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aDept. Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Campus Sescelades, Avinguda dels Paı̈sos Catalans, 26, 43007 Tarragona, Spain
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Abstract

The aim of this paper is to revisit an old theory of texture perception and update its computational implementation by extending

it to colour. With this in mind we try to capture the optimality of perceptual systems. This is achieved in the proposed approach

by sharing well-known early stages of the visual processes and extracting low-dimensional features that perfectly encode adequate

properties for a large variety of textures without needing further learning stages.

We propose several descriptors in a bag-of-words framework that are derived from different quantisation models on to the feature

spaces. Our perceptual features are directly given by the shape and colour attributes of image blobs, which are the textons. In

this way we avoid learning visual words and directly build the vocabularies on these low-dimensional texton spaces. Main differ-

ences between proposed descriptors rely on how co-occurrence of blob attributes is represented in the vocabularies. Our approach

overcomes current state-of-art in colour texture description which is proved in several experiments on large texture datasets.

Keywords: colour-texture attributes, perceptual descriptor, colour textons

1. Introduction

Computational approaches dealing with texture representa-

tion in natural images have been one focus of interest since the

early days of computer vision research. Different approaches

have been proposed from very different points of views [1, 2, 3]

providing competent results in specific applications or specific

datasets. However, there is not a one definite description of

texture proved to be consistently applicable to extensive image

datasets and sharing at least the early stages of most low-level

visual descriptors (such as a multi-scale Laplacian pyramid [4]).

Such a description inspired in human perception should be the

final aim, since texture description is just pursuing the simula-

tion of a pure human ability.

A second problem arising when dealing with texture descrip-

tion is how to integrate colour in texture representations. It is

not yet clear what is the best way to combine these two visual

cues [3]. The main reason probably arise from their inherent

different spatial nature; while colour is a pixel property, texture

is a property of an image region. Usual approaches for feature

integration have been mainly twofold. First, colour and texture

are processed separately and then combined at the similarity

measure level [5, 6, 7], this means that for every visual cue a

dissimilarity measure is obtained, each one in a different space

needing to be scaled in a final similarity measure. In a second

approach, colour and texture are jointly processed applying the

same texture descriptor over each component of a colour space,

and outputs are finally concatenated in order to obtain a feature

vector [3, 8, 9].
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In this paper we propose to deal with the two above men-

tioned problems by revisiting an old theory of human texture

perception and propose this to be extended to colour through

the texton concept. We propose a revision of the texton the-

ory [10] by introducing a computational approach that deals

with the original definition of texton. Moreover, in the frame

of this theory, we propose to integrate colour as one more tex-

ton, this is, as one more attribute of image blobs. In this way

we do not propose a completely new descriptor, we propose a

new approach to compute image textons following the original

definition [10] and adding colour.

The study of how texture perception is dealt by humans [11]

has been addressed by finding perceptual representations that

correlate with pre-attentive texture segregation [12] or with

similarity judgements [13], both given by human observers in

psychophysical experiments. After different conjectures, Julesz

and Bergen [10] proposed the texton theory, which is sum-

marised in three heuristics. First, ”texture discrimination is

a preattentive visual task”. Second, ”textons are elongated

blobs (e.g., rectangles, ellipses, line segments with specific

colours, angular orientations, widths and lengths), terminators

and crossings”. Third, ”preattentive vision directs attentive vi-

sion to the location where differences in density of textons occur,

ignoring positional relationships between textons.” Some lines

below, they gave an explicit example of textons in this way:

”... elongated blobs of different widths or lengths are different

textons”. In summary, textons are directly stated to be the at-

tributes of blobs, namely, length, width, orientation and colour.

An early computational implementation of texton theory was

done by Voorhees and Poggio [14] where they were faithful

to Julesz’s textons. They proposed first-order statistics of blob
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attributes to determine boundaries between textures. Blob at-

tributes were obtained on a basic multi-scale analysis on gray

level images, not considering colour information. Later, Le-

ung and Malik [1], Renninger and Malik [15] and Varma and

Zisserman [16] resumed the texton theory proposing a holis-

tic representation of textures. All of them plus Burghouts and

Geusebroek [17, 18], that add colour to the description, starting

from a different definition of the texton concept; they consider

textons as the cluster centres of the vectors in a filter response

space. Although these works proved to be efficient in classi-

fication tasks with specific datasets, they work with a vague

definition of texton that we believe could be subtracting some

of its power. We hypothesise here that the strength of a descrip-

tor can be achieved by preserving the precision in the attribute

computations.

A deep analysis on the texton concept was done by Zhu et al.

[19], where textons are intuitively defined as meaningful ob-

jects viewed at distance, such as stars, birds, cheetah blobs,

snowflakes, beans, etc. With this definition the authors pro-

pose to recover the texton shapes underlying the image genera-

tion, it is based on learning highly diverse dictionaries of texton

shapes. In this work, shape of textons replaces the original con-

cept of textons as attributes of blobs.

Recently, Liu et al. [5] also proposed to represent images

through the attributes of local image regions. In this case the

authors propose a simplification of image blobs by giving five

special types of local templates defined as configurations of

spatial 2× 2 neighbourhoods, called textons, which can be seen

as minimal blob regions. Co-occurrence of colour and texture

features of their textors are computed and accounted in a global

statistical measure (histogram) that represents the image.

Considering all previous approaches in this work we hypoth-

esise that by going back to the original definition of texton we

can provide a framework for texture description with some in-

teresting properties:

• It provides us with a definite description of texture able

to represent perceivable texture differences of any image.

Texton theory is the consequence of a large experimental

analysis about which texture differences are discriminated

by humans and which are not.

• It is based on a computational approach that uses well

known early stages of human visual processes, namely,

convolution with banks of filters at different scales and the

corresponding non-linear steps to select relevant informa-

tion, instead of specific operators looking for all possible

patterns that can be found in an image.

• It allows to integrate colour and texture in a natural man-

ner. No special new assumptions are required, colour is

added just as one more attribute of the image blobs.

In this paper, as in Voorhees and Poggio [14] and continuing

the work of Alvarez et al. [20], we start with a precise defini-

tion of texton as blob attributes and we propose an image repre-

sentation based on a first-order statistic of these blob attributes

that can fully characterise colour-texture images. The computa-

tional representation we propose perfectly matches current bag-

of-words models coming from the object recognition field [21]

and also used in texture representation [15, 1, 17, 16].

