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ABSTRACT

We present MVMO (Multi-View, Multi-Object dataset): a
synthetic dataset of 116,000 scenes containing randomly
placed objects of 10 distinct classes and captured from 25
camera locations in the upper hemisphere. MVMO comprises
photorealistic, path-traced image renders, together with se-
mantic segmentation ground truth for every view. Unlike
existing multi-view datasets, MVMO features wide baselines
between cameras and high density of objects, which lead to
large disparities, heavy occlusions and view-dependent object
appearance. Single view semantic segmentation is hindered
by self and inter-object occlusions that could benefit from
additional viewpoints. Therefore, we expect that MVMO
will propel research in multi-view semantic segmentation and
cross-view semantic transfer. We also provide baselines that
show that new research is needed in such fields to exploit the
complementary information of multi-view setups1.

Index Terms— multi-view, cross-view, semantic seg-
mentation, synthetic dataset

1. INTRODUCTION

The task of semantic segmentation [1] aims at, given an input
image, performing pixel-wise classification over a predefined
set of categories. As in many other dense prediction prob-
lems, the end-to-end convolutional neural networks (CNN)-
based fully supervised approach to this task has become the de
facto standard to solve it, leading to robustly performing mod-
els [2] at the expense of a large amount of human annotations.
Nevertheless, understanding scenes based on a single 2D in-
put is challenging when applied on (i) scenes with significant
inter-object and self-occlusions that hide class-distinctive fea-
tures (ii) scenes covering a wide spatial range, where distant
objects can show a small apparent size.

In this context, we hypothesize that posing data-driven
models that exploit multi-view camera setups that provide
complementary information over the imaged scenes could
be of potential interest for improving the results obtained

∗This work is part of the projects 3KIA (KK-2020/00049) and BasqNet
(KK-2021/00014), funded by the SPRI-Basque Government-ELKARTEK.

1Code and dataset: https://aitorshuffle.github.io/projects/mvmo/

Fig. 1: Top: two scenes from the proposed 116,000 scene
MVMO dataset and the 25 equidistributed camera locations.
Bottom: rendered views and semantic ground truth for the 5
camera poses (highlighted) used in our experiments.

by single-camera baselines. However, so far multi-view
semantic segmentation has primarily been approached for
close-baseline setups [5] i.e. those where the distance be-

https://aitorshuffle.github.io/projects/mvmo/


Dataset Wide Baseline Object Density Representation Photorealism # Scenes # Views # Classes

Human3.6M [3] Yes Low (1) 2D images Real 900,000 in 165 sequences 4 24
3Dpeople [4] Yes Low (1) 3DM→2D S: High B: Low 616,000 in 5,600 sequences 4 8(clothes)/14(body)

SYNTHIA [5] No N/A 3DM→2D Low 51,000 in 51 sequences 8 13

ScanNet [6] ? Low 2D→3DS High 1.5k ? 40
House3D [7] ? Low 3DVE Low 45.6k ? 80
Gibson [8] ? Low 3DVE High (IBR/PCR) 1.4k ? 40
CARLA [9] ? ? 3DVE Mid-High (RT) ? ? 12

MVMO (ours) Yes High (15-20) 3DM→2D High (PT, UOM) 116k (uncorrelated) 25 11

Table 1: Datasets for multi/cross-view semantic segmentation. The table shows the lack of datasets with wide baseline and high object
density addressed by MVMO. Object Density: #objects/scene. Does not apply to close baseline scenarios. Representation: 2D→3DS: 3D
Surface reconstructed from 2D. 3DVE: 3D Virtual Environment. 3DM→2D: 3D Model rendered to 2D images. Photorealism: S: Subject.
B:Background. IBR: Image-Based Rendering. PCR: Point Cloud Rendering (view synthesis from Point Cloud). RT: Ray-Tracing. PT:
Path-Tracing. UOM: Uniform Object Materials. ?: Needs to be placed/configured/generated by user; images are not readily available.

tween cameras (and thus, the resulting disparities) are small,
whereas solving the aforementioned obstacles requires wide
baselines. Scenarios that could benefit from this approach are
frequent in real life, in domains as diverse as industry (e.g.
conveyor belts), surveillance, or traffic management.

