Maryam Asadi-Aghbolaghi¹, Hugo Bertiche², Vicent Roig², Shohreh Kasaei¹, Sergio Escalera^{2,3} ¹Dept. of Computer Engineering, Sharif University of Technology, Tehran, Iran ²Dept. of Applied Mathematics and Analysis, University of Barcelona, Barcelona, Spain ³Comuter Vision Center, Autonomous University of Barcelona, Spain Email: masadia@ce.sharif.ir

Action Recognition from RGB-D Data: Comparison and Fusion of Spatio-temporal Handcrafted Features and Deep Strategies

Abstract

In this work,

- Multimodal fusion of RGB-D data are analyzed for action recognition by using scene flow as early fusion and integrating the results of all modalities in a late fusion fashion.
- Multimodal dense trajectory (MMDT) is proposed to describe RGB-D videos as handcrafted features.
- Multimodal 2D CNN (MM2DCNN) is proposed as the extension of 2D CNN by adding one more input stream (scene flow).
- The proposed methods are evaluated on two action datasets.
- Fusion of handcrafted and learning-based features achieved the state of the art results.

Introduction

- □ Action recognition is an active research area with potential applications of health-care monitoring, interactive gaming, surveillance, and robotics.
- □ Microsoft Kinect have facilitated capturing of low-cost depth images in real-time alongside color images (multimodal data).
- Late fusion of RGB, depth, and motion-based representations (like optical flow) is an effective method for action recognition.
- **Scene flow** [1] is the real 3D motion of objects that move completely or partially with respect to a camera.
- ✓ Considered as **Early fusion** of RGB and depth,
- Preserving 3D motion data on the spatial structure of both modalities, \checkmark More discriminative than optical flow,
- When it is significant motion perpendicular to the image plane, ✓ Invariant to the distance between objects and the camera.
 - In 3D world, distance between two objects does not depend on the relative position to the camera while the same movement performed at different position may produce different optical flow in terms of pixels.

Multimodal Data

- □ MMDT is presented as a handcrafted representation.
- > Dense trajectories (DT) [2], pruned by exploiting scene flow data, > Histogram of normal vector (HON) is extracted from normal vectors of depth images.
- □ MM2DCNN is presented as learning-based features.
 - > By the incorporation of scene flow information as a new model. > Late fusion: score averaging of the result of multi streams 2DCNN [3,4] (RGB, optical flow, and scene flow)
- □ Second fusion: **combination of handcrafted and deep models**, ✓ Handcrafted: powerful in describing motion information,
 - Deep learning: good at describing appearance data.

Denoising and RGB-D Aligr

Denoising

- **Missing pixels** in depth images due to:
- × Limitations of the **IR sensor**,
- × Special **reflectance materials**,
- × **Distance** from the objects to the camera.
- ✓ **Interpolating** zero value pixels by its surrounding data,
- ✓ *Hybrid median filter* (HMF) to reduce pixel flickering, Compute medians for different spatial directions
 - Horizontal/vertical + diagonal
- Compute the median of both of them

RGB-D alignment

- × IR and optical cameras are **separated**,
- \checkmark Warp the color image to fit the depth one,
- Use the intrinsic (focal length and the distortion mode rotation) camera parameters.

Multimodal Dense Trajecto

Trajectories

- □ Compute scene flow along the trajectories,
- **Pruning** dense trajectories,
- By the information achieved by scene flow in meters
- Scene flow is invariant to the position of the subject to the camera.
- ✓ Scene flow has an additional dimension, which all measurement of motion through Z-axis.

HON descriptor

- □ New source of information; i.e., **depth maps**.
- \Box Each normal is represented by two angles θ and φ :
- $0 < \theta < \pi$ and $-\pi/2 < \phi < \pi/2$,
- \Box 5 bins are considered, (size of $\pi/4$ radians), total of 25 bi □ The final descriptor is the **concatenation** of 12 sub-histo

Video Summarization

- × Deep methods mostly select a fixed number of frames between them. Thus, some relevant information might be ✓ Key frames selection
 - Select relevant visual information to discriminate action
 - Keeping the size of the data small.