In the context of object recognition the bag-of-words (BoW)

representation model has become a standard way to represent

image content. Image representation is built after three main

steps are done: feature detection, feature representation and vo-

cabulary construction. In the first step significant regions of

the image are extracted; in the second, features are extracted

in every region. In last step the vocabulary of visual words is

constructed by learning procedures on the feature vectors ob-

tained from a subset of test images. Then visual words are the

representative vectors, or prototypes, of a clustering process.

Finally, the image is represented by histogram of visual words

[22], without taking into account where the features are located

but the frequency, in a similar way to first order statistics of

texton theory. When the location of visual words is needed as

for scene categorisation problems, then hierarchical approaches

are used [23], in this way a coloured texton-based hierarchical

approach has been proposed in Battiato et al. [24].

One of the main problems derived from BoW approach is the

way vocabularies are built and how to achieve an accurate com-

bination of different features (e.g. texture and colour). In [25]

they propose a universal vocabulary of coloured textons that is

derived from combining visual words that optimise the object

categorisation task. A deep discussion on how to build vocabu-

laries that combine local shape and colour is done in [26]. Ei-

ther in object categorisation Khan et al. [26] or in near-duplicate

retrieval [27, 28] more complex shape descriptors surpass tex-

ton concept.

In this work we propose a texture representation based on the

BoW framework, representing colour-texture image content,

where the features are the attributes of image blobs as stated

in the texton theory. In our approach a first step is devoted to

the computation of textons. To extract textons we build a multi-

scale Laplacian approach with further refinements to get image

blobs, we call p-blobs, and subsequently their attributes: width,

length, orientation and colour. Second, vocabulary is obtained

from the direct quantisation of p-blob attribute spaces, without

any previous learning step. In this way, we can work with low-

dimensional spaces (three dimensions for shape and three for

colour) providing visual words with some perceptual meaning.

Thus, the first stages of our BoW framework are achieved in a

pure feedforward manner with no learning. Finally, the image

is represented by a probability density function of vocabulary

terms (visual words). This representation fits the first-order

statistics of textons proposed in the texton theory, where they

state that pre-attentive visual system accounts for textons in the

simplest global way, this is, by computing its frequency.

By building different vocabularies we can achieve different

image representations. Here we explore three different mod-

els to construct vocabularies where colour and texture are com-

bined differently. The first and most obvious vocabulary is a

direct sampling on each attribute dimension, as it was done by

Voorhees and Poggio [14]. This way provides a descriptor as

the concatenation of all attribute frequencies (TD descriptor).
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Afterwards we improve this image description by adding spa-

tial co-occurrence of attributes, first a full co-occurrence (JTD

descriptor), second co-occurrence of colour and shape is com-

puted separately (STD descriptor).

We evaluate the proposed descriptor on a large image dataset,

composed mainly by images from the Corel collection, in dif-

ferent applications and we compare our performance with cur-

rent state-of-art descriptors. We show that our co-occurrent de-

scriptors outperform previous results.

The rest of the paper is organised as follows: in section 2 we

explain how we propose to build the vocabularies from a pre-

cise computation of image textons. In section 3 we explain the

basic texton descriptor. In section 4 we take a further step over

the first order statistics of Julesz and Bergen [10] by inserting

co-occurrence of attributes in the vocabularies. Sections 5 and

6 explain in detail how JTD and STD descriptors are defined.

Finally, in section 7 we evaluate the proposed descriptors and

we conclude with final remarks in section 8.

2. Vocabulary of textons

As Julesz and Bergen [10], we consider textons as the at-

tributes of line-segments and blobs. Both elements are grouped

under our p-blob (perceptual blob) that refers to a region per-

ceived as convex and with colour homogeneity 1. In Fig.1 we

show an example of our image decomposition that allows us

to build different image planes representing p-blobs computed

and grouped accordingly with specific attributes, namely, ori-

entation in the top raw and colour in the second row.

Our texton vocabularies are constructed by direct quantisa-

tion on texton spaces. These are low-dimensional spaces of

p-blob attributes, one for shape and one for colour. In the next

sections we describe the procedure to obtain textons and after-

wards we introduce the quantisation process to define the visual

words and derived vocabularies. In a BoW frame, texton com-

putation is our feature detection step, and quantisation is the

vocabulary construction.

2.1. Texton Computation

We work on a pure bottom-up approach to extract textons.

We propose a process of five stages inspired in the works of

Lindeberg [29, 30]. These stages are based on a linear filtering

with Gaussian partial derivatives at multiple scales, and non-

linear steps based on local maxima operations. This follows a

pure feedforward approach in line with others low level com-

putational models in computer vision literature [31]. The five

stages needed to automatically detect p-blobs are summarised

below.

First stage: normalised Laplacian filtering. In this stage we

use the normalisation proposed by Lindeberg [30] for Laplacian

operators in the scale-space representation. Assuming that all

1We introduce the p-blob concept to distinguish it from current uses of blob

as more general low-level features.

image blobs have Gaussian shapes, image blobs are early de-

tected using the normalised differential Laplacian of the Gaus-

sian operator in a subset of scales given by:

∇2
norm L(·;σ) = σ2∇2L(·;σ) (1)

being σ = {1.284n, n ∈ [1..11]} and L(x, y;σ) = I(x, y) ∗

G(x, y;σ), where I is the original image and G(·;σ) is a Gaus-

sian function. To avoid blob detection due to noise we apply a

restriction, ∇2
norm L(·;σ) ≥ ηdet, where ηdet will be determined

by estimating the signal-noise relationship.

Since blobs can emerge from intensity variations (due to sur-

face geometry, like roughness), chromaticity variations (due to

reflectance properties), or both, in order to detect image blobs

we use a colour space representation that separates chromatic-

ity and intensity information. A basic colour space fulfilling

this property is the Opponent space. Image blobs are then ob-

tained applying the normalised Laplacian onto each opponent

colour component. Previously, components are normalised to

be invariant to intensity changes.

Second stage: maximum detection over scales. Blob centers

are located where the function ∇2
norm L reaches its maximum

over scales, while the width of the blob (w) corresponds to the

scale, sLoG, of higher function value. So we compute for each

detected blob its spatial localization and its optimal scale.