In this paper, we introduce MVMO, the Multi-View
Multi-Object dataset, which addresses the current lack of
publicly available large-scale datasets of densely annotated
wide-baseline multi-view scenes containing multiple objects.
MVMO is a synthetic, path tracing-based set of 116,000
scenes with per-view semantic segmentation annotations of
10 object categories. Each scene is observed from 25 cam-
era locations distributed uniformly in the upper hemisphere
(see Fig. 1). Unlike most existing multi-view image datasets
(which are designed to be camera-centric and exhibit very
close baselines while sensing their surroundings [5]), MVMO
features wide baselines between many camera pairs as a result
of a scene-centric design, and a large amount of objects per
scene. This leads to large disparities, notable occlusions and
variable apparent object geometry, size and surface appear-
ances across views. Therefore, MVMO sets a particularly
challenging arrangement that aims at contributing to push
research on the fields of multi-view semantic-segmentation
and cross-view semantic knowledge transfer. The experi-
ments presented show that simple baselines fail to be of much
help in transferring learned models to novel views, hence
suggesting the need for novel research in this direction.

Related work. Our work relates to a number of previous
datasets from various research fields, some of which already
leverage wide-baseline multi-view datasets in an attempt to
improve upon their respective single-view performances: In
multi-view object detection, [10] introduces a multi object
detection dataset with bounding box annotations for pedes-
trians, cars and buses from 6 calibrated cameras. Advances
on multi-view human pose estimation were possible by lever-
aging various wide baseline datasets over RGB [11, 12, 3] and
depth [13] images of both groups [14] and individuals.

The field of multi-view semantic segmentation (see Ta-

ble 1) has been addressed from diverse perspectives. Many
early works prior to the irruption of deep learning tech-
niques focused on the binary segmentation of a single static
foreground object from a sequence of close-baseline views
from a class-agnostic point of view [15, 16], often learn-
ing sequence-specific models and relying on diverse cues:
object-background color distributions, central object fixation
or stereo geometry constraints. More recently, [17] used deep
self-supervised training to extend the single subject segmen-
tation task to three dynamic scenes in wide-baseline setups.

Multi-class multi-view semantic segmentation poses harder
challenges and calls for larger datasets. Different works lever-
age the complementary information provided by additional
views: [18] extends the Leuven stereo dataset with semantic
labels in one of the views to jointly train for segmentation and
stereo reconstruction. A few works focus on cross-view se-
mantic transfer, with an unsupervised transfer of the seman-
tic annotations to new label-free views, e.g. ground to aerial
views [19] or among distinct vehicle-mounted cameras [20] in
close-baseline footage from [9]. Both tasks demand datasets
comprising two or more 2D RGB views, with annotations in
each of them. SYNTHIA [5] provides pixel-wise depth and
semantic labels for a large synthetic set of scenes captured
from a vehicle-mounted 8 RGB camera-rig, thus showing
the usual narrow baseline of camera-centric driving setups.
The wide baseline scenario has so far only been tackled by
the Human3.6M [3] and 3DPeople [4] datasets. They both
provide body part [3, 4] or clothing [4] segmentations, but [4]
has immutable 2D backgrounds, and they are both restricted
to single subjects and thus limited in the severity of the oc-
clusions and subject size variation across views.

Several recent papers [21, 22, 23] leverage the spatial con-
sistencies in temporal sequences of RGB or RGB-D images
with small relative baselines among them to address seman-
tic segmentation of either 2D images or their reconstructed
3D representations. The raw sequences of the NYUv2 [24],
Camvid, ETHZ RueMonge 2014 [21] or the ScanNet [6]
datasets are commonly used to achieve this. Furthermore,



various large scale 3D virtual or reconstructed environments
have been released. Their relevance comes from the fact that,
through significant user intervention, parts of the 3D model
and associated labels could be projected back to 2D to syn-
thesise semantically annotated multi-view image sets from
arbitrary camera locations with different degrees of realism.
The House3D [7], Gibson [8] and CARLA [9] environments
are some relevant examples, although only CARLA, being
fully virtual, could yield high object densities via its API.
This was shown in [25] for close baseline setups, proposing a
multi-view semantic fusion scheme from up to 8 input views
onto a new virtual zenithal view.

In conclusion, MVMO covers the lack of a standard-
ised large scale photo-realistic multi-view dataset with wide-
baselines (and hence, large disparities and relevant occlu-
sions) across cameras and comprising semantic segmentation
annotations for multiple objects of distinct classes.

2. MVMO DATASET CONSTRUCTION

We use Blender’s Python API for procedural 3D scene con-
struction and image rendering, using the ModelNet10 3D ob-
ject dataset [26] as repository of well-categorized 3D shapes
of 10 common object classes. We build a basic scene with a
grey plane at z = 0 and a single zenithal rectangular key light,
and define a 2.8 × 2.8m rectangular area for object place-
ment. All cameras are projective cameras with a focal length
of f = 35mm, oriented to the origin. The camera locations
are determined by sampling the surface of a hemisphere of
r = 3m regularly so that they are equidistributed [27]. For
our set of 25 samples, this yields locations at 4 levels (Fig. 1):
1 view at L0 (top, at z = 3.0m), 3 views at L1 (z = 2.90m),
9 views at L2 (z = 2.12m) and 12 views at L3 (z = 0.78m).