□ Sequential Distortion Minimization (SeDiM) [4]

- The distortion between the original video and the synopsis video is minimized,
- Computationally feasible and discriminative way to extract key frames.

nment	Multimoda
<image/>	 Three streams with 20 Spatial network (RG Operating on key Using a pre-train Temporal network (Using volumes of Using a pre-train Temporal network (Consider three of Using a pre-train
	Experime
Denoising and RGB-D Alignment	MSR Daily Dataset:
lel) and extrinsic (translation and	Table 1: DT and MMDT accu
	Descriptors HOG (RGB)
ory (MMDT)	HON (Depth) HOE + MBH (Opt. flow
	Best
s	MM2DCNN: Table 3: Accuracy for SeDi
	ModelRGBIRGB53.9153.91
Without pruning	Opt. flow 55.47 5 Scene flow 67.19
	Late Fusion 70.08 Second Late Fusion of Table 5: Second late fusion Datase MSR Diamontalba Comparison:
With pruning bins for sub-histogram,	Table 6: Performance cor
ograms results in 300 dimensions.	Metho EigenJoint
Trajectory description n_{τ} N n_{σ}	MovingPor HON4D SSTKDes ActionLet MMD MM2DC
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Table 7: Performance Method Fernando et al. [4 Pigou et al. [46 MMDT MM2DCNN
	Reference
s with equal temporal spacing lost.	[1] Mariano Jaimez, Moh framework for real-time
ons,	International Conference [2] Heng Wang, Alexander rajectories. In Computer 3169–3176. IEEE, 2011. [3] Karen Simonyan and in videos. In NIPS, pages [4] Limin Wang, Xiong Yu stream convnets." arXiv p [5] Costas Panagiotakis, distortion minimization m Patterns, pages 94–101.

	Multimod	al 2D	CNN
--	----------	-------	-----

- D CNN (VGG-16) GB)
 - ev frames.
- ned network on UCF-101. (Optical flow)
- ned network on UCF-101.
- (Scene flow)
- dimensions of scene flow as three input channels,
- ned model of its own RGB model.

ntal Result

uracy on MSRDaily Act. 3D. MMDT DT 45.625 43.125 72.5 62.5 70 63.125 78.13

DiM on MSR Daily Activity 3D.

Model	RGB	Depth	RGB-D	Random
RGB	53.91	53.12	53.91	53.12
Opt. flow	55.47	57.81	55.47	55.70
Scene flow	67.19	68.75	66.41	64.84
Late Fusion	70.08	71.65	70.08	69.29

of MMDT and MM2DCNN: on of MMDT and MM2DCNN.

Accuracy
82.50
97.44

mparison on MSRDaily Act. 3D.

Method	Accura
EigenJoints 43	58.10
MovingPose[44]	73.80
HON4D [15]	80.00
SSTKDes 16	85.00
ActionLet 40	85.75
MMDT	82.50
MM2DCNN	71.65

mparison on Montalbano II

Accuracy/Precision

94.49 85.66

97.44 (97.52 Precision)

hamed Souiai, Javier GonzalezJimenez, and Daniel Cremers. A primal-dual dense rgb-d scene flow. In Robotics and Automation (ICRA), 2015 IEEE *on*, pages 98–104. IEEE, 2015. ler Klaser, Cordelia Schmid, and "Cheng-Lin Liu. Action recognition by dense Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages

Andrew Zisserman. Two-stream convolutional networks for action recognition 568-576. 2014.

'uanjun, Wang Zhe, and Qiao Yu. "Towards good practices for very deep twopreprint arXiv:1507.02159 (2015).] Nelly Ovsepian, and Elena Michael. Video synopsis based on a sequential nethod. In International Conference on Computer Analysis of Images and Springer, 2013. P~3.

Computer Vision 20²

(MM2DCNN)

of stacking optical flow fields between several consecutive frames,

Montalbano II:

ic 2. DT and whyiDT accur	acy off	wiointalual
Descriptors	DT	MMDT
HOG (RGB)	67.3	67.3
HON (Depth)	-	77.67
HOF + MBH (Opt. flow)	82.0	82.0
Best	83.5	85.66

Table 4: Accuracy for SeDiM on Montalbano II.

Model	RGB	Depth	RGB-D	Random
RGB	96.03	97.06	95.72	97.06
Opt. flow	61.06	59.74	60.67	64.24
Scene flow	69.90	69.68	69.02	70.93
Late Fusion	96.28	96.25	96.16	97.06

Examples from MSR Daily. Each column shows one modality. Each rows shows the classification result of each modality Red: Wrong classification, Green: Correct classification.