Third stage: structural tensor at integration scale. Accord-

ing to Lindeberg [29] the best procedure to compute the at-

tributes of blobs is by computing the structural tensor at the

integration scale, this is done by computing the second order

matrix, defined by

µL(·; t, s) = G(·; s) ∗ ((∇L)(·; t)(∇L)(·; t)T ) (2)

being ∇L the image gradient evaluated at t = sLoG (blob scale)

and G a Gaussian function with s = γsLoG, that is the integra-

tion scale of the tensor operator, and typically γ value is 2. In

this way we can compute the tensor eigenvectors, (v1, u1) and

(v2, u2), corresponding respectively to λ1 y λ2, which are the

tensor eigenvalues in decreasing order.

This procedure detects a large amount of blobs of similar

shapes overlapping in the space and some of them do not corre-

spond to perceived blobs. We show an example in first row of

Fig.2 where images show the redundancy of the blobs detected

in every colour channel of the left image.

Fourth stage: local maxima over detected blobs. This stage

applies a refinement stage to remove the redundancy of the pre-

vious result and providing the p-blobs. To this end, a winner-

take-all competition among overlapping blobs is performed. It

keeps the blob of higher filter response from those overlapping

with it while removing the remaining blobs. As a result of this

stage in second row of Fig.2 we show p-blobs obtained from

previous example.

Fifth stage: attribute computation. Textons are finally ex-

tracted by computing all the attributes of p-blobs detected, these

are:

• Shape attributes, width, length and orientation, denoted

respectively as (w, l, θ) are computed using results of the
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Figure 1: Our image decomposition. Left: original image. 1st row: images of p-blobs in intervals of similar orientation (22.5◦, 67.5◦, 112.5◦ , 157.5◦). 2nd row:

images of p-blobs in intervals of similar colour (red, green, yellow-orange, blue, white-pink).

Figure 2: Examples of perceptual blob detection. Left: original image. 1st row: detected blobs on I, RG and BY channels. 2nd row: p-blobs obtained in every colour

channel respectively.

second and third stages,

w = sLoG , θ = arctan(v2/u2)

l = sqrt(λ1/λ2) · w = sqrt(λ1/λ2) · sLoG.
(3)

• Colour attributes, are estimated using colour information

from all pixels belonging to a p-blob. We obtain them

(identified by (i, rg, by)) employing the median statistic

operator which is robust to noise and outliers.

Thus, for a given image with h p-blobs, its attributes or textons

are given by

WT = [w1 . . .wh] IT = [i1 . . . ih]

LT = [l1 . . . lh] RGT = [rg1 . . . rgh]

Θ
T = [θ1 . . . θh] BYT = [by1 . . . byh]

(4)

2.2. Vocabulary construction

To define any vocabulary we represent p-blob attributes (tex-

tons) in low dimensional spaces. All attributes, either shape,

(w, l, θ), and colour, (i, rg, by), convey in spaces with bounded

axes which are derived either by the image dimensions or by the

inherent nature of the attributes. Bounded spaces allow to build

vocabularies by a direct quantisation of specific spaces. In this

work, we will denote a quantisation function, Q△, as follows:

Q△ : ℝ
k → ℕ

k (5)

where k is the dimension of the space to be quantified and

subindex △ identifies the quantisation model used.

The first and simplest vocabulary that can be built is given by

the quantisation of six one-dimensional spaces, one for each at-

tribute. We have used a quantisation model based on a sampling

with bins of equal length along the one-dimensional space, this

quantisation function is denoted as Q#, and the number of bins

is denoted by m. In this way we obtain six different vocabular-

ies, each one denoted as

VX = {x1, . . . , xm} (6)

where x j is a visual word and X is the random variable

that takes values in the set of different attributes, X ∈

{W, L, Θ, I, RG, BY} corresponding to the computed textons,

width, length, orientation, intensity, rg and by components, re-

spectively. Therefore the global vocabulary we propose with

this first quantisation is given by

V =
⋃

X

VX where X ∈ {W, L, Θ, I, RG, BY} (7)

by quantifying each texton space in m intervals, the cardinal of

the vocabulary is given by #V = 6 × m terms.

3. Texton Descriptor (TD)

Considering the vocabulary defined in the previous section

now we can proceed to define the corresponding image descrip-

tor. To this end, we need to obtain the corresponding visuals

words for a given image, by applying Q# function on the ex-

tracted textons (Eq.4), this is given by:

{Q# (W) ,Q# (L) ,Q# (Θ) ,Q# (I) ,Q# (RG) ,Q# (BY)} (8)

4



lw θ

i rg by

frec.

visual
words

visual
words

frec.

Figure 3: Texton Descriptor (TD).

Considering any random variable X obtained using the quan-

tisation function Q#, we define the i-component of the basic

texton image representation from the probability density func-

tion of X, that is:

PX(xi) = P[X = xi] (9)

that represents the likelihood of a particular p-blob attribute in

the image. Then we define the basic texton image representa-

tion, Texton Descriptor (TD), as the concatenation of the proba-

bility distributions of all six random variables which are related

to perceptual blob attributes. This is given by

T D = [PW , PL, Pθ, PI , PRG, PBY] (10)

In Fig.3 we give an schematic example of a colour-texture

representation using its Texton Descriptor. With this basic

texton image representation, visual words describe colour and

shape of p-blobs. This definition updates the basic definition

of Voorhees and Poggio [32] extending it to colour. The main

drawback of this descriptor lies on its inherent simplicity, co-

occurrence between different textons is completely lost. One vi-

sual word can refer to different geometries or different colours.

In this way, the positional relationship between textons is ig-

nored as it was stated in texton theory. In the next sections we

will explore new vocabularies defined on the textons spaces but

combining texton with non-linear transforms and using differ-

ent sampling functions.

4. New Vocabularies of Textons

The vocabulary defined in the previous section was built by a

direct sampling on to the one-dimensional spaces provided by

the attributes. In this way, the proposed descriptor does not ex-

ploit two useful properties that could increase its representation

power, these are:

• The existence of perceptual relationships between at-

tributes.

• The co-occurrence of shape and colour attributes at the

blob level.