Then, for each scene: (i) we randomly select one of
the 10 categories of ModelNet10 and (ii) sample one shape
from the selected class, (iii) we normalize its scale so that
its largest dimension is 1.0m, then applying a random scale
in the [0.3 − 0.8] range, (iv) we select a random base-color
from a set of 9,284 predefined ones and apply a random com-
bination of the specularity, roughness and metallic material
modifier properties that -together with other fixed property
values- define the Bidirectional Scattering Distribution Func-
tion (BSDF) of the materials applied to the whole shape.
(v) we place it on the z = 0 plane of our base scene, in a
random location (within the designated limit area) and angle,
checking that the mesh does not intersect with any previ-
ously placed object. (vi) Once 15 − 20 objects are placed,
the scene and fine-detailed ground truth images are rendered
with the Cycles engine for each of the 25 views at 256× 256
pixels, producing photo-realistic, unbiased and physically
consistent shading, reflectance and material effects, including
specularities, and interreflections.

The 116,000 created scenes (each with 25 views) were
then partitioned in a train set (100,000), two validation and

Fig. 2: Histograms of the train set distributions for (a) Objects
per class (total) and (b) Number of objects per scene.

two test sets (4,000 each). The latter are created based on
whether the used ModelNet10 shapes were already used for
the train set (SO: Same Objects) or come from a held-out
set of shapes (OO: Other Objects) from the same categories,
which poses a harder problem. Fig. 2 shows the resulting dis-
tributions of objects per category and scene for the train set.

This proposed wide-baseline multi-object dataset contains
many occlusions, making semantic segmentation from a sin-
gle view difficult. We think MVMO can facilitate research
in multiple directions. We highlight two of them: (i) Multi-
-view semantic segmentation: existing close-baseline datasets
have only few occlusions. Therefore, the proposed dataset
makes for a more interesting setup for multi-view semantic
segmentation. (ii) Cross-view semantic transfer: this is an es-
pecially exciting research direction which can be performed
on MVMO. In real-life applications the dense labelling of all
views is infeasible. Hence we believe that methods need to be
designed that can learn to perform multi-view semantic seg-
mentation based on labels from only a single view.

3. EXPERIMENTAL BASELINES

We run two baseline experiments for the cross-view seman-
tic transfer problem. These experiments are included to show
that there is no simple solution to this task and it is indeed an
open research problem. To conduct them we select 5 repre-
sentative views from three distinct levels: L0.cam0 (zenithal),
L2.cam8, L2.cam12, L3.cam.13 and L3.cam.22 (see Fig. 1).
In both cases we use a U-Net [2] as our semantic segmenta-
tion model, with an Imagenet-pretrained ResNet50 backbone.
Experiment 1. Cross-view semantic transfer via direct
testing We train an independent model with each of the con-
sidered views and directly test them against every other cam-
era’s test sets, without any specific adaptation. Table 2 shows
the results in terms of Intersection over Union (IoU): The di-
agonals correspond to standard fully supervised single-view
setups. We see that these improve as we adopt a higher per-
spective of the scene. As one might expect, direct semantic
transfer between cameras placed within the same level (e.g.
L2.cam8/L2.cam12) yields a minimal performance drop, on
account of the quasi-invariance of the learned representations
to horizontal camera pose rotations (the objects were placed



Subset test\train cam0 cam8 cam12 cam13 cam22

Other
objs.

L0.cam0 71.12 29.09 29.61 14.28 14.88
L2.cam8 24.63 70.21 70.16 28.14 28.54
L2.cam12 25.14 69.09 70.05 27.73 28.29
L3.cam13 12.18 31.26 31.46 59.18 58.72
L3.cam22 12.11 30.10 30.59 58.39 59.41

Same
objs.

L0.cam0 80.55 29.92 29.69 14.00 14.51
L2.cam8 27.11 77.90 77.71 27.24 27.46
L2.cam12 28.01 76.87 77.97 26.94 27.52
L3.cam13 12.90 32.16 32.29 65.87 65.69
L3.cam22 12.76 31.00 31.68 64.84 66.09

Table 2: IoU results for direct cross-view semantic transfer.
Five models trained on 100% of the train set (100k scenes).

L0.cam0→L2.cam8 L2.cam8→L0.cam0

Other objs. Same objs. Other objs. Same objs.

