features (2) and (5). (7) Persistent
entropies. (8) Averages and standard deviations of births and deaths. (9) Averages and standard deviations of births and
deaths, original and squared. (10) Complex polynomials of 10 coefficients.

As explained in Section 4, the TDA summaries that achieve highest R? scores for the gen-
eralization gap are those combining averages and standard deviations of births and deaths of
homology generators. This fact is consistently observed and suggests that the generalization gap
is predominantly linked with the average position and dispersion of points in persistence dia-
grams. Diagrams showing clusters of points with low death values represent neural networks
where neurons tend to be highly correlated, while scattered points with a larger range of death
values correspond to less collaborative structures.

Overall, results are more conclusive for task 2 than for task 1, and more significant in homo-
logical dimension 0, although the best R? scores are obtained when dimension 0 and dimension
1 are jointly taken into account. It should also be noticed that R? scores grow when squares of
summaries are added to the model, suggesting departure from linearity.
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Appendix E. Analysis on individual labels

This section shows detailed results of the experiments per label discussed in Section 4.2. We
computed persistence diagrams of dimensions 0 and 1 per different neural network and per label,
where the datasets used to recreate functional graphs were the restriction of the test sets to each
label. We computed accuracy for each of these testing subsets, and plotted persistence diagrams
corresponding to those neural networks that achieved the maximum and minimum accuracies on
testing subsets per label for dimensions 0 and 1. The results can be seen in Figures E.1, E.2, E.3
and E.4. These results are consistent with what we found in persistence diagrams computed with
the whole training dataset. Thus we see that distinction between inputs of different labels does
not have a substantial influence on the distribution of points in persistence diagrams.

For a more convenient visualization, persistence diagrams in dimension 0 have been replaced
with lifetime density curves, calculated by means of Gaussian kernels. Lifetime values are equal
to death values for 0-homology generators.

It can be seen in Fig. E.3 and Fig. E.4 that increased accuracy values match with scattering
of points downwards the diagonal of the persistence diagram in dimension 1 and with a lower
average life in dimension 0, indicating higher correlations among neurons. However, this pattern
is not consistent with other architectures, such as those used in task 1. This is partially explained
by the splitting of network types into clusters as observed in Fig. 4.2.

Appendix F. Hardware, software and licenses

Persistence diagrams were computed with Python Ripser++ [49] (MIT License) using a Quadro
P6000 GPU. Persistence summaries were computed with the giotto-tda framework [50] (AG-
PLv3 License), and density curves were drawn using SciPy 1.8.0 [51]. Analysis was done using
a personal computer with an Intel Core i7 (4th generation) processor with an NVIDIA GeForce
GTX 960M 2GB GDDRS, using especially the libraries Jupyter Notebook (New BSD License),
NumPy (BSD 3-Clause “New” or “Revised” License) and TensorFlow with Keras (Apache 2.0
License). An own Docker (Apache 2.0 License) image was used to compute persistence dia-
grams. The dataset of neural networks from [4] is licensed under Apache 2.0.
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Figure E.1: Lifetime densities in persistence diagrams in homological dimension O of 96 VGG-like neural networks with
minimum and maximum accuracies on the testing set per label for task 1.
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Figure E.2: Persistence diagrams in homological dimension 1 of 96 VGG-like neural networks with minimum and
maximum accuracies on the testing set per label for task 1.
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Figure E.3: Lifetime densities in persistence diagrams in homological dimension 0 of 54 network in network architectures
with minimum and maximum accuracies on the testing set per label for task 2.
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Figure E.4: Persistence diagrams in homological dimension 1 of 54 network in network architectures with minimum and
maximum accuracies on the testing set per label for task 2.
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