 

z = log2(log2(A)) 

r = log2(ar) 
Φ = 2θ 

αααα    

Figure 4: Shape texton space in cylindrical coordinates.

To introduce the perceptual relationships between attributes

we propose to define new textons that are derived by non-linear

transforms on the original attributes resulting in two three-

dimensional spaces with cylindrical coordinates. Then, to in-

troduce the co-occurrence of the attributes at the blob level we

propose two ways to build new vocabularies and representa-

tions.

4.1. New textons

We propose to use new textons as the result of combining the

basic attributes of p-blobs. Combination of attributes is done by

introducing uniform properties to the spaces. In colour science

([33]) a common approach to introduce perceptual considera-

tions is to define uniform spaces. These spaces are built in such

a way that perceptual similarities correlate with Euclidean dis-

tances.

Perceptual relationships between shape attributes are used in

the shape space by a non-linear transform, denoted asUS, and

defined as

US : ℝ
3 → ℝ

3

(w, l, θ) → (r, z, φ)
(11)

where r = log2(ar), z = log2(log2(A)) and φ = 2θ, being ar the

blob aspect ratio (ar = w/l), A its area (A = w · l) and θ its
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(a) HSI-Carron colour space (b) HSV-Smith colour space

Figure 6: Colour spaces used to represent p-blob colour information.

orientation. Then, two axes of this shape texton space describe

the blob size and a third axis defines blob orientation. In Fig.4

we show some blob shapes examples represented in the shape

texton space. By definition, blob width is the lowest length of

two blob lengths, then all blobs are localized inside the cone

shown in Fig.4 delimited by αmax = π/4.

In a similar way, we apply a non-linear transform to the

colour information of p-blobs. We use a well-know transform

to HSI colour space that is also three-dimensional and uses

cylindrical coordinates as well. This colour space allow us to

work with perceptual axes and present similar properties to uni-

form colour spaces. Since our colour blob attributes have been

computed in an opponent colour representation, the following

transformation is needed in order to obtain new colour blob at-

tributes:

UC : ℝ
3 → ℝ

3

(i, rg, by) → (h, s, i)
(12)

thus, new colour blob attributes are (h, s, i), corresponding to

the perceptual properties of hue, saturation and intensity respec-

tively.

4.2. Vocabulary construction

Once different perceptual texton spaces have been built, vo-

cabularies can be constructed using different quantisation mod-

els. In this section we explore different possibilities in order

to evaluate how they can better represent colour-texture proper-

ties.

Texton spaces are bounded and their axes have perceptual

properties, these two interesting properties allow a generation

of vocabularies by a direct quantisation of these spaces. The

obtained vocabularies are universal since they do not depend

on any specific training set of textures and their sizes are deter-

mined by the number of bins used in the quantisation process.

We have explored three different quantisation models on tex-

ton spaces to build different vocabularies. We refer to them as

Cartesian, cylindrical and circular. The three models have been

used for the shape texton spaces and only the first two have been

used for colour. They are explained in more detail below:

• Cartesian model, M#, sampling process is shown in

Fig.5(a). Spaces are uniformly quantified using the same

number of bins in each dimension. In colour spaces this

has been previously used by Lee et al. [34], others have

used a finer quantisation on chromatic axes and a coarser

quantization on the achromatic axis as Swain and Ballard

[35].

• Cylindrical model, M⊗, bins are shown in Fig.5(b). This

model exploits the benefits of having perceptual axes in

texton spaces, therefore the quantisation can be directly

applied on each texton independently, these are (r, z, φ) and

(h, s, i) for shape and colour respectively.

• Circular model, M⊚, again sampled bins are shown in

Fig.5(c). This model is a variant of the previous one but

improving the quantisation on the central area. This case is

specially useful for shape space where isotropic blobs are

located near the vertical axis. In this way they are clearly

separated from non-isotropic blobs.

For the case of shape texton space we define the quantisation

function as QS
△, (Equation 5) being △ ∈ {#,⊗,⊚} with k = 3.

For each one of the models we denote m1, m2 and m3 as the

number of bins for the three axes respectively. We obtained a

vocabulary, VS , that only describe shape of p-blobs and which

cardinality is given by #VS = 1/2×(m1×m2×m3) visual words.

For the colour texton space we define the quantisation func-

tion as QC
△ , being △ ∈ {#,⊗} again with k = 3. To repre-

sent colour information of p-blobs we have explored two dif-

ferent spaces of the HSI family, these are HSI-Carron [36] and

HSV-Smith [37] spaces, distribution of colours in these spaces

is shown in Fig.6. Using models M# and M⊗ texton spaces have

been quantified with n1, n2 and n3 number of bins per axis.

The resulting vocabulary, VC , which only describes colour of

p-blobs, presents cardinality #VC = n1 × n2 × n3 visual words.

Previous vocabularies are separately defined for shape and

colour. The combination of colour and shape attributes can be

done by spatial co-occurrence of both attributes at the blob level

or separately at the image representation level. Depending on

the combination two different vocabularies are constructed:

Co-joint vocabulary is based on the assumption that coloured

texture are characterised by shapes of specific colours. We

need a vocabulary where a visual word jointly describes

these two properties. Therefore we construct the vocab-

ulary V JCS where each visual word represents the co-

occurrence of shape and colour attributes. This vocabulary

can be built by a six-dimensional combination of attributes

from both spaces and is formed by #V JCS = #VC × #VS =

(n1 × n2 × n3) × (1/2 × m1 × m2 × m3) terms.

Semi-joint vocabulary is based on the assumption that

coloured texture can be characterised by shape and colour

attributes separately; in this way visual words are consid-

ered without any relationship between them and therefore

the vocabulary, VS CS , is built by a direct union of previous

vocabularies, this is: VS CS = VS ∪ VC , which cardinality

is given by #VS CS = #VC + #VS = (n1 × n2 × n3) + (1/2×

m1 × m2 × m3).

5. Co-joint Texton Descriptor (JTD)

This descriptor represents the image content using the vocab-

ulary V JCS . In this way the Co-joint Texton Descriptor (JTD) is

6



(a) Model M# (b) Model M⊗ (c) Model M⊚

Figure 5: Different quantisation models.

brown 67º-elongated medium blobs

blue112º-elongated medium blobs

… …

blue isotropic medium blobs

blue isotropic small blobs

brown isotropic medium blobs

frec.

visual
words

Figure 7: Co-joint Texton Descriptor (JTD) in a one-dimensional representation.