28.72 31.29 24.35 24.84

Table 3: IoU results for planar homography-based transfer.

in the scene with a random rotation, hence the features ob-
served from both views are similar, except for the non-circular
symmetry of the placement area). However, the performance
across views at distinct levels drops drastically, with the most
distant levels yielding the highest differences. Note, finally,
the foreseeable performance generalization gap between the
OO and SO test subsets that favours the latter.

Fig. 3 shows some of the most common failure cases for
monocular semantic segmentation models: (i) self-occlusions
and (ii) partial inter-object occlusions that hide relevant fea-
tures of the object (resulting in ambiguous geometry and ap-
pearances), (iii) distant/small objects and, less prominently,
(iv) ambiguities induced by appearance variations (e.g. spec-
ularities). All these cases could benefit from the complemen-
tary information provided by the additional, significantly dis-
tinct perspectives of a multi-view setup. Nevertheless, the
way of constructively fusing such multiple-view information
sources in data-driven models without explicitly addressing a
3D representation of the scene is far from trivial, both in the
multi-view and in the cross-view semantic transfer cases.

Experiment 2. Planar homography-based transfer An-
other baseline to model such geometric relation between
views in a cross-view semantic transfer scenario is that of a
planar 3 × 3 homography. This model holds well for quasi-
planar scenes or relatively distant objects [28]. In this ex-
periment we compute the homography induced by the z = 0
plane that maps cameras v2 to v1 (Hz=0,2→1) using four
point correspondences. Then, in order to obtain a semantic
map estimate from v2 given a model trained on v1 (fv1→ss1 ),
we proceed as follows: (i) transform the v2 input to v1 via
Hz=0,2→1 (ii) feed this to fv1→ss1 so as to obtain a semantic
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Fig. 3: Failure cases from monocular models in Table 2. a)
self-occlusion (golden object) b) inter-object occlusion (sofa
under the yellow desk) c) small objects (light pink and dark
green objects) d) ambiguity from specular inter-reflection
(light blue object with reflections of the cyan one). Last row
shows a second view that could help solve the ambiguity.

map referenced to v1 (iii) transform this back to be referenced
to v2 with the inverse homography Hz=0,1→2 = H−1z=0,2→1.
We test this on two cameras at distinct levels: L0.cam0 and
L2.cam8. The lack of a significant performance gain in the
results (see Table 3) over the direct transfer baseline from Ta-
ble 2 shows that, as expected, the planar homography fails to
help for the general, wide-baseline case, in which a good es-
timate of pixel-wise depth information from every secondary
view is needed for unambiguous matching.

The failure of both experimental baselines, along with the
fragility of photometric cues in wide baseline scenarios [17],
suggests that exploiting the complementary information given
by additional views of the scene in a data-driven multi-view
learning setup or transferring the knowledge from trained
models across views in unsupervised scenarios will require
the development of new theoretical approaches.

4. CONCLUSION

We presented MVMO, a wide baseline multi-view synthetic
dataset with semantic segmentation annotations that features
a high object density and large amount of occlusions. We
expect MVMO will propel research in multi-view semantic
segmentation and cross-view semantic transfer and, likely
through domain adaptation, address the current limitations of
monocular setups in heavily-occluded real world scenes.
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senberg, and L. Van Gool, “Learning Where to Classify
in Multi-view Semantic Segmentation,” in ECCV, 2014.

[22] L. Ma, J. Stückler, C. Kerl, and D. Cremers, “Multi-
view deep learning for consistent semantic mapping
with RGB-D cameras,” in IROS, 2017.

[23] A. Dai and M. Niessner, “3DMV: Joint 3D-Multi-View
Prediction for 3D Semantic Scene Segmentation,” in
ECCV, 2018.

[24] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “In-
door Segmentation and Support Inference from RGBD
Images,” in ECCV, 2012.

[25] B. Pan, J. Sun, H. Y. T. Leung, A. Andonian, and
B. Zhou, “Cross-View Semantic Segmentation for Sens-
ing Surroundings,” IEEE Robot. Autom. Lett., vol. 5, no.
3, pp. 4867–4873, July 2020.

[26] Z. Wu et al., “3D ShapeNets: A Deep Representation
for Volumetric Shapes,” in CVPR, 2015.

[27] M. Deserno, “How to generate equidistributed points on
the surface of a sphere,” Tech. Rep., 2004.

[28] R. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, Cambridge University Press, sec-
ond edition, Apr. 2004.


	1  Introduction
	2  MVMO Dataset construction
	3  Experimental baselines
	4  Conclusion
	5  References