7



defined as the probability density function of a bi-dimensional

random variable (C, S ), which is composed of two discrete ran-

dom variables: C that belongs to the quantised colour texton

space and S that belongs to the quantised shape texton space.

JT D = [PC,S (c1, s1), · · · , PC,S (cM, sN)] (13)

where PC,S (ci, s j) = P[C = ci, S = s j] is the joint probability

density function of colour and shape attributes. Then the JTD

descriptor introduces full co-occurrence of colour and shape at-

tributes to represent colour-textures. As a consequence, the pro-

posed vocabulary has a clear correspondence between a visual

word and all the attributes co-occurring on a p-blob.

Fig.7 shows the JTD descriptor of the image in Fig.2, where

its perceptual visual words is graphically shown. We have used

linguistic terms (adjectives) to refer to the attributes associated

to each blob. Also in Fig.8 we show some examples of this

image representation.

6. Semi-joint Texton Descriptor (STD)

In this section we propose a second colour-texture represen-

tation that uses a vocabulary where, again, colour and texture

are combined. The vocabulary is VS CS , where words describe

shape and colour of p-blobs. The PTD is similar to the JTD but

removes the co-occurrence between colour and shape attributes.

We define the Semi-joint Texton Descriptor (STD) from

marginal probabilities of bidimensional random variable (C, S )

as follows:

S T D = [S T Ds S T Dc]

S T Ds = [PS (s1), · · · , PS (sN)]

S T Dc = [PC(c1), · · · , PC(cM)]

(14)

where PC(c) =
∑

s j
PC,S (ci, s j) ≡

∑
s j

P[C = ci, S = s j] is

the marginal probability of random variable C, and PS (s) =∑
ci

PC,S (ci, s j) ≡
∑

ci
P[C = ci, S = s j] is the marginal proba-

bility of random variable S .

Fig.9 shows an example of a STD descriptor, where again, for

each perceptual visual word we display its associated linguistic

terms.

7. Experimental Results

Two different applications have been used to evaluate the per-

formance of proposed colour-texture representations: image re-

trieval and classification. In image retrieval the goal is to find

images similar to a query image, while in image classification

the aim is to identify the class of the query image from pre-

trained classes. Both applications need to define relevant sets,

either a composition of classes in classification or a set of sim-

ilar images in retrieval. To construct relevant sets we follow a

common setup: given an image we built its class or obtain its

similar images dividing every image in J non-overlaping sub-

images.

7.1. Datasets

Here we list diverse datasets we have used in the experi-

ments:

Corel, all datasets from the Corel stock photography collec-

tion2 related to colour-textures. Below we indicate its names

and in brackets its corresponding references and nicknames:

Textures (137000, CorelTex), Textures II (404000, CorelTex2),

Various Textures I (593000, CorelV1Tex), Various Textures

II (594000, CorelV2Tex), Textile Patterns (192000, CorelTex-

Pat), Sand & Pebble Textures (390000, CorelSand), Bark Tex-

tures (399000, CorelBark), Colors & Textures (403000, Corel-

Col), Marble Textures (349000, CorelMarb), Painted Textures

(265000, CorelPain), Shell Textures (355000, CorelShel). Each

Corel group has 100 textures and each relevant set has J = 6

sub-images. Then, the total number of textures is 6x100 = 600

for each Corel dataset. In Fig.10 we show some samples of each

dataset.

Outex, dataset (TC-00013) [38], it has 68 textures and J = 20

sub-images per texture.

Vistex 3, we consider two similar subsets: the dataset used

by Mäenpää and Pietikäinen [3] with 54 textures, that we call

VisTexP, and the dataset defined by Liapis and Tziritas [39] with

55 textures, here identified as VisTexL. Both datsets have J = 16

sub-images.

7.2. Distance metric

We have used the chi-square (χ2) metric to compare our im-

age descriptors since they are probability distributions. Given

two image descriptors, H1 and H2, their similarity measure is

computed by the χ2 distance as follows:

χ2(H1,H2) =
1

2

T∑

t=1

[H1(t) − H2(t)]2

H1(t) + H2(t)
. (15)

7.3. Image Retrieval

We carried out a series of experiments using different vocab-

ularies obtained by varying the feature quantisation model, and

in case of the JTD and the STD descriptors, also varying the

colour space to represent colour information.

To assess quantitatively the performance of the retrieval we

have used two standard measures Recall [40] and Precision vs.

Recall graphs. The retrieval Recall is defined as follows:

recall(n) =
Nrelevant

relevant
(16)

where Nrelevant is the number of relevant images in the n images

retrieved and relevant is the total number of relevant images

in the database. The results have been computed by using all

2Corel data are distributed through http://www.emsps.com/photocd/corelcds.htm
3Vision Texture-VisTex database (MIT Media Lab)

http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.
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Figure 8: At left some textures examples and at right their JTD representation including its correspondent p-blob decomposition.
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Figure 9: Semi-joint Texton Descriptor (STD) in a one-dimensional representation.

Table 1: Mean Recall of all datasets with TD descriptor using different vocab-

ularies.

#V 54 66 96 192 384 768

Mean 73.18 74.47 76.36 78.46 79.02 78.95

images of each dataset as query images, then we compute the

average Recall as a percentage:

recall(n) =
1

P

P∑

i=1

recalli(n) × 100 (17)

where recalli is the Recall of image i and P is the number of

images in the database. In the ideal case of the retrieval, if

n = relevant then the average Recall will be 100. The retrieval

precision is defined as follows:

precision(n) =
Nrelevant

n
(18)

where n is the total number of returned images by the retrieval.

7.3.1. Experiment 1: TD evaluation

In this experiment, the colour-texture representation is eval-

uated using the descriptor TD. We have tested six vocabularies

quantifying respectively each texton in m = 9, 11, 16, 32, 64

and 128 intervals. The average Recall obtained in each dataset

is shown in Fig.11 where we detail the results using the men-

tioned vocabularies of size #V = 6 × m terms.

From the results obtained we can state that vocabulary size

determines the efficiency of the TD descriptor: increasing the

vocabulary size also increases its efficiency; however this is not

a critical parameter. Vocabulary size can not be too small in

order to avoid that the same word refers to different textons and

hence has to have a sufficient number of terms; this is more than

96 terms. From this number on the efficiency of the descriptor

has little variation.

For comparison purposes we have determined the best vo-

cabulary, therefore, for each vocabulary; we have computed

the mean of average Recall obtained in all datasets displayed

Table 2: Codification of tested vocabularies in JTD evaluation.

Quantisation Vocabulary size (m1 ,m2 ,m3), #VJCS

models (n1 , n2 , n3)

QS
#

,QC
#

(5,5,5), 7812 (5,5,5), 30375 (6,6,6), 27648 (7,7,7), 43904 (7,7,7), 83349 (5,5,7), 52500

(5,5,5) (9,9,6) (8,8,4) (8,8,4) (9,9,6) (10,10,6)

q1 q2 q3 q4 q5 q6

QS
#

,QC
⊗

(5,5,5), 16000 (7,7,7), 43904 (5,5,7), 50400

(4,4,16) (4,4,16) (6,6,16)

q7 q8 q9

QS
⊗,QC

⊗

(4,5,8), 10240 (4,5,8), 20480 (4,7,8), 28672 (3,7,8), 48384

(4,4,8) (4,4,16) (4,4,16) (6,6,16)

q10 q11 q12 q13

QS
⊚

QC
⊗

(3,7,8), 21504 (3,7,8), 33600 (3,7,8), 48384

(4,4,16) (5,5,16) (6,6,16)

q14 q15 q16

in Fig.11; in Table 1 we show the mean values. The high-

est mean has been achieved with vocabularies of 384 and 768

terms. From these two, the smallest vocabulary will be used in

a later section.

7.3.2. Experiment 2: JTD evaluation

Different vocabularies has been obtained using the men-

tioned feature quantisation models and varying quantisation pa-

rameters (number of bins). Also, we have used two different

colour spaces to represent colour information, HSI-Carron and

HSV-Smith. For each vocabulary we have done the same exper-

iment obtaining the Recall measure in order to evaluate all the

parameters involved in the quantisation process that derives dif-

ferent vocabularies. To easily identify each test we have coded

every experiment; table 2 shows codes and parameters used in

the construction of the vocabularies. For each vocabulary we

detail the quantisation model, the number of bins in quantising

texton spaces and vocabulary size. For each quantisation model

a greater number of encoding corresponds to a greater number

of intervals in quantisation process and therefore a higher vo-

cabulary size.

Fig.12(a) shows the average Recall percentages obtained for

each dataset using the HSV-Smith colour space to represent

colour information in all tested vocabularies. In this graph and

for every database, vocabularies giving a highest Recall value
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Figure 10: In each row some examples of each one of eleven colour-texture Corel databases used in experimentation.
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Figure 11: Average Recall of TD for each dataset using different vocabularies.
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Table 3: Codification of tested vocabularies in STD evaluation.

Quantisation Vocabulary size (m1 ,m2 ,m3), #VS CS

models (n1 , n2 , n3)

QS
#

,QC
#

(5,5,5), 549 (7,7,7), 658 (9,9,9), 1094 (6,6,6), 1404

(9,9,6) (9,9,6) (9,9,9) (12,12,9)

q1 q2 q3 q4

QS
#

,QC
⊗

(5,5,5), 319 (7,7,7), 1468 (9,9,9), 1660

(4,4,16) (9,9,16) (9,9,16)

q5 q6 q7

QS
⊗,QC

⊗

(4,5,8), 208 (4,5,8), 336 (4,7,8), 368 (4,7,8), 1488

(4,4,8) (4,4,16) (4,4,16) (9,9,16)

q8 q9 q10 q11

QS
⊚

QC
⊗

(3,7,8), 340 (3,7,8), 660 (3,7,8), 1108 (3,7,8), 1380 (4,7,8), 1408 (3,7,8), 1684

(4,4,16) (6,6,16) (8,8,16) (9,9,16) (9,9,16) (10,10,16)

q12 q13 q14 q15 q16 q17

were highlighted with bigger points. The Recall obtained varies

widely depending on dataset; this is due in part to the non-

homogeneity of relevant sets in Outex and CorelShel databases.

The best vocabularies are q9, q13 and q16, corresponding to

models where colour texton space has been quantised in a cir-

cular way (QC
⊗). To assess the average behavior of the JTD

descriptor we have computed the mean Recall of all datasets

that we show in Fig.12(b). In the same figure we also show

the results of the same experiment but using HSI-Carron colour

space to represent colour information. This graph shows that

the best vocabulary is q13 where shape texton space has also

been quantised, as colour texton space, in a circular way (QS
⊗)

this vocabulary will be used for comparing purposes in a later

section. Another conclusion is that in the different quantisation

models we have tested the behavior of HSV-Smith colour space

is better than HSI-Carron.

7.3.3. Experiment 3: STD evaluation

In order to evaluate the STD descriptor we have repeated the

same experiment performed in previous descriptor, using differ-

ent vocabularies varying quantisation parameters and using two

different colour spaces to represent colour information (HSI-

Carron and HSV-Smith). Again, for simplification purposes,

we have coded every experiment, as shown in table 3. Indices

of the code also correlate with a greater number of intervals in

quantisation process and therefore with higher vocabulary size.

Fig.13(a) shows the average Recall percentages for each

dataset using different vocabularies and HSV-Smith colour

space to represent colour information. In regard to the JTD de-

scriptor, a similar variation of Recall measure among datasets

is also observed in this graph. However, in this case, one of the

vocabularies emerge as the best, q16, where colour and shape

spaces are quantised in a circular way. In particular, shape

texton space has been quantised using the special quantisation

model M⊚ that exploit better the features of shape texton space.

This conclusion is also obtained from the information shown

in Fig.13(b), where we show the mean Recall of all datasets

and again the behavior of HSV-Smith colour space is better than

HSI-Carron.

7.3.4. Comparison with other descriptors

In order to compare our results we have used the two im-

age representation models mentioned in the introduction, that

integrates colour and texture in different ways. In the model

where colour and texture are processed separately we have used

MPEG-7 descriptors [2] and MTH descriptor [5]. In the model

where colour and texture are jointly processed we have used the

LBP RGB descriptor [3].

Among MPEG-7 descriptors two of them have been used to

describe colour information, these are SCD and CSD descrip-

tors. The first one describes colour distributions while the sec-

ond describes colour organisation inside images. To describe

texture information the HTD descriptor is useful for homoge-

neous textures and the EHD for non-homogeneous textures.

MPEG-7 is a multimedia content description standard where

there is not a defined procedure to combine descriptors, for this

reason we have adopted the method of Dorairaj and Namuduri

[7] that combines dissimilarity measures.

The MTH descriptor combines colour and texture orientation

in a texton histogram and has been used recently in an image

retrieval application over large Corel datasets.

In case of LBP(RGB) descriptor, it has some parameters

and can be itself combined [3, 41, 42], for this reason three

different models have been tested, these are: LBP8,1RGB,

LBP(u2
8,1
+u2

16,3
+u2

24,5
)RGB and LBP(u2

8,1
+u2

16,2
+u2

24,3
)RGB referenced

in this paper as LBP1, LBP2, LBP3 respectively.

We have done the same retrieval experiment over all datasets

using MTH descriptor and the above mentioned combination

for MPEG-7 and LBP descriptors. Table 5 shows the average

Recall obtained in each dataset for all descriptors. The highest

Recall is indicated in boldface and in cursive the second best

Recall to highlight the best results for each dataset.

In the first three columns of table 5 comparing only our de-

scriptors, we show our best performance achieved using TD

(#V = 384), JTD (q13) and STD (q16). Results in that table

show that STD descriptor is superior in all datasets, except for

Outex where TD performs best and VistexL for which is reported

a performance of 91.3% by Liapis and Tziritas [39]. For all

datasets, STD has a superior average Recall than JTD at the ex-

pense of a smaller vocabulary size (the STD descriptor has 1408

terms and the JTD descriptor 48384). Comparing all descrip-

tors, STD outperforms all the others in almost all datasets and

it has the best behaviour on average. The second best descrip-

tor is JTD followed by a combination of MPEG-7 descriptors

(EHD+CSD).

To compare the performance of previous descriptors in a

higher dataset we have done an additional experiment: we have

joined all Corel images in a single dataset, thus decreasing inter-

class variability. The results of the average Recall obtained

appears in table 4. Performance analysis of proposed descrip-

tors has also been evaluated using Precision vs. Recall graphs

presented in Fig.14. Both results proved that the behaviour of

descriptor STD is clearly better than LBP, MTH and MPEG-7

descriptors, while performance of JTD and EHD+CSD is very

similar.

All this experimentation carried out on a very diverse datasets
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Figure 12: JTD descriptor evaluation. (a) with different quantisation models for each dataset. (b) mean Recall of all datasets.
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Figure 13: STD descriptor evaluation. (a) with different quantisation models for each dataset. (b) mean Recall of all datasets.

Table 5: Average Recall.

HTD+ HTD+ EHD+

BD STD JTD TD SCD CSD CSD LBP1 LBP2 LBP3 MTH

Outex 71.69 67.17 75.39 61.10 66.02 67.64 56.87 46.82 60.80 39.99

VisTexL 88.70 84.15 84.01 87.41 83.45 85.25 73.20 50.36 66.11 61.44

VisTexP 84.80 80.82 80.35 83.44 80.24 81.81 70.38 45.85 64.69 57.43

CorelTex 84.89 81.89 78.78 67.33 72.36 75.31 61.89 60.83 62.22 41.61

CorelTex2 90.81 88.61 84.58 76.11 85.89 87.33 72.50 68.89 72.42 55.47

CorelV1Tex 95.00 92.50 91.03 85.94 91.89 92.78 77.53 72.14 74.56 68.00

CorelV2Tex 95.17 91.22 90.58 88.53 85.89 92.28 81.47 79.81 81.44 69.08

CorelTexPat 95.25 93.61 91.56 93.69 89.86 90.50 86.89 82.92 86.03 58.78

CorelSand 86.86 80.33 75.75 72.00 85.06 85.28 55.54 60.17 59.89 45.78

CorelBark 79.36 74.00 63.69 64.83 69.11 70.36 48.39 51.69 51.67 42.06

CorelCol 81.70 78.01 76.24 73.43 72.78 75.52 68.89 68.73 70.62 53.24

CorelMarb 86.56 81.42 78.33 70.67 80.11 82.03 59.78 63.72 65.19 42.36

CorelPain 80.14 75.72 72.28 62.31 72.61 73.94 50.67 49.11 51.69 52.78

CorelShel 58.03 50.53 48.78 41.50 47.06 49.97 32.83 35.94 35.67 30.83

Mean 84.21 80.00 77.95 73.45 77.31 79.29 64.06 59.78 64.46 51.36
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Table 4: Recall of the Corel datasets union.

Descriptor MTH LBP3 EHD+CSD TD JTD STD

Recall 40.11 60.01 75.80 45.30 75.90 82.43
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Figure 14: Precision vs. Recall graph of Corel datasets union.

has demonstrated the usefulness of the descriptor STD to model

any kind of colour-textures and its superior performance com-

pared to other well known descriptors.

7.3.5. Texture and colour contribution on STD

Further experimentation has been done over STD in order to

study the contribution of shape and colour components of this

descriptor separately. We have repeated the retrieval experi-

ment, however, we have only used the component of STD that

characterizes blob shape distribution on colour-textures, this is

S T Ds (eq. 14) and used the component that characterise blob

colour distribution, S T Dc. To construct the vocabulary of each

component we have used the same parameters of quantisation

model q16 and the HSV-Smith colour space, obtaining 1296

terms for S T Dc and 112 terms for S T Ds. Table 6 lists the re-

sults of this experiment in contrast of the STD results, where

the highest Recall of both components is indicated in boldface.

We can state that S T Dc component always achieves bet-

ter performance compared with S T Ds component in all

datasets. In some of them (CorelSand, CorelMarb, Corel-

Pain and CorelV1Tex) the contribution of S T Dc is much higher

than S T Ds contribution, thus indicating greater discrimination

power of colour descriptor. This experiment also show that the

performance of the STD descriptor is better than their compo-

nents by themselves.

7.4. Image Classification

Image classification is one of the most frequently used appli-

cation to test descriptors viability. Image classification requires

Table 6: Average Recall of STD components.

BD S T Ds S T Dc S T D

Outex 48.18 61.83 71.69

VisTexL 63.49 81.60 88.70

VisTexP 62.37 78.35 84.80

CorelTex 56.78 75.86 84.89

CorelTex2 59.58 86.61 90.81

CorelV1Tex 55.72 92.17 95.00

CorelV2Tex 67.39 91.19 95.17

CorelTexPat 73.89 92.53 95.25

CorelSand 36.50 85.11 86.86

CorelBark 46.33 72.33 79.36

CorelCol 58.04 74.87 81.70

CorelMarb 44.72 81.97 86.56

CorelPain 40.30 77.03 80.14

CorelShel 32.00 53.94 58.03

Mean 53.24 78.96 84.21

two steps: the first is learning, where a subset of images belong-

ing to each relevant set is needed for training the classifier and,

in the second step the rest of the relevant images are used to test

the classifier. We used the simplest classifier, nearest neighbor-

hood, because the goal is to test the descriptor and not to obtain

the best classification rate.

In this experiment half of the images of each dataset have

been used for training and the rest for test. The classification

process has been repeated 20 times using in each learning step

a different random set of images. Table 7 presents the aver-

age classification rates of our best descriptors (STD(q13) and

JTD(q16)), LBP, the best combination of MPEG-7 descriptors

and MTH descriptor. In this classification experiment we also

have added a comparison with MR8-LF descriptor, based on the

texton model of Varma and Zisserman [16] that uses the MR8

filter bank; it has been extended to colour following the pro-

cedure suggested by Burghouts and Geusebroek [17] (vocabu-

lary is independently built for each colour channel, we learn 10

words per channel, 30 words per training image and we learn

from 20 images randomly drawn from 20 different classes, ob-

taining 600 words). In the same table we have also included

MM descriptor proposed by Arvis et al. [43], where the authors

reported results on two of the datasets we used, achieving the

best score in one of them. For each dataset the highest rate is

indicated in boldface and the second best rate in italics.

Results in this experiment show that the STD descriptor out-

performs remaining descriptors in 12 of 14 datasets, and in the

two datasets where is not the best descriptor it achieves the sec-

ond best rate. On average the STD descriptor outperforms in

3.84% next best rate achieved by EHD+CSD descriptors that

has a similar performance to our descriptor JTD. These re-

sults confirm conclusions obtained in previous experiments and

demonstrates the good behavior of our descriptors also in tex-

ture characterisation.
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Table 7: Classification rates.

BD STD JTD HTD+SCD HTD+CSD EHD+CSD LBP1 LBP3 MM MTH MR8-LF

Outex 90.32 84.71 75.78 86.71 90.04 71.51 76.07 94.1 66.79 63.85

VisTexL 99.25 97.35 95.69 99.56 99.13 94.12 87.67 - 85.93 78.02

VisTexP 98.89 98.52 94.66 98.53 98.24 92.11 95.95 97.9 83.02 75.02

CorelTex 93.73 92.02 65.45 80.90 86.88 73.78 75.85 - 43.72 55.08

CorelTex2 97.78 96.88 75.38 88.97 95.38 84.57 83.32 - 64.07 75.33

CorelV1Tex 97.63 96.13 84.04 94.15 96.83 88.12 87.15 - 78.48 80.05

CorelV2Tex 98.77 96.08 86.45 95.07 96.98 90.90 90.57 - 78.30 86.43

CorelTexPat 98.48 97.42 94.98 97.87 95.28 96.35 94.47 - 66.82 84.12

CorelSand 92.83 80.88 63.32 78.13 92.10 61.05 67.42 - 49.10 60.08

CorelBark 91.10 85.08 56.58 70.57 84.95 55.78 64.17 - 43.37 48.23

CorelCol 89.37 86.35 73.81 86.12 85.57 82.43 81.72 - 58.80 64.27

CorelMarb 95.45 90.38 65.70 80.78 91.73 70.53 76.33 - 41.77 58.18

CorelPain 97.98 86.03 54.42 72.00 85.97 57.13 59.77 - 57.75 48.17

CorelShel 72.32 59.62 32.82 38.47 61.02 31.68 32.27 - 25.50 28.50

Mean 93.85 89.10 72.79 83.42 90.01 75.00 76.62 - 60.24 64.67

8. Conclusions

In this paper we revisit texton theory [10] presenting a new

computational approach that is faithful to the original definition

of textons, defined as the attributes of image blobs. We use

a refined procedure to extract blobs and compute their shape

attributes, size, length, orientation and colour.

We propose several descriptors in the BoW framework, thus

the density of features perfectly match first-order statistics of

the texton theory. Our descriptors are built by direct quantisa-

tion on the spaces of blob attributes without needing any learn-

ing stage. In this way our proposal is taking the advantage of

the optimised representations used by perceptual systems for

texture discrimination instead of training from specific image

datasets. Quantisation of these texton spaces provides universal

texture vocabularies, which visual words have a direct transla-

tion to linguistic terms.

Differences between proposed descriptors rely on how at-

tributes are combined. The TD descriptor concatenates indi-

vidual attribute distributions at a late step (no co-occurrence of

attributes); on the other hand, the six blob attributes are fused

at an early step in the JTD descriptor (full blob co-occurrence).

Finally, the STD descriptor concatenates shape and colour blob

attributes (colour blob co-occurrence separated from shape blob

co-occurrence). The experiments carried out with different and

diverse image datasets have shown an efficient performance of

our descriptors in representing coloured texture images. We re-

port an extensive evaluation and comparison of our descriptors

showing important improvements on current state-of-art in im-

age retrieval and classification applications. These results bring

us to the conclusion that the STD descriptor shows a slightly

better performance in most experiments. This may mean that

avoiding co-occurrence of colour and shape features at the blob

levels maintains a high-level of average performance with a

small vocabulary size. However, the JTD descriptor with a

larger vocabulary achieves an important discriminatory power

for specific image subsets.

Further research on these low-level descriptors can be di-

rected to insert perceptual grouping mechanisms capturing the

properties of spatial patterns than can emerge from blobs con-

figurations. This could be integrated as further higher-level fea-

tures added to the proposed framework.